Skip to main content
Log in

Internal neighbourhood structures

  • Published:
Algebra universalis Aims and scope Submit manuscript

Abstract

The main aim of this paper is to provide a description of neighbourhood operators in finitely complete categories with finite coproducts and a proper factorisation system such that the semilattice of admissible subobjects is a complete lattice. The equivalence between neighbourhood systems, Kuratowski interior operations and pseudo-frame sets is proved. Furthermore the categories of internal neighbourhood spaces is shown to be topological. Regular epimorphisms of categories of internal neighbourhood spaces are described and conditions ensuring hereditary regular epimorphisms are probed. It is shown the category of internal neighbourhood spaces of topological spaces is the category of bitopological spaces, while in the category of locales every locale comes equipped with a natural internal topology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bentley, H.L., Herrlich, H., Lowen, R.: Improving constructions in topology. In: Category theory at work (Bremen, 1990), Res. Exp. Math., vol. 18, pp. 3–20. Heldermann, Berlin (1991)

  2. Carboni, A., Janelidze, G., Kelly, G.M., Paré, R.: On localization and stabilization for factorization systems. Appl. Categ. Struct. 5(1), 1–58 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Carboni, A., Lack, S., Walters, R.F.C.: Introduction to extensive and distributive categories. J. Pure Appl. Algebra 84(2), 145–158 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Castellini, G.: Connectedness classes. Quaest. Math. 23(3), 313–334 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Castellini, G.: Categorical closure operators. In: Categorical perspectives (Kent, OH, 1998), Trends Math., pp. 109–150. Birkhäuser Boston, Boston, MA (2001)

  6. Castellini, G.: Connectedness with respect to a closure operator. Appl. Categ. Struct. 9(3), 285–302 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Castellini, G.: Categorical closure operators. Mathematics: Theory & Applications. Birkhäuser Boston Inc. Boston MA (2003)

  8. Castellini, G.: \(T_1\)-separation in a category. Quaest. Math. 29(2), 151–170 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Castellini, G.: Discrete objects, splitting closure and connectedness. Quaest. Math. 31(2), 107–126 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Castellini, G.: Interior operators in a category: idempotency and heredity. Topol. Appl. 158(17), 2332–2339 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Castellini, G.: Interior operators, open morphisms and the preservation property. Appl. Categ. Struct. 23(3), 311–322 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Castellini, G.: Some remarks on interior operators and the functional property. Quaest. Math. 39(2), 275–287 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Castellini, G., Giuli, E.: Closure operators with respect to a functor. Appl. Categ. Struct. 9(5), 525–537 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Castellini, G., Giuli, E.: \(U\)-closure operators and compactness. Appl. Categ. Struct. 13(5–6), 453–467 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Castellini, G., Holgate, D.: Closure operator constructions depending on one parameter. Quaest. Math. 26(3), 289–305 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Castellini, G., Holgate, D.: A link between two connectedness notions. Appl. Categ. Struct. 11(5), 473–486 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Castellini, G., Murcia, E.: Interior operators and topological separation. Topol. Appl. 160(12), 1476–1485 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Castellini, G., Ramos, J.: Interior operators and topological connectedness. Quaest. Math. 33(3), 290–304 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Clementino, M.M., Giuli, E., Tholen, W.: Topology in a category: compactness. Port. Math. 53(4), 397–433 (1996)

    MathSciNet  MATH  Google Scholar 

  20. Clementino, M.M., Giuli, E., Tholen, W.: A functional approach to general topology. In: Categorical foundations, Encyclopedia Math. Appl., vol. 97, pp. 103–163. Cambridge Univ. Press, Cambridge (2004)

  21. Dikranjan, D., Giuli, E.: Closure operators. I. In: Proceedings of the 8th international conference on categorical topology (L’Aquila, 1986), vol. 27, pp. 129–143 (1987)

  22. Dikranjan, D., Giuli, E., Tholen, W.: Closure operators. II. In: Categorical topology and its relation to analysis. algebra and combinatorics (Prague, 1988), pp. 297–335. World Sci. Publ, Teaneck, NJ (1989)

  23. Dikranjan, D., Tholen, W.: Categorical structure of closure operators, Mathematics and its Applications With applications to topology, algebra and discrete mathematics, vol. 346. Kluwer Academic Publishers Group, Dordrecht (1995)

    MATH  Google Scholar 

  24. Dikranjan, D., Tholen, W.: Dual closure operators and their applications. J. Algebra 439, 373–416 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Dikranjan, D.N.: Semiregular closure operators and epimorphisms in topological categories. Rend. Circ. Mat. Palermo (2) Suppl. (29), 105–160 (1992) V International Meeting on Topology in Italy (Italian) (Lecce, 1990/Otranto, 1990)

  26. Dube, T., Ighedo, O.: Characterising points which make \(P\)-frames. Topol. Appl. 200, 146–159 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Dube, T., Ighedo, O.: More on locales in which every open sublocale is \(z\)-embedded. Topol. Appl. 201, 110–123 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Freyd, P.J., Kelly, G.M.: Categories of continuous functors. I. J. Pure Appl. Algebra 2, 169–191 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  29. Freyd, P.J., Scedrov, A.: Categories, allegories, North-Holland Mathematical Library, vol. 39. North-Holland Publishing Co., Amsterdam (1990)

    MATH  Google Scholar 

  30. Giuli, E., Šlapal, J.: Neighborhoods with respect to a categorical closure operator. Acta Math. Hung. 124(1–2), 1–14 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Herrlich, H., Lowen-Colebunders, E., Schwarz, F.: Improving Top: PrTop and PsTop. In: Category theory at work (Bremen, 1990), Res. Exp. Math., vol. 18, pp. 21–34. Heldermann, Berlin (1991)

  32. Holgate, D., Iragi, M., Razafindrakoto, A.: Topogenous and nearness structures on categories. Appl. Categ. Struct. 24(5), 447–455 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Holgate, D., Šlapal, J.: Categorical neighborhood operators. Topol. Appl. 158(17), 2356–2365 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Iberkleid, W., McGovern, W.W.: A natural equivalence for the category of coherent frames. Algebra Univers. 62(2–3), 247–258 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Janelidze, G., Tholen, W.: Facets of descent. I. Appl. Categ. Struct. 2(3), 245–281 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  36. Joyal, A.: Notes on logoi. available from http://www.math.uchicago.edu/~may/IMA/JOYAL/Joyal.pdf (2008)

  37. Kent, D.C.: Convergence quotient maps. Fund. Math. 65, 197–205 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kent, D.C., Min, W.K.: Neighborhood spaces. Int. J. Math. Math. Sci. 32(7), 387–399 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  39. Mac Lane, S.: Duality for groups. Bull. Am. Math. Soc. 56, 485–516 (1950)

    Article  MathSciNet  Google Scholar 

  40. Mac Lane, S.: Categorical foundations of the protean character of mathematics, Graduate Texts in Mathematics, vol. 5, 2nd edn. Springer-Verlag, New York (1998)

  41. Ore, O.: Structures and group theory. II. Duke Math. J. 4(2), 247–269 (1938)

    Article  MathSciNet  MATH  Google Scholar 

  42. Pálfy, P.P.: Groups and lattices. In: Groups St. Andrews 2001 in Oxford. Vol. II, London Math. Soc. Lecture Note Ser., vol. 305, pp. 428–454. Cambridge Univ. Press, Cambridge (2003)

  43. Picado, J., Pultr, A.: Frames and locales, Topology without points Frontiers in Mathematics. Birkhäuser/Springer Basel AG, Basel (2012)

    MATH  Google Scholar 

  44. Razafindrakoto, A.: Neighbourhood operators on categories. Ph.D. thesis, University of Stellenbosch (2012)

  45. Razafindrakoto, A., Holgate, D.: A lax approach to neighbourhood operators. Appl. Categ. Struct. 25(3), 431–445 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  46. Salbany, S.: Reflective subcategories and closure operators pp. 548–565. Lecture Notes in Math., Vol. 540 (1976)

  47. Vorster, S.J.R.: Interior operators in general categories. Quaest. Math. 23(4), 405–416 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  48. Šlapal, J.: Convergence structures for categories. Appl. Categ. Struct. 9(6), 557–570 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  49. Šlapal, J.: \(F\)-net convergence with respect to a closure operator. Appl. Categ. Struct. 13(1), 49–64 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  50. Šlapal, J.: Convergence on categories. Appl. Categ. Struct. 16(4), 503–519 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  51. Šlapal, J.: Neighborhoods and convergence with respect to a closure operator. Math. Slovaca 61(5), 717–732 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  52. Šlapal, J.: Compactness and convergence with respect to a neighborhood operator. Collect. Math. 63(2), 123–137 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I am gratefully indebted: (1) To M. Korostenski-Davies for painstakingly going through the draft version of this document and suggesting several changes. (2) To Z. Janelidze for his stimulating ideas during our talks on several occasions. (3) To A. Razafindrakato, D. Holgate and their students for sharing their experiences. (4) To G. Janelidze for his valuable help, support and guidance at several stages. (5) Last, and most importantly, to the very positive remarks, criticisms and corrections offered by the referee, which has given the present shape of the paper. The errors that still remain are wholly my misconceptions which needs to be purged with time and forbearance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Partha Pratim Ghosh.

Additional information

Communicated by J. Adámek.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research was funded from the Topology Research Chair at the University of South Africa and European Union Horizon 2020 MCSA Irses Project 731143, both of which are thankfully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, P.P. Internal neighbourhood structures. Algebra Univers. 81, 12 (2020). https://doi.org/10.1007/s00012-020-0640-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00012-020-0640-2

Keywords

Mathematics Subject Classification

Navigation