Skip to main content
Log in

Semilattice sums of algebras and Mal’tsev products of varieties

  • Published:
Algebra universalis Aims and scope Submit manuscript

Abstract

The Mal’tsev product of two varieties of similar algebras is always a quasivariety. We consider the question of when this quasivariety is a variety. The main result asserts that if \(\mathcal {V}\) is a strongly irregular variety with no nullary operations and at least one non-unary operation, and \(\mathcal {S}\) is the variety, of the same type as \(\mathcal {V}\), equivalent to the variety of semilattices, then the Mal’tsev product \(\mathcal {V}\circ \mathcal {S}\) is a variety. It consists precisely of semilattice sums of algebras in \(\mathcal {V}\). We derive an equational base for the product from an equational base for \(\mathcal {V}\). However, if \(\mathcal {V}\) is a regular variety, then the Mal’tsev product may not be a variety. We discuss various applications of the main result, and examine some detailed representations of algebras in \(\mathcal {V}\circ \mathcal {S}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bergman, C.: Notes on Quasivarieties and Mal’tsev Products (2014). https://iastate.box.com/v/maltsevprods. Accessed May 2020

  2. Bergman, C.: Universal Algebra. Fundamentals and Selected Topics. CRC Press, Boca Raton (2012)

    MATH  Google Scholar 

  3. Bergman, C., Failing, D.: Commutative idempotent groupoids and the constraint satisfaction problem. Algebra Universalis 73, 391–417 (2015)

    Article  MathSciNet  Google Scholar 

  4. Bergman, C., Romanowska, A.: Subquasivarieties of regularized varieties. Algebra Universalis 36, 536–563 (1996)

    Article  MathSciNet  Google Scholar 

  5. Clifford, A.H.: Semigroups admitting relative inverses. Ann. Math. 42, 1037–1049 (1941)

    Article  MathSciNet  Google Scholar 

  6. Clifford, A.H., Preston, G.B.: The Algebraic Theory of Semigroups. American Mathematical Society, Providence (1961)

    MATH  Google Scholar 

  7. Graczyńska, E., Kelly, D., Winkler, P.: On the regular part of varieties of algebras. Algebra Universalis 23, 77–84 (1986)

    Article  MathSciNet  Google Scholar 

  8. Harding, J., Romanowska, A.: Varieties of Birkhoff systems. Part I. Order 34, 45–68 (2017)

    Article  MathSciNet  Google Scholar 

  9. Harding, J., Romanowska, A.: Varieties of Birkhoff systems. Part II. Order 34, 69–89 (2017)

    Article  MathSciNet  Google Scholar 

  10. Hobby, D., McKenzie, R.: The Structure of Finite Algebras. Contemporary Mathematics, vol. 76. American Mathematical Society, Providence (1988)

    Book  Google Scholar 

  11. Howie, J.M.: An Introduction to Semigroup Theory. Academic Press, London (1976)

    MATH  Google Scholar 

  12. Howie, J.M.: Fundamentals of Semigroup Theory. Clarendon Press, Oxford (1995)

    MATH  Google Scholar 

  13. Iskander, A.A.: Extension of algebraic systems. Trans. Am. Math. Soc. 28, 309–327 (1984)

    Article  MathSciNet  Google Scholar 

  14. Lallement, G.: Demi-groupes réguliers. Ann. Mat. Pura Appl. 77, 47–129 (1967)

    Article  MathSciNet  Google Scholar 

  15. Mal’tsev, A.I.: Multiplication of classes of algebraic systems. Sibirsk. Mat. Zh. 8, 346–365 (1967). ((Russian). English translation in: The Metamathematics of Algebraic Systems. Collected Papers: 1936–1967)

    MathSciNet  Google Scholar 

  16. Mal’tsev, A.I.: The Metamathematics of Algebraic Systems. Collected Papers: 1936–1967. Noth-Holland Publishing Co., Amsterdam (1971)

    MATH  Google Scholar 

  17. McKenzie, R., McNulty, G., Taylor, W.: Algebras, Lattices, Varieties, vol. 1. Wadsworth and Brooks/Cole, Monterey (1987)

    MATH  Google Scholar 

  18. McLean, D.: Idempotent semigroups. Am. Math. Mon. 61, 110–113 (1954)

    Article  MathSciNet  Google Scholar 

  19. Płonka, J.: On a method of construction of abstract algebras. Fundam. Math. 60, 183–189 (1967)

    Article  MathSciNet  Google Scholar 

  20. Płonka, J.: On equational classes of abstract algebras defined by regular equations. Fundam. Math 64, 241–247 (1969)

    Article  MathSciNet  Google Scholar 

  21. Płonka, J., Romanowska, A.: Semilattice sums. In: Romanowska, A., Smith, J.D.H. (eds.) Universal Algebra and Quasigroup Theory, pp. 123–158. Heldermann, Berlin (1992)

    Google Scholar 

  22. Romanowska, A.: On regular and regularized varieties. Algebra Universalis 23, 215–241 (1986)

    Article  MathSciNet  Google Scholar 

  23. Romanowska, A., Smith, J.D.H.: Modal Theory. Heldermann Verlag, Berlin (1985)

    MATH  Google Scholar 

  24. Romanowska, A., Smith, J.D.H.: Modes. World Scientific, Singapore (2002)

    Book  Google Scholar 

  25. Saliǐ, V.N.: Equationally normal varieties of semigroups. Izv. Vyssh. Uchebn. Zaved. Mat. 84, 61–68 (1969). (Russian)

    MathSciNet  Google Scholar 

  26. Saliǐ, V.N.: A theorem on homomorphisms of strong semilattices of semigroups. In: Vagner, V.V. (ed.) Theory of Semigroups and Applications, vol. 2, pp. 69–74. Izd Saratov Univ, Saratov (1971)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Bergman.

Additional information

Presented by R. Freese.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research of the first author was partially supported by the National Science Foundation under Grant no. 1500235. The second author’s research was supported by the Warsaw University of Technology under Grant number 504/04259/1120.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergman, C., Penza, T. & Romanowska, A.B. Semilattice sums of algebras and Mal’tsev products of varieties. Algebra Univers. 81, 33 (2020). https://doi.org/10.1007/s00012-020-00656-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00012-020-00656-8

Mathematics Subject Classification

Keywords

Navigation