Skip to main content
Log in

Random models of idempotent linear Maltsev conditions. I. Idemprimality

  • Published:
Algebra universalis Aims and scope Submit manuscript

Abstract

We extend a well-known theorem of Murskiǐ to the probability space of finite models of a system \({\mathcal {M}} \) of identities of a strong idempotent linear Maltsev condition. We characterize the models of \({\mathcal {M}} \) in a way that can be easily turned into an algorithm for producing random finite models of \({\mathcal {M}} \), and we prove that under mild restrictions on \({\mathcal {M}} \), a random finite model of \({\mathcal {M}} \) is almost surely idemprimal. This implies that even if such an \({\mathcal {M}} \) is distinguishable from another idempotent linear Maltsev condition by a finite model \(\mathbf {A}\) of \({\mathcal {M}} \), a random search for a finite model \(\mathbf {A}\) of \({\mathcal {M}} \) with this property will almost surely fail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker, K.A., Pixley, A.F.: Polynomial interpolation and the Chinese remainder theorem for algebraic systems. Math. Z. 143(2), 165–174 (1975)

    Article  MathSciNet  Google Scholar 

  2. Barto, L., Kozik, M., Maróti, M., McKenzie, R., Niven, T.: Congruence modularity implies cyclic terms for finite algebras. Algebra Universalis 61(3–4), 365–380 (2009)

    Article  MathSciNet  Google Scholar 

  3. Bergman, C.: Universal Algebra. Fundamentals and Selected Topics. Pure and Applied Mathematics, vol. 301. CRC Press, Boca Raton (2012)

  4. Berman, J., Idziak, P., Marković, P., McKenzie, R., Valeriote, M., Willard, R.: Varieties with few subalgebras of powers. Trans. Am. Math. Soc. 362(3), 1445–1473 (2010)

    Article  MathSciNet  Google Scholar 

  5. Day, A.: A characterization of modularity for congruence lattices of algebras. Can. Math. Bull. 12, 167–173 (1969)

    Article  MathSciNet  Google Scholar 

  6. Freese, R.: On the two kinds of probability in algebra. Algebra Universalis 27(1), 70–79 (1990)

    Article  MathSciNet  Google Scholar 

  7. Gumm, H.-P.: Congruence modularity is permutability composed with distributivity. Arch. Math. (Basel) 36(6), 569–576 (1981)

    Article  MathSciNet  Google Scholar 

  8. Hagemann, J., Mitschke, A.: On \(n\)-permutable congruences. Algebra Universalis 3(1), 8–12 (1973)

    Article  MathSciNet  Google Scholar 

  9. Hobby, D., McKenzie, R.: The structure of finite algebras. In: Contemporary Mathematics, vol. 76. American Mathematical Society, Providence (1988)

  10. Huhn, A.P.: Weakly distributive lattices (1972) (preprint)

  11. Jónsson, B.: Algebras whose congruence lattices are distributive. Math. Scand. 21, 110–121 (1967)

    Article  MathSciNet  Google Scholar 

  12. Kearnes, K.A., Kiss, E.W.: The shape of congruence lattices. Mem. Am. Math. Soc. 222(1046), viii+169 (2013)

  13. Kearnes, K., Kiss, E., Szendrei, Á.: Growth rates of finite algebras. I: pointed cube terms. J. Austral. Math. Soc. 101, 56–94 (2016)

    Article  Google Scholar 

  14. Kearnes, K., Marković, P., McKenzie, R.: Optimal strong Mal’cev conditions for omitting type 1 in locally finite varieties. Algebra Universalis 72(1), 91–100 (2014)

    Article  MathSciNet  Google Scholar 

  15. Kearnes, K.A., Szendrei, Á.: Clones of algebras with parallelogram terms. Int. J. Algebra Comput. 22(1), 1250005 (2012)

    Article  MathSciNet  Google Scholar 

  16. Kelly, D.: Basic equations: word problems and Mal’cev conditions. Abstract 701-08-04. Not. Am. Math. Soc. 20, A-54 (1972)

  17. Mal’cev, A.I.: On the general theory of algebraic systems. Mat. Sb. N.S. 35(77), 3–20 (1954)

    MathSciNet  Google Scholar 

  18. Maróti, M., McKenzie, R.: Existence theorems for weakly symmetric operations. Algebra Universalis 59(3–4), 463–489 (2008)

    Article  MathSciNet  Google Scholar 

  19. Murskiǐ, V.L.: The existence of a finite basis of identities, and other properties of almost all finite algebras. Probl. Kibern. 30, 43–56 (1975)

    MathSciNet  MATH  Google Scholar 

  20. Olšák, M.: The weakest nontrivial idempotent equations. Bull. Lond. Math. Soc. 49(6), 1028–1047 (2017)

    Article  MathSciNet  Google Scholar 

  21. Pixley, A.F.: Distributivity and permutability of congruence relations in equational classes of algebras. Proc. Am. Math. Soc. 14, 105–109 (1963)

    Article  MathSciNet  Google Scholar 

  22. Pixley, A.F.: The ternary discriminator function in universal algebra. Math. Ann. 191, 167–180 (1971)

    Article  MathSciNet  Google Scholar 

  23. Siggers, M.H.: A strong Mal’cev condition for locally finite varieties omitting the unary type. Algebra Universalis 64(1–2), 15–20 (2010)

    Article  MathSciNet  Google Scholar 

  24. Świerczkowski, S.: Algebras which are independently generated by every \(n\) elements. Fund. Math. 49, 93–104 (1960–61)

  25. Szendrei, Á.: Idempotent algebras with restrictions on subalgebras. Acta. Sci. Math. (Szeged) 51, 251–268 (1987)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ágnes Szendrei.

Additional information

Presented by W. DeMeo.

Dedicated to Ralph Freese, Bill Lampe, and J.B. Nation.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Algebras and Lattices in Hawaii”.

This material is based upon work supported by the National Science Foundation Grant nos. DMS 1500218 and DMS 1500254. The second author acknowledges the support of the Hungarian National Foundation for Scientific Research (OTKA) Grant no. K115518.

Appendix A. Proof of Lemma 4.4

Appendix A. Proof of Lemma 4.4

Let \(\zeta _n(k)\) denote the k-th summand on the left hand side in (4.5), that is,

$$\begin{aligned} \zeta _n(k):=\left( {\begin{array}{c}n\\ k\end{array}}\right) \left( \frac{k}{n}\right) ^{\left( {\begin{array}{c}k\\ 2\end{array}}\right) }. \end{aligned}$$

Or goal is to prove that

$$\begin{aligned} \lim _{n\rightarrow \infty } \sum _{k=4}^{n-1}\zeta _n(k)=0. \end{aligned}$$
(A.1)

Claim A.1

For arbitrary constants \(0<u<v<1\) we have that

$$\begin{aligned} \lim _{n\rightarrow \infty }\sum _{un\le k\le vn}\zeta _n(k)=0. \end{aligned}$$

Proof of Claim A.1

For \(un\le k\le vn\),

$$\begin{aligned} \zeta _n(k) =\left( {\begin{array}{c}n\\ k\end{array}}\right) \left( \frac{k}{n}\right) ^{\left( {\begin{array}{c}k\\ 2\end{array}}\right) } \le 2^n v^{un(un-1)/2} =\Bigl (2(\sqrt{v})^{u(un-1)}\Bigr )^n. \end{aligned}$$

Since \((\sqrt{v})^{u(un-1)}<\frac{1}{3}\) for large enough n, we get that

$$\begin{aligned} \sum _{un\le k\le vn}\zeta _n(k)\le n\Bigl (\frac{2}{3}\Bigr )^n \rightarrow 0 \qquad \text {as }n\rightarrow \infty . \end{aligned}$$

\(\square \)

To establish (A.1), it remains to find uv with \(0<u<v<1\) such that

$$\begin{aligned} \sum _{4\le k< un}\zeta _n(k)\rightarrow 0 \quad \text {and}\quad \sum _{vn< k< n}\zeta _n(k)\rightarrow 0 \quad \text {as }n\rightarrow \infty . \end{aligned}$$

This will be accomplished in Claims A.2 and A.3 below.

Claim A.2

For \(u=\frac{1}{2}\) we have that \(\displaystyle \lim \nolimits _{n\rightarrow \infty }\sum \nolimits _{4\le k< un}\zeta _n(k)= 0. \)

Proof of Claim A.2

The following estimates show that the sequence \(\zeta _n(k)\) (\(k=4,5,\ldots \)) is decreasing for \(4\le k\le \frac{1}{2}n\):

$$\begin{aligned} \frac{\zeta _n(k+1)}{\zeta _n(k)}= & {} \frac{n-k}{k+1}\cdot \left( \frac{k+1}{n}\right) ^k \cdot \left( \frac{k+1}{k}\right) ^{\left( {\begin{array}{c}k\\ 2\end{array}}\right) }\\= & {} \frac{n-k}{n}\cdot \left( \frac{k+1}{n}\right) ^{k-1} \cdot \left( \Bigl (1+\frac{1}{k}\Bigr )^k\right) ^{\frac{k-1}{2}} \le \left( \frac{k+1}{n}\right) ^{k-1}\cdot e^{\frac{k-1}{2}}\\&<\left( \frac{k+1}{n}\right) ^{k-1}\cdot 2^{k-1}\le 1 \qquad \text {if}\quad k+1\le \frac{n}{2}. \end{aligned}$$

The first term of the sequence is

$$\begin{aligned} \zeta _n(4)=\left( {\begin{array}{c}n\\ 4\end{array}}\right) \left( \frac{4}{n}\right) ^6 \le \frac{4^6}{4!}\cdot \frac{1}{n^2}, \end{aligned}$$

hence

$$\begin{aligned} \sum _{4\le k\le un}\zeta _n(k)\le un\cdot \frac{4^6}{4!}\cdot \frac{1}{n^2} \rightarrow 0 \qquad \text {as }n\rightarrow \infty . \end{aligned}$$

\(\square \)

Claim A.3

There exists a constant v with \(\frac{1}{2}<v<1\) such that

$$\begin{aligned} \lim _{n\rightarrow \infty }\sum _{vn< k< n}\zeta _n(k)= 0. \end{aligned}$$

Proof of Claim A.3

As in the proof of [3, Lemma 6.22C], letting \(\ell :=\lfloor vn\rfloor \) we have that

$$\begin{aligned} \left( {\begin{array}{c}n\\ \ell \end{array}}\right) <\sqrt{n}\left( \Bigl (v-\frac{1}{n}\Bigr )^{v} \Bigl (1-v\Bigr )^{1-v}\Bigl (1-v\Bigr )^{\frac{1}{n}}\right) ^{-n}. \end{aligned}$$

Now let k be such that \((\frac{n}{2}<)\,vn<k<n\). We may assume without loss of generality that \(n>8\), so \(k\ge 4\), and hence \(\left( {\begin{array}{c}k\\ 2\end{array}}\right) \ge \frac{k^2}{3}\). Thus,

$$\begin{aligned} \left( \frac{k}{n}\right) ^{\left( {\begin{array}{c}k\\ 2\end{array}}\right) }&{}\le \left( \frac{n-1}{n}\right) ^{\left( {\begin{array}{c}k\\ 2\end{array}}\right) } \le \left( \frac{n-1}{n}\right) ^{\frac{k^2}{3}}\\&{}\le \left( \frac{n-1}{n}\right) ^{\frac{v^2n^2}{3}} =\left( \Bigl (1-\frac{1}{n}\Bigr )^{n}\right) ^{\frac{v^2n}{3}} <\left( \frac{1}{e}\right) ^{\frac{v^2n}{3}}. \end{aligned}$$

Since \(k\ge vn\ge \ell \) and \(vn>\frac{n}{2}\), it follows that \(\left( {\begin{array}{c}n\\ k\end{array}}\right) \le \left( {\begin{array}{c}n\\ \ell \end{array}}\right) \). Therefore, by combining the previous estimates we obtain that

$$\begin{aligned} \zeta _n(k)=\left( {\begin{array}{c}n\\ k\end{array}}\right) \left( \frac{k}{n}\right) ^{\left( {\begin{array}{c}k\\ 2\end{array}}\right) }&{}\le \sqrt{n}\left( \Bigl (v-\frac{1}{n}\Bigr )^{v} \Bigl (1-v\Bigr )^{1-v}\Bigl (1-v\Bigr )^{\frac{1}{n}}\right) ^{-n} \left( \frac{1}{e}\right) ^{\frac{v^2n}{3}}\\&{}= \sqrt{n}\left( \frac{1}{\Bigl (v-\frac{1}{n}\Bigr )^{v} \Bigl (1-v\Bigr )^{1-v}e^{\frac{v^2}{3}}}\right) ^n(1-v)^{-1}\\&{}\le \sqrt{n}\left( \frac{1}{\Bigl (v-\frac{1}{16}\Bigr )^{v} \Bigl (1-v\Bigr )^{1-v}e^{\frac{v^2}{3}}}\right) ^n(1-v)^{-1}\\&\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \text {if } n\ge 16. \end{aligned}$$

Let \(w(v):=\Bigl (v-\frac{1}{16}\Bigr )^{v}\Bigl (1-v\Bigr )^{1-v}e^{\frac{v^2}{3}}\). Since \(\lim _{v\rightarrow 1}w(v)=\frac{15}{16}e^{1/3}>1\), there exists v with \(\frac{1}{2}<v<1\) such that \(w(v)>1\); for example, \(v=.95\) works. For any such choice of v,

$$\begin{aligned} \sum _{vn<k<n}\zeta _n(k)&{}\le \sum _{vn<k<n}\frac{\sqrt{n}}{1-v}\left( \frac{1}{w(v)}\right) ^n\\&{}\le n(1-v)\frac{\sqrt{n}}{1-v}\left( \frac{1}{w(v)}\right) ^n \rightarrow 0 \qquad \text {as }n\rightarrow \infty . \end{aligned}$$

\(\square \)

This completes the proof of Lemma 4.4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergman, C., Szendrei, Á. Random models of idempotent linear Maltsev conditions. I. Idemprimality. Algebra Univers. 81, 9 (2020). https://doi.org/10.1007/s00012-019-0636-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00012-019-0636-y

Keywords

Mathematics Subject Classification

Navigation