Skip to main content
Log in

The structure group of a non-degenerate effect algebra

  • Published:
Algebra universalis Aims and scope Submit manuscript

Abstract

A (non-commutative) structure group G(E) is associated to an arbitrary effect algebra E, and a concept of non-degeneracy is introduced. If E is non-degenerate, G(E) has a right invariant partial order, E embeds as an interval into G(E), and the negative cone of G(E) is a self-similar partial L-algebra. In the degenerate case, the possible anomalies are explained. Lattice effect algebras, 2-divisible effect algebras, and the effect algebra of a Hilbert space, are shown to be non-degenerate. As an application, using a strengthened concept of sharpness, the theory of block decomposition is extended to arbitrary effect algebras, and it is shown that the “very sharp” elements always form a sub-effect algebra and an orthomodular poset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Baer, R.: Free sums of groups and their generalizations. An analysis of the associative law. Am. J. Math. 71, 706–742 (1949)

    MathSciNet  MATH  Google Scholar 

  2. Bennett, M.K., Foulis, D.J.: Interval and scale effect algebras. Adv. Appl. Math. 19(2), 200–215 (1997)

    MathSciNet  MATH  Google Scholar 

  3. Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Ann. Math. 37(4), 823–843 (1936)

    MathSciNet  MATH  Google Scholar 

  4. Brieskorn, E., Saito, K.: Artin–Gruppen und Coxeter–Gruppen. Invent. Math. 17, 245–271 (1972)

    MathSciNet  MATH  Google Scholar 

  5. Cattaneo, G., Dalla Chiara, M.L., Giuntini, R., Pulmannová, S.: Effect algebras and para-Boolean manifolds. Int. J. Theoret. Phys. 39(3), 551–564 (2000)

    MathSciNet  MATH  Google Scholar 

  6. Chang, C.C.: Algebraic analysis of many valued logics. Trans. Am. Math. Soc. 88, 467–490 (1958)

    MathSciNet  MATH  Google Scholar 

  7. Chang, C.C.: A new proof of the completeness of the Łukasiewicz axioms. Trans. Am. Math. Soc. 93, 74–80 (1959)

    MATH  Google Scholar 

  8. Chovanec, F., Kôpka, F.: D-Posets, Handbook of Quantum Logic and Quantum Structures, pp. 367–428. Elsevier Sci. B. V, Amsterdam (2007)

    MATH  Google Scholar 

  9. Connes, A.: A factor not anti-isomorphic to itself. Bull. Lond. Math. Soc. 7, 171–174 (1975)

    MathSciNet  MATH  Google Scholar 

  10. Dehornoy, P.: Groupes de Garside. Ann. Sci. École Norm. Sup. (4) 35(2), 267–306 (2002)

    MathSciNet  MATH  Google Scholar 

  11. Dehornoy, P., Digne, F., Godelle, E., Krammer, D., Michel, J.: Foundations of Garside Theory. EMS Tracts in Mathematics, vol. 22. European Mathematical Society, Zurich (2015)

    MATH  Google Scholar 

  12. Dehornoy, P., Paris, L.: Gaussian groups and Garside groups, two generalisations of Artin groups. Proc. Lond. Math. Soc. (3) 79(3), 569–604 (1999)

    MathSciNet  MATH  Google Scholar 

  13. Deligne, P.: Les immeubles des groupes de tresses généralisés. Invent. Math. 17, 273–302 (1972)

    MathSciNet  MATH  Google Scholar 

  14. Diego, A.: Les Algèbres de Hilbert. Collection de Logique Mathematique, Sér. A, vol. 21. Gauthier-Villars, Paris (1966)

    Google Scholar 

  15. Dietzel, C.: A right-invariant lattice order on groups of paraunitary matrices. J. Algebra 524, 226–249 (2019)

    MathSciNet  MATH  Google Scholar 

  16. Dvurečenskij, A.: Pseudo MV-algebras are intervals in \(l\)-groups. J. Austral. Math. Soc. 72, 427–445 (2002)

    MathSciNet  MATH  Google Scholar 

  17. Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures. Mathematics and its Applications, vol. 516. Kluwer Academic Publishers, Dordrecht (2000)

    MATH  Google Scholar 

  18. Dvurečenskij, A., Vetterlein, T.: Pseudoeffect algebras, I. Basic properties. Int. J. Theoret. Phys. 40(3), 685–701 (2001)

    MathSciNet  MATH  Google Scholar 

  19. Dvurečenskij, A., Vetterlein, T.: Pseudoeffect algebras, II. Group representations. Int. J. Theoret. Phys. 40(3), 703–726 (2001)

    MathSciNet  MATH  Google Scholar 

  20. Dvurečenskij, A., Vetterlein, T.: Algebras in the positive cone of po-groups. Order 19(2), 127–146 (2002)

    MathSciNet  MATH  Google Scholar 

  21. Dye, H.A.: On the geometry of projections in certain operator algebras. Ann. Math. 61, 73–89 (1955)

    MathSciNet  MATH  Google Scholar 

  22. Etingof, P., Schedler, T., Soloviev, A.: Set-theoretical solutions to the quantum Yang–Baxter equation. Duke Math. J. 100, 169–209 (1999)

    MathSciNet  MATH  Google Scholar 

  23. Foulis, D.J., Bennett, M.K.: Effect algebras and unsharp quantum logics. Special issue dedicated to Constantin Piron on the occasion of his sixtieth birthday. Found. Phys. 24(10), 1331–1352 (1994)

    MathSciNet  Google Scholar 

  24. Foulis, D.J., Greechie, R.J., Bennett, M.K.: Sums and products of interval algebras. Int. J. Theoret. Phys. 33(11), 2119–2136 (1994)

    MathSciNet  MATH  Google Scholar 

  25. Foulis, D.J., Greechie, R.J., Rüttimann, G.T.: Filters and supports in orthoalgebras. Int. J. Theoret. Phys. 31(5), 789–807 (1992)

    MathSciNet  MATH  Google Scholar 

  26. Garside, F.A.: The braid group and other groups. Q. J. Math. Oxford Ser. 2(20), 235–254 (1969)

    MathSciNet  MATH  Google Scholar 

  27. Gheondea, A., Gudder, S., Jonas, P.: On the infimum of quantum effects. J. Math. Phys. 46(6), 11 (2005)

    MathSciNet  MATH  Google Scholar 

  28. Giuntini, R., Ledda, A., Paoli, F.: A new view of effects in a Hilbert space. Stud. Logica 104(6), 1145–1177 (2016)

    MathSciNet  MATH  Google Scholar 

  29. Giuntini, R., Ledda, A., Paoli, F.: On some properties of PBZ*-lattices. Int. J. Theoret. Phys. 56(12), 3895–3911 (2017)

    MathSciNet  MATH  Google Scholar 

  30. Glass, A.M.W.: Partially Ordered Groups. Series in Algebra, vol. 7. World Scientific Publishing Co., Inc., River Edge (1999)

    Google Scholar 

  31. Greechie, R.J.: Orthomodular lattices admitting no states. J. Combin. Theory 10, 119–132 (1971)

    MathSciNet  MATH  Google Scholar 

  32. Gudder, S.: Examples, problems, and results in effect algebras. Int. J. Theoret. Phys. 35(11), 2365–2376 (1996)

    MathSciNet  MATH  Google Scholar 

  33. Gudder, S.: S-dominating effect algebras. Int. J. Theoret. Phys. 37(3), 915–923 (1998)

    MathSciNet  MATH  Google Scholar 

  34. Gudder, S.P., Greechie, R.: Effect algebra counterexamples. Math. Slovaca 46(4), 317–325 (1996)

    MathSciNet  MATH  Google Scholar 

  35. Hamhalter, J.: Spectral order of operators and range projections. J. Math. Anal. Appl. 331(2), 1122–1134 (2007)

    MathSciNet  MATH  Google Scholar 

  36. Hardegree, G. M., Frazer, P. J.: Charting the labyrinth of quantum logics: a progress report. Current issues in quantum logic (Erice, 1979), 53–76, Ettore Majorana Internat. Sci. Ser.: Phys. Sci., 8, Plenum, New York (1981)

  37. Hedlíková, J., Pulmannová, S.: Generalized difference posets and orthoalgebras. Acta Math. Univ. Comenian. 65(2), 247–279 (1996)

    MathSciNet  MATH  Google Scholar 

  38. Heisenberg, W.: Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. 43(3), 172–198 (1927)

    MATH  Google Scholar 

  39. Jenča, G.: Blocks of homogeneous effect algebras. Bull. Austral. Math. Soc. 64(1), 81–98 (2001)

    MathSciNet  MATH  Google Scholar 

  40. Kadison, R.V.: Order properties of bounded self-adjoint operators. Proc. Am. Math. Soc. 2, 505–510 (1951)

    MathSciNet  MATH  Google Scholar 

  41. Kalmbach, G.: Orthomodular Lattices, London Mathematical Society Monographs, vol. 18. Academic Press Inc, London (1983)

    MATH  Google Scholar 

  42. Lebed, V., Vendramin, L.: Homology of left non-degenerate set-theoretic solutions to the Yang–Baxter equation. Adv. Math. 304, 1219–1261 (2017)

    MathSciNet  MATH  Google Scholar 

  43. Lock, P.F., Hardegree, G.M.: Connections among quantum logics, I. (Quantum propositional logics), II (Quantum event logics). Int. J. Theoret. Phys. 24(1), 43–53; 55-61 (1985)

  44. Ludwig, G.: An Axiomatic Basis For Quantum Mechanics, Vol. 1, Derivation of Hilbert Space Structure. Translated from the German manuscript by Leo F. Boroń. Springer, Berlin (1985)

    Google Scholar 

  45. Mackey, G.W.: The Mathematical Foundations of Quantum Mechanics: A Lecture-Note Volume. W. A. Benjamin Inc, New York-Amsterdam (1963)

    MATH  Google Scholar 

  46. Mundici, D.: Interpretation of \(\text{ AFC }^\ast \) algebras in Łukasiewicz sentential calculus. J. Funct. Anal. 65, 15–63 (1986)

    MathSciNet  MATH  Google Scholar 

  47. Navara, M.: An orthomodular lattice admitting no group-valued measure. Proc. Am. Math. Soc. 122(1), 7–12 (1994)

    MathSciNet  MATH  Google Scholar 

  48. Navara, M., Voráček, V.: Quantum structures without group-valued measures. Int. J. Theor. Phys. (2019). https://doi.org/10.1007/s10773-019-04058-y

    Article  Google Scholar 

  49. Olson, M.P.: The selfadjoint operators of a von Neumann algebra form a conditionally complete lattice. Proc. Am. Math. Soc. 28, 537–544 (1971)

    MathSciNet  MATH  Google Scholar 

  50. Pulmannová, S.: Divisible effect algebras and interval effect algebras. Comment. Math. Univ. Carolin. 42(2), 219–236 (2001)

    MathSciNet  MATH  Google Scholar 

  51. Pulmannová, S.: Divisible effect algebras. Int. J. Theoret. Phys. 43(7–8), 1573–1585 (2004)

    MathSciNet  MATH  Google Scholar 

  52. Ravindran, K.: On a structure theory of effect algebras, Thesis (Ph.D.), Kansas State University (1996)

  53. Riečanová, Z.: Subalgebras, intervals, and central elements of generalized effect algebras. Int. J. Theoret. Phys. 38(12), 3209–3220 (1999)

    MathSciNet  MATH  Google Scholar 

  54. Riečanová, Z.: Effect algebraic extensions of generalized effect algebras and two-valued states. Fuzzy Sets Syst. 159, 1116–1122 (2008)

    MathSciNet  MATH  Google Scholar 

  55. Riečanová, Z.: Generalization of blocks for D-lattices and lattice-ordered effect algebras. Int. J. Theoret. Phys. 39(2), 231–237 (2000)

    MathSciNet  MATH  Google Scholar 

  56. Riečanová, Z.: Sharp elements in effect algebras. Int. J. Theoret. Phys. 40(5), 913–920 (2001)

    MathSciNet  MATH  Google Scholar 

  57. Rump, W.: A decomposition theorem for square-free unitary solutions of the quantum Yang–Baxter equation. Adv. Math. 193, 40–55 (2005)

    MathSciNet  MATH  Google Scholar 

  58. Rump, W.: \(L\)-Algebras, Self-similarity, and \(\ell \)-groups. J. Algebra 320(6), 2328–2348 (2008)

    MathSciNet  MATH  Google Scholar 

  59. Rump, W.: Semidirect products in algebraic logic and solutions of the quantum Yang–Baxter equation. J. Algebra Appl. 7(4), 471–490 (2008)

    MathSciNet  MATH  Google Scholar 

  60. Rump, W.: Right \(l\)-groups, geometric garside groups, and solutions of the quantum Yang–Baxter equation. J. Algebra 439, 470–510 (2015)

    MathSciNet  MATH  Google Scholar 

  61. Rump, W.: The structure group of an L-algebra is torsion-free. J. Group Theory 20(2), 309–324 (2017)

    MathSciNet  MATH  Google Scholar 

  62. Rump, W.: Von Neumann algebras, \(L\)-algebras, Baer \({}^\ast \)-monoids, and Garside groups. Forum Math. 30(4), 973–995 (2018)

    MathSciNet  MATH  Google Scholar 

  63. Rump, W., Zhang, X.: L-effect algebras. Stud. Logica (2019). https://doi.org/10.1007/s11225-019-09873-2

    Article  Google Scholar 

  64. Varadarajan, V.S.: Probability in physics and a theorem on simultaneous observability. Commun. Pure Appl. Math. 15, 189–217 (1962)

    MathSciNet  MATH  Google Scholar 

  65. Weber, H.: There are orthomodular lattices without nontrivial group-valued states: a computer-based construction. J. Math. Anal. Appl. 183(1), 89–93 (1994)

    MathSciNet  MATH  Google Scholar 

  66. Wright, R.: Generalized urn models. Found. Phys. 20(7), 881–903 (1990)

    MathSciNet  Google Scholar 

  67. Wu, Y., Wang, J., Yang, Y.: Lattice-ordered effect algebras and L-algebras. Fuzzy Sets Syst. 369, 103–113 (2019)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to three anonymous referees who pointed out several inaccuracies. Special thanks are owed to the editor and a referee who convinced us to leave the classical terminology of blocks and sharpness untouched. So our new concept of very sharp element, which distils the sharpness paradigm from lattice effect algebras to extend it to general effect algebras, does not interfere with classical sharpness and its vital connection to a lot of important concepts in quantum theory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Rump.

Additional information

Dedicated to B. V. M.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dietzel, C., Rump, W. The structure group of a non-degenerate effect algebra. Algebra Univers. 81, 27 (2020). https://doi.org/10.1007/s00012-020-00657-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00012-020-00657-7

Keywords

Mathematics Subject Classification

Navigation