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The proof of Theorem 3.2 in the paper contains an error (namely in the use of Lemma 3.1
when T = eR, which is only a faithful R-module when R is reduced). We give a new proof of
this Theorem (slightly strengthened to streamline the proof) which avoids the use of Lemma
3.1.

Theorem 3.2 Let (R,m, k) be a d-dimensional Cohen–Macaulay local ring of prime char-
acteristic p and which is F-finite. Let e � logp e(R) be an integer, M an R-complex, and
r = max{1, d}.
(a) Suppose there exists an integer t > supH∗(M) such that ExtiR(eR, M) = 0 for t � i �

t + r − 1. Then M has finite injective dimension.
(b) Suppose there exists an integer t > supH∗(M) such that TorR

i (eR, M) = 0 for t � i �
t + r − 1. Then M has finite flat dimension.

Proof We first note that if (a) holds in the case dim R = d , then (b) also holds in the case
dim R = d: For, suppose the hypotheses of (b) hold for a complex M . Then by Lemma 2.5(a),
ExtiR(eR, Mv) ∼= TorR

i (eR, M)v = 0 for t � i � t + r − 1. As supH∗(Mv) = supH∗(M),
we have by (a) that idR Mv < ∞. Hence, fdR M < ∞ by Corollary 2.6(a).

Thus, it suffices to prove (a). As in the original proof, we may assume that M is a module
concentrated in degree zero and ExtiR(eR, M) = 0 for i = 1, . . . , r . We proceed by induction
on d , with the case d = 0 being established by Proposition 2.8. Suppose d � 1 (so r = d)
and we assume both (a) and (b) hold for complexes over local rings of dimension less than
d .

Let p �= m be a prime ideal of R. As R is F-finite, we have ExtiRp
(eRp, Mp) = 0 for

1 � i � d . As d � max{1, dim Rp} and e(R) � e(Rp) (see [12]), we have idRp Mp < ∞
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by the induction hypothesis. Hence, idRp Mp � dim Rp � d − 1 by [4, Proposition 4.1 and
Corollary 5.3]. It follows that μi (p, M) = 0 for all i � d and all p �= m.

For convenience, we let S denote the R-algebra eR. Let J be aminimal injective resolution
of M . We have by assumption that

HomR(S, J 0)
φ0

−→ HomR(S, J 1) → · · · → HomR(S, J d)
φd

−→ HomR(S, J d+1) (3.1)

is exact. Let L be the injective S-envelope of coker φd and ψ : HomR(S, J d+1) → L the
induced map. Hence,

0 → HomR(S, J 0) → · · · φd

−→ HomR(S, J d+1)
ψ−→ L

is acyclic and in fact the start of an injective S-resolution of HomR(S, M).
As in the original proof, we obtain that the map ψ is injective.
Now consider the complex J , which is a minimal injective resolution of M :

0 → J 0 ∂0−→ J 1 → · · · → J d−1 ∂d−1−−→ J d ∂d−→ · · ·
The proof will be complete upon proving:
Claim: ∂d−1 is surjective.
Proof: As ψ is injective we have from (3.1) that φd = 0, and thus φd−1 is surjective. Let

C = coker ∂d−1 and (−)v the Matlis dual functor (as defined in Corollary 2.6). Then

0 → Cv → (J d)v → · · · → (J 0)v → Mv → 0

is exact. Note that (J i )v is a flat R-module for all i (e.g., Corollary 2.6(b)). As the set of
associated primes of any flat R-module is contained in the set of associated primes of R, and
as R is Cohen–Macaulay of dimension greater than zero, to show Cv = 0 it suffices to show
(Cv)p = 0 for all p �= m. So fix a prime p �= m. As S is a finitely generated R-module, we
have TorR

i (S, Mv) ∼= ExtiR(S, M)v = 0 for i = 1, . . . , d by Lemma 2.5(b). This implies

Tor
Rp

i (Sp, (Mv)p) = 0 for i = 1, . . . , d . As Rp is an F-finite Cohen–Macaulay local ring
of dimension less than d , and pe � e(R) � e(Rp), we have that fdRp(Mv)p < ∞ by the
induction hypothesis on part (b). In particular, by [4, Corollary 5.3], fdRp(Mv)p � dim Rp �
d − 1 and thus (Cv)p is a flat Rp-module. Then by either [15, Corollary 3.5] or [6, Theorem
3.1], we have

0 → Sp ⊗Rp (Cv)p → Sp ⊗Rp ((J d)v)p → Sp ⊗Rp ((J d−1)v)p (3.3)

is exact. Now, sinceφd−1 = HomR(S, ∂d−1) is surjective, we have, using duality and Lemma
2.5(b), that

0 → S ⊗R (J d)v → S ⊗R (J d−1)v

is exact. Localizing this exact sequence at p and comparing with (3.3), we have Sp ⊗Rp

(Cv)p = 0. However, tensoring with Sp over Rp is faithful (e.g., [13, Proposition 2.1(c)])
and hence (Cv)p = 0. Hence, Cv = 0, and thus C = 0, which completes the proof of the
Claim. �	
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