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Some tracks in Air Pollution Modelling and Simulation

B. Sportisse, J. Boutahar, E. Debry, D. Quélo and K. Sartelet

Abstract. In this article we discuss some issues related to Air Pollution modelling (as viewed by
the authors): subgrid parameterization, multiphase modelling, reduction of high dimensional models and
data assimilation. Numerical applications are given with POLAIR, a 3D numerical platform devoted to
modelling of atmospheric trace species.

Algunos resultados para el modelado y simulacion de la polucion aérea

Resumen. En este articulo se presentan algunos temas relacionados con polucién aérea, reduccién de
modelos de dimensiones grandes y asimilacion de datos. Se dan aplicaciones numéricas con POLAIR:
una plataforma numérica dedicada al modelado de trazas atmosféricas de especies.

1. Introduction

Description of the chemical state of the atmosphere is now a key issue for many environmental applica-
tions, ranging from global scale (greenhouse effect) to regional (transboundary pollution) or local scales
(photochemical smog).

modelling is a powerful tool in addition to field campaigns and laboratory experiments. Many Chemistry-
Transport-Models (CTMs) are now available. The underlying models are given by large sets of coupled
Partial Differential Equations that describe the time and space evolution of trace species in the phases to be
considered ([49] for an overview). If ¢; stands for the concentration of chemical gas-phase species labelled

by i:
8(:,» —

B + div(V(Z,t)e;) = div(K(Z,1)Ve)
wind ;dvection turbulent diffusion 1)

+x:(G T (Z,t), RH(Z,t), I(Z,t)) + Si(Z,t) + Param
——

chemical production source

where V (the wind velocity), K (the eddy diffusivity matrix), 7" (the temperature), I (the actinic flux
describing the radiative state of the atmosphere) and RH (the relative humidity) are fields given by meteo-
rological models. In the above equation, y; stands for local chemical transformations. Param stands for
the parameterizations (see below, e.g. scavenging by rain drops).

Presentado por Haim Brezis.

Recibido: 26 de Julio de 2002. Aceptado: 9 de Octubre de 2002.
Palabras clave / Keywords: Numerical simulation, Air Pollution modelling
Mathematics Subject Classifications: 65M06, 65M20, 65Y05, 65Y20

(© 2002 Real Academia de Ciencias, Espafia.

507



B. Sportisse, J. Boutahar, E. Debry, D. Quélo & K. Sartelet

Notice that there is usually no feedback from the chemical state to the meteorological state, even if this
should be taken into account, especially trough radiative transfer (I influences the photolytic reactions).
Boundary conditions have of course to be added to Eq. (1). A key boundary condition is at ground:
602-

K. = Ei(#@t) — ol t)e @)
0z N—— N————

emission dry deposition

where K, stands for the vertical eddy diffusivity (given by a parameterization, for instance [30]), E; is an
emission factor and v7¢? is a dry deposition velocity ([70]).

Gas-phase chemical mechanisms are now more or less well understood and take into account up to
hundreds of species ([18]). In such models, the term y; is directly related to chemical kinetics. One of the
key challenge of current atmospheric modelling is the fine description of multiphase mixture by taking into
account aqueous-phase processes (for instance inside clouds) or particles (aerosols). The trace species are
then not only in gaseous phase but also in aqueous phase or in aerosols.

The condensed matter indeed has various influences on the atmospheric state through mass transfer and
radiative effects. modelling of aerosols is a challenging task due to the need for size-resolved models, giving
not only the chemical composition of dissolved species but also the distribution of particles with respect to
size (volume or radius).

If n(v,t) is the volume distribution of a (let say a single component) aerosol, the General Dynamic
Equation (GDE) reads ([49]):

on 1 [V _. -
i 5/ K(v—q,q)n(v —q,t)n(q,t)dg — n(v,t)/ K (g,v)n(q. t)dg
: 0
Coag;ulation
0

_ %(I(U)n(’wt)) +J0('U)5(’UO)(’U) (3)

—/_/ N, - ;

growth nucleation

Many processes have to be taken into account:
e coagulation between particles, described by the coagulation kernel K,

e growth by condensation/evaporation of some gas-phase species onto existing particles (gas to particle
conversion) described by the growth rate of volatile species I, given by thermodynamics (see below),

o nucleation of the smallest aerosols from stable aggregates of clusters: vg is the nucleation threshold
(typically 40 nanometers) and .Jy the nucleation rate.

Apart from a lack of physical knowledge (especially for nucleation, [22]), this model illustrates why aerosol
modelling is a computationally intensive and difficult task because of the number of processes involved.

In practice multi-component models are used. Aerosols are either dry or wet particles and are composed
by three types of chemical constituents: solids, dissolved species and ions. The chemical speciation inside
aerosols has to be computed and one defines ¢; (v) the mass distribution of a “species” 7 inside an aerosol of
size v. Equations similar to the GDE may be given for the multi-component case, which drastically increase
the complexity.

For instance, the growth rate I; for species ¢ (e.g. (N H3)qq) is defined by thermodynamics through:

Li(v) = Ni(v)(ei — a1, -+, q5)) 4)

where ¢; is the concentration of the related gas-phase species (e.g. (N Hs),) and A; a mass transfer co-
efficient. ¢{?(my,...,ms) is defined as the value at thermodynamical equilibrium of the aerosol internal
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chemistry (with s species, typically 20) and is computed by a thermodynamical module ([38, 71]) solving
large differential-algebraic equations (in each grid cell, for each size of the distribution!). CPU costs can
therefore drastically increase and most of the CPU time needed for aerosol models is related to thermody-
namics.

This brief overview of the underlying models to be handled with in atmospheric chemistry illustrates
the increase of the computational burden in current CTMs. The key issues are dominated by the following
considerations: these models are highly non linear, coupled, of high dimension and with a large range of
spatial and time scales.

This article investigates these issues. Subgrid parameterizations are presented in the first section, with a
particular emphasis on mass transfer (scavenging) between gas-phase species and liquid phase (cloud drops
or rain).

Numerical issues are investigated in the second section with “classical” topics: solvers for “stiff” mul-
tiphase models and splitting methods. A key point is the need for appropriate reducing techniques.

Many input parameters are known with a poor accuracy. Data assimilation and inverse modelling are
therefore challenging topics of atmospheric chemistry; many numerical difficulties therefore occur, espe-
cially with the use of the so-called adjoint models. These points are described in the third section.

We end this reviewing paper with the example of a state-of-the-art 3D Eulerian Chemistry-Transport-
Model, namely POLAIR, and some applications.

2. Some examples of parameterizations

2.1. Some models

The horizontal dimension of a grid cell in a current CTM ranges typically from 1 kilometer (ozone forecast
at the urban scale) to 100 kilometers (regional transport of transboundary pollutants, acid rains).

Because many physical processes occur at scales smaller than 1 kilometer, subgrid parameterizations is
necessary in CTMs. We can cite for instance the following examples:

e Convective processes:

Inside regions of strong gradients of humidity, updrafts and downdrafts may occur. This implies
a modification of the vertical distribution of pollutants. Many parameterizations ([63]) have been
proposed and are more or less related to the following description of convective process:

d ) k=n_
CC(;J) — Z chl;)nvc(zk) (5)

k=1

with (zj) the vertical discretized grid, T an exchange term between levels j and k, parameter-
izing downdrafts and updratfs. Notice that convective “diffusion” takes into account (a priori) the
whole column on the contrary to the “classical” (3 points) diffusion. A rigorous derivation of such
parameterizations is still an open question.

e Plume-in-grid models:

Point sources (S; in Eq. (1)) are typically related to plants. Generating a diffuse source over a grid
cell of dimension 100 kilometers is of course far from reality. Plume-in-grid models (PIG) use a
parameterization of the dispersion of the plume inside the cell in order to circumvent this difficulty;
the key point is to derive a simple (Gaussian-like) model on the basis of the available meteorological
data in the cell (one value for each field).

We refer for instance to [23] for an overview of current techniques.

Notice that from a numerical point of view, an alternative technique is the use of adaptive gridding
techniques in order to give a finer description of the flow in the vicinity of the sources ([64, 58]).

509



B. Sportisse, J. Boutahar, E. Debry, D. Quélo & K. Sartelet

e Segregation effects:

In the same vein, the interaction between chemistry and turbulence is a key point, which is far from
being addressed in current CTMs. If ¢(z, t) is the local (true) concentration and < ¢(t) > the average
concentration in a given grid cell (), fluctuations are defined by ¢ (z,t) =< ¢(t) > —c(z, t).

The chemical mechanism is defined for the “true” concentrations and for bimolecular reactions one
has typically:
de
dt
with k a kinetic rate. After averaging over the grid cell:

—kc? (6)

d<c>__ k
d  Vol(Q)

/ c(z,t)’de = —k(< e >2 + < (¢)? >) (7
Q

In CTMs, an assumption of a well-mixed reactor is done and the chemical mechanism is used as:

d<c>

= —k< e >? (®)

and the error is directly related to the so-called segregation intensity:

< ()2 >
[, =——— <1 9
<c>? ~ ©)
For large values of I, this model overestimates the chemical production rate. We refer to [52] for
the application to the case of box models and to [36] for the a particular case of chemistry/dynamics
interactions.

e Mass transfer and multiphase processes:

The typical radius of a cloud droplet is 10 micrometers. During cloudy events, mass transfer between
the gas-phase and the liquid phase may occur for soluble species. Inside droplets, aqueous-phase
chemistry has to be taken into account and may influence the gas-phase species through mass transfer.
Such (nonlinear) phenomena occurring at these small scales have to be modelized in CTMs. These
processes are usually referred as in-cloud scavenging.

During rainy events, gas-phase species may be also scavenged by falling raindrops. This is the below-
cloud scavenging. The typical size is of magnitude 1 millimeter and the same parameterization issue
has to be addressed.

In the same vein, the mass transfer between the gas-phase and aerosols (condensation/evaporation)
occurs at scales of magnitude ranging from 100 nanometers to 1 — 5 micrometers (typical spectrum
for atmospheric particles). These processes have a key impact on the gas-phase through the formation
of the so-called Secondary Organic Aerosols (SOA, [39]).

The next section focuses on wet scavenging.

2.2. Parameterization of wet scavenging
2.2.1. Below-cloud scavenging ([55])

We consider a sample model of a mono-disperse rain: falling raindrops are supposed to have a fixed radius
a and a falling (vertical) velocity U (a) (in m/s), given by an appropriate parameterization as a function of a.

Let ¢4 (resp. ¢,) be the concentration of a gas-phase soluble species (resp. the associated liquid-phase
species). ¢, is defined with respect to the liquid phase. The mass transfer between both phases is then given
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by an advection-reaction model:

9 _ L (cg _ ﬂ)

ot Ttransfer HRT (10)
OcCaq +Uacaq _ 1 (c _Cag )

ot 02 Tiramsfer \° HRT

Notice that chemistry is neglected. z is the fall distance (below the cloud at height h, with the convention
U > 0). H is the Henry’s constant defined by thermodynamical equilibria of mass transfer (to be given for
each species), R is the ideal gas constant and 7' the temperature. L is the liquid water volume fraction (the
ratio of liquid water volume to air volume) defined by:

107% po
L= — 11
36 U (in

with pg the rain intensity (in mm/h). cqq = Lc, is defined with respect to the gas phase. Tirqnsger is the
characteristic time for mass transfer and is defined by some micro-physical parameters.

It is of course not possible to solve such models in the framework of CTMs and parameterizations are
used. A classical parameterization is to ignore aqueous-phase concentrations (inside rain droplets) and to
add a new source term for gas-phase species under the form:

dcg
W = — AgCg (12)
where Ag(po, @, HRT, Tiransfer) is the so-called scavenging coefficient.

On the basis of asymptotic expansions ([65]), [55] discusses the range of validity of such parameteriza-
tions. The key parameters are:

Ttall

e =1L . e =LHRT (13)

Ttransfer

with 74 = h/U the fall time for a droplet. €; measures the ability of a falling drop to exchange mass with
gas-phase during its fall. e; indicates the validity of equilibrium between gaseous and aqueous phases.
The parameterization is good for species easy to be dissolved such as H N3 while it may be less
accurate for other species like SO- if the rain intensity is large and for small raindrops.
Many open points need still to be addressed, especially the extension to polydisperse raindrops.

2.2.2. In-Cloud scavenging ([54])

In-Cloud scavenging is a similar topic. The impact of clouds on gas-phase species recover different phe-
nomena:

e a dynamical interaction through convective processes (as indicated above, see for instance [63]),

¢ radiative forcing: cloud properties may deeply modify the actinic flux available for photolytic reac-
tions below the cloud ([31]),

e mass transfer inside the cloud between the droplets and the gas-phase (Figure 1).

This latter phenomena may have a strong impact ([29]) and has to be parameterized in CTMs.

We consider a fixed cloud droplet €2, surrounded by gas-phase, supposed to be a sphere (Figure 2). The
gas-volume, 2, (supposed to be a sphere as well), is such that:

Vol(Q,)
Vo) = - (14)

where L is the liquid water content (v/v). This is the so-called unique droplet model.
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Gas-phase diffusion Mass transfer

Liquid-phase diffusion Liquid-phase chemistry

Figure 1. In-Cloud scavenging

Figure 2. Unique droplet model

512



Some tracks in Air Pollution Modelling and Simulation

We use the same notations as before. The mass transfer problem is:

o for the gas-phase (over (,):
9cq

It = DgAcy + x4(cq) (15)
o for the dissolved species (inside the droplet):

ac

a_ta = DyAcq + Xa(ca) (16)

where D, and D, are respectively the molecular diffusions for aqueous and gaseous species. x4 (resp. Xq)
stands here for the chemical production in gas-phase (resp. in aqueous phase). Let us precise the boundary
conditions:

e There is a no-flux boundary condition on I'¢,¢, the outer boundary layer for the gas-phase:

Jc
D, 8_75 =0 onley (17)
e At the droplet surface, the fluxes are equal and describe a relaxation to Henry’s equilibrium:
ac ac oc 1 c
Da = - D g = a - = = “ 18
on Y 9n on  4° vle ) (18)

" HRT
where « is the accommodation coefficient, v is the thermal velocity.

Remember that because the typical size for a cloud droplet is 10 micrometers, a parameterization is neces-

sary.
We define the bulk gas-phase and liquid-phase concentrations by:
o o
Co = — co(x)da , ¢, = — cq(x)dr (19)
o Jo, @y G =g~ | @
We prove in [54] the validity of the following parameterization:
de, Ca
it A — Lk, _
_t Xg (Cg) t(a) (CQ HRT) (20)
=8 = Xalca) + kmt (@) ey = 7o)
at — NelCe) TEmO T R
where the mass transfer coefficient k,,,; is defined in the following way:
1
kmi(a) = ———— (21
SQDg + 31)aa

for large diffusivities (which is indeed met in practice). We write 744 (resp. 74,) the time scale associated
with gas-phase diffusion (resp. aqueous phase diffusion), namely:

a2 az
L= 22
D,” "™~ D, (22

The key point is that the homogenization timescales 744 and 74, have small values. If 7, (resp. 7y,) is a
characteristic timescale for x, (resp. x,) and:

ng =

Tdg Tda
6dg = —, €da = ’ (23)
TXg TXa

the parameterized model is valid for egg ~ 0 and €4, ~ 0.

We refer to [7, 17, 37] for some related mathematical problems (and the so-called “lumped parameter
assumption”). A physical interpretation may be found in [48].

An open question is the extension of the above analysis for the case of fast chemistry. As for below-
cloud scavenging, the extension to polydisperse clouds has to be done. Surface chemistry is also a topic of
growing interest with highly sophisticated models.
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3. Numerical modelling of multiphase atmospheric flows

Suppose that a model relying on Eq. (1) has been chosen on the basis of appropriate parameterizations as
given in Section 2..

Many numerical issues have to be tackled with in order to solve such equations, especially in a forecast
framework, for which CPU time has to be drastically reduced. We refer to [66] for an overview of the
numerical simulation of Air Pollution.

We will try in this section to highlight some typical “difficult” points:

o the use of splitting methods,
o the use of stiff solvers (many timescales have to be dealt with),
o the way size-resolved multiphase models may be solved.

To conclude, an alternative approach is to build reduced models.

3.1. Splitting methods

The model given by Eq. (1) takes into account many processes. As implicit solvers are used, numerical cou-
pling between all the processes will lead to inversion of systems of large dimension (typically the product
of the number of grid cells by the number of chemical species).

Splitting is then usually advocated ([34, 66]) in order to uncouple local reactive phenomena (one chem-
ical box model per grid cell) and passive transport (one advection-diffusion problem per chemical species).
Another pragmatic point of view is the possibility to use sub-models as black boxes. In practice, advection,
diffusion and chemistry are solved in a splitting sequence.

For the simple linear case with two processes A and B, consider the following evolution equation from
time ¢,, (here ¢ stands for the approximate numerical value of ¢ at time ¢,,):

% = Ac+ Be, ¢(0)=c" 24

The first-order splitting method (A — B) is defined by the following algorithm:
1. Integrate operator A: - = Ac* on [0,At], ¢*(0) =",

de**
dt

2. Integrate operator B: = Bc*™* on [0,At], ¢**(0) = c*(At)

3. Output: ¢t = ¢**(At).

Numerics associated to operator splitting is well known (see [32] for instance). The error is related to the
commutator AB — BA in the previous case and we refer to [20, 27, 47] for an extension to the nonlinear
case and the use of the Baker-Campbell-Hausdorff formula.

In the specific case of Air Pollution modelling, many other algorithms have already been used. For
(second-order) Strang splitting ([60]) the sequence reads:

1. Integrate B: %* = Bc* on |0, %] , ¢(0)=¢c"

2. Integrate A: dfi;* =Ac™ on [0,Af], ¢™*(0)=c*(4h)

3. Integrate B: 95 = Bc*** on [0,4], ¢***(0) = c**(At)
4. Output: ™! = c***(%).

Source-splitting methods are an alternative approach. The idea is to avoid artificial transient layers by
adding explicit source terms instead of changing initial conditions:
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1. Integrate A: % =Ac* on [0,At], ¢*(0)=c"
2. Integrate operator B with a complementary source term:

dc*” _ * % C*(At) —c" * % _.n
W—Bc +T on [0,At], ¢™(0)=c¢c (25)

3. Output: ¢ = c**(At).

Note that the initial condition for the second step has not been modified, such as avoiding any transient
layer if B is a stiff model. A classical analysis proves that this is a first-order model.

Approximate Matrix Factorizations perform the splitting at the algebraic level. If an implicit algorithm
is used for Equation (24) inversions of matrices similar to I — (A + B)At has to be done. AMF methods
are based on the following approximation:

— (A + B)At ~ (I — AAt)(I — BAt) + O(At?) (26)

which avoids to invert simultaneously A and B. We refer for instance to [66, 4] for some illustrations.

We want here to focus on a particular point, namely the influence of the sequence order when stiff
models have to be solved (see next section). We refer to [51, 68] for a deeper understanding.

The key idea is that the condition A¢ — 0 is not met in practice for stiff models as At > ¢4, Where
Tfast corresponds to the fastest phenomena (that is exactly why implicit methods are used !). The classical
analysis in order to derive convergence orders for the algorithm is then no more valid and an order reduction
([10]) of many of the above algorithms has to be taken into account.

Consider for instance a model with A related to slow phenomena (typically advection and diffusion
in our case) and B related to slow AND fast phenomena (typically chemical kinetics). A key result (see
subsection 3.4.) is that B is related to a low-dimensional model defined by equilibria of fast processes: the
integration of B is associated with a projection to this low-dimensional model.

As as consequence, any sequence ending with the slow/fast operator B (in our case: chemistry) will
conserve this property, which leads to a better accuracy of the splitting algorithm.

3.2. Sitiff solvers

Atmospheric chemical kinetics is characterized by the wide range of characteristic timescales (over many
decades): species have lifetimes that range from milliseconds and shorter (radicals, OH) to years (C' Hy).
This induces the well known stiffness of the resulting evolution equations and implicit solvers have to be
used in order to perform time integration.

We refer for instance to [46] for a general benchmark of implicit and explicit solvers used in this field.
For a given accuracy (of magnitude, let say, 1%) the second-order Rosenbrock method appears to outper-
form the other algorithms. For the integration of:

& = (o @

the autonomous second-order Rosenbrock method is defined by the following steps ([67]) from time ¢,
0 tpy1t

2
="+ bk (28)

where
1—1

ki = At f(t, + a; At, c" +Za” +AtJZ%]
Jj=1 Jj=1 (29)

ai:Z] 1azy , 71—2’}/1]
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J denotes the Jacobian matrix J = 9f/Jc and the formula coefficients b;, o;; and ;; are chosen to obtain
a desired order of consistency and stability for stiff problems:

1
7=1+ﬁ s M =M1 =75 Y21 = =27, Y22 =7

; (30)

722’7214-’722:—’%04120,0220421:17131:1?2:5

We refer to [13] for the extension to the non-autonomous case with the particular application to cloudy
events (strong gradients of the liquid water content have to be integrated).

3.3. Size-resolved models

As illustrated in the introduction the integration of the General Dynamic Equation (3) is a computationally
difficult task.

A first family of algorithms is based on a stochastic formulation of (3) leading to Monte Carlo simula-
tions: numerical particles represent the physical particles. This leads to expensive but accurate algorithms
that may be used as reference solutions ([8]).

A second family of models is the so-called modal approach. Measured aerosol distribution appear to be
a sum of independent families centered around a peak (Figure 3). A modal solution is then of the form:

n(D,t) = zp: n@(nD), n(nD) =

i=1

_1 InD —1InD;

N;
Torino, exp( 2(71%, )%) 31)

The parameters (N;, 0;, D;) uniquely define each mode and are functions of time. We refer to [5, 72, 1]

T e disibtion o e 9 |
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Figure 3. Modal distribution for continental aerosols (logarithmic scales)

for the definition of the appropriate evolution equation: after integration of the GDE under the above modal
assumption, a closure model is found and thus leads to a loss of accuracy.
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Size-resolved models do not make any a priori assumption for the aerosol distribution. Among them
we first distinguish the sectional methods, which mainly consist in dividing the aerosol size spectrum into
a given number of bins. These methods are widely used because of their roughness, especially to solve
coagulation; we refer here to the so-called size-binning methods [21, 15]. The main drawbacks of such
methods are still the lack of convergence results and the difficulty to extend it to the whole GDE.

Finite Element techniques (following [41]) may be also used to solve such models. For a multi-
component model, one writes for species i:

v € [vo, 00, qi(v,t) =D g/ (L;(v), q(v,t) = ¢ ()L;(v) (32)

=1 =1

with (L;(v)) a family of p given functions, e.g. Lagrange functions. With a Galerkin method, the set of
unknown coefficients Q = (¢})(; ;) (t) is the solution of an evolution equation:

dQ

- = 33

o =1Q (33)
where f is related to the various processes of the GDE. We refer to [45, 9] for a deeper understanding of
such models. Use of such models in current CTMs still remains an open issue.

3.4. Reducing methods

An alternative to the use of state-of-the art solvers is given by reducing techniques.

A first approach is related to the slow/fast behavior of chemical kinetics. The reduced model can be ob-
tained by filtering the fast phenomena and the fast chemical species [53]. The second approach is related to
the statistical behavior of these systems and is based on a proper orthogonal decomposition of the solutions
[12]. The third method, High Dimensional Model representation, (HDMR,[44]), is an efficient representa-
tion of the input/output behavior of chemical models through look-up tables. It describes the output model
by an expansion of finite hierarchical correlated function in terms of the input variables.

The physical model is written as de/dt = f(c) with ¢ € R™ the vector of chemical concentrations.

3.4.1. Slow/fast reduction

The dynamical behavior of stiff systems is characterized by the existence of a fast transient phase followed
by a slow long-term evolution. All the trajectories in the phase space of chemical concentrations (parame-
terized by time ¢) converge to an attracting manifold after a transient phase.

In practice we perform a splitting of species ¢ into two sets: a set of slow species (c5) and a set of
fast species (cy). The manifold is then defined by algebraic relations of the form g(cs,cy) = 0, which
replace the evolution equations for fast species. The key point is that g(cs,cg) = 0 has to provide a way
for computing ¢y as a function of ¢, (¢; = h(c,)). Notice that this provides the theoretical background for
Quasi-steady State Assumption ([19]).

A general technique is based on the linearization of the system: the search for the partitioning is then
related to the search for the eigenvectors of the Jacobian matrix ([26, 33]). This may be related to the
classical lumpings of species. We refer to [53] for a deeper understanding.

3.4.2. Proper Orthogonal Decomposition

The key idea of this method is to search for a basis which contains all information about the behavior of the
exact solution. The reduced model is then the projection of the initial model in this basis.

In practice, we use the so-called “method of snapshots”. It consists in computing an exact trajectory
(¢(t)). If there are N time steps (corresponding to times ¢y, . . ., tx), we compute C= span(c(t1), ..., c(tn)-

517



B. Sportisse, J. Boutahar, E. Debry, D. Quélo & K. Sartelet

C may be viewed as a set of experimental data in R™ and the objective is to extract as many informations as
needed from this set.

Of course all these informations are contained in a basis of C, (¥ = (¥; , ¥y... ¥4)), whose dimen-
sion is d.

The POD methods is based on a particular choice of the orthonormal basis ¥ such that ¢(¢;) can be
optimally approached. ¥ is then such that forall 1 < k < d, (¥; ... ¥}) minimizes:

n i=k
Te(®) = lle(ty) = > < @i c(ty) >a ¥ill% (34)
j=1 i=1

with < .,. >4 a particular choice of a scalar product. In practice (¥ ... ¥}) can be computed from the
correlation matrix of the snapshots K ([25]).

The choice of a truncated basis of dimension p is related to the decreasing rate of the eigenvalues of the
correlation matrix. p is then the number of degrees of freedom kept.

We now search for a solution z(t) = Y% | 2;(t) ¥;, z; € Rsuchthatforl <i <p:
i _ FO- 2zt W), ¥ >4, 2(0) =< c(0), ¥; > (35)
dt = £ i i)y ¥i A 5 i - s X4 ~A B

3.4.3. HDMR Technique

Consider one call of the chemical module from time ¢,, to time ¢,; as a model with m input variables
x = (z1,Z9...,2,) and an output ¢ = F(z). z includes the initial concentrations and the appropriate
forcing parameters used in chemistry (for example temperature).

HDMR expresses F'(x) as an expansion through:

F(z) =fo+ i filz)+ > fijlwiszg)
i=1 1<i<j<m

36
+ Z fijk(xiaxjaxk)+~-'+f1,2,...,m(xlax25"'axn) ( )

1<i<j<k<m

where f denotes a mean effect, f;(x;), the effect of the input variable 2; acting independently and f;; (2, ;)
the cooperative effect of the input variables x; and z;. The last term f1 5 (21, 22,...,2my) represents
any residual dependence of all input variables acting together.

In practice, second-order expansions may provide a satisfactory description of F'(z) for many high
dimensional models ([50, 44, 43]. The determination of input/output tables is then more efficient and more
rapid.

4. Data assimilation and inverse modelling

Suppose that a model has been chosen (Section 1) and a set of appropriate numerical solvers is available
(Section 2). The practical use of the resulting CTM deeply relies on data assimilation techniques.

We refer to [57] for more details and some examples. We will only give here a review of the key topics
related to data assimilation in CTMs.
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4.1. Background

There are unfortunately many uncertainties in the inputs of CTMs: for instance, initial conditions are poorly
known and emission fluxes are given with a low accuracy.

Data assimilation consists in coupling the numerical outputs and the observational data in order to lower
uncertainty. We refer for instance to [61].

Let us formulate the previous discretized models with the following input/output description:

On+1 = F(Ona “I"n) (37)

with C), the outputs (the concentrations) at time ¢,, for all the grid cells and ¥,, the vector of forcing
parameters (for instance boundary conditions, meteorological data, physical parameters). F' stands for the
discretized operator mapping time ¢,, to time ¢, 1.

Apart from the numerical model, we have at our disposal some observational data from heterogeneous
nature, provided by terrestrial networks (Air Quality Monitoring Networks), airborne data or satellital data.
If C stands for the chemical state of the atmosphere, we will write H(C) the available observations of C,
where H is the observation operator. The measured data are then:

obs = H(C) + € (38)

with €(©) the observation error, supposed to be given by a random Gaussian process N (0, £(°)) with %(°)
the observation error covariance matrix.

To couple numerical outputs and observational data, a cost function J(u), which describes the residual
errors between observations and models, is minimized with respect to some uncertain parameters u. This
function is typically expressed as:

J(u) = (r', (2@ 1p@) 4 (r®) (20))~1p(0)) (39)

with r(®) = obs — H(C'(u)) the residual observation error and r(®) = v — u; the residual background error.
(.,.) is the usual Euclidean scalar product. C'(u) is the model output computed with u. u is a background
value (often a climatological value) describing the a priori knowledge, with a background error covariance
matrix £,

Data assimilation is used to overcome the following problems:

e Forecast: u = Cy ([14]).

Initial conditions are computed in order to minimize forecast errors.

o Inverse modelling of emissions: w = E (with previous notations).
The objective is to improve emission inventories performed by a bottom-up procedure. Forecast may
be an objective as well.

o Inverse modelling of physical parameters: u = k (for instance kinetic rates).
Observation are then typically given by smog chamber experiments (on the contrary to the previous
cases, field data). The objective is to improve the accuracy for poorly known physical data.

Many algorithms are used in order to solve the data assimilation problem:

e Sequential methods are related to estimation theory and Kalman Filtering ([6]). They have been
extensively used, especially for stratospheric chemistry ([24]).

e Variational method (following [28] in meteorology) are related to an iterative minimizing procedure,
related to gradient algorithms.

V.J has to be computed, which may be unaffordable for a large number of control parameters. This
leads to the use of the so-called adjoint models, to be derived from the initial forward models. We

519



B. Sportisse, J. Boutahar, E. Debry, D. Quélo & K. Sartelet

refer to [57] for a presentation of some computational aspects related to adjoint CTMs. Modern
automatic differentiation tools ([40] for instance) may be powerful techniques in this framework.

Notice that the wide-range of characteristic times for chemical kinetics (see Subsection 3.4.) may
impact the quality of data assimilation for short-lived species ([3, 42])

4.2. Some numerical aspects

The development of an adjoint model of a comprehensive 3D CTM may be a difficult task. Consider a cost
function J = 1/2 7" ||lobs; — HC||*. In practice, a CTM may be algorithmically described as follows

1. Initialization of time-independent data,
2. Time loop (labeled by 1 < i < n):

¢ read forcing data ¥; ; (this contains all the data needed by the solver for computing concen-
trations at time ¢;),

e compute new state C; = F(C;_1,¥;_1),

e compute the cost function at time ¢;: .J; = 1/2||obs; — HC;||?,

e update cost function: J = J + J;.

For the specific case of data assimilation of initial condition (u = Cy), the above formula is:

aC, 1 ac; ;9T g
Vud = Z (8—00)|t0"'(60'_1)\ti_1(80')|ti
1<i<n ! ' (40)
w (L2t (Ot yry Dt yr  ( OCn g1 Dn gy
o 0C,,—o 0C,—o 0C,—1 0C,—1 oC,

and the algorithm now reads:

1. Cn = (857,

2. backward time loop (labelled by n > i > 1):

e read forcing data ¥;_q,

¢ read saved state C;_1,

A _ oC; T
e compute C;_1 = (—8Ci71)|ci71’\pi—lci’
date C;_y = C; SZ=yT
e update C; 1 = C;_1 + (801-_1) .

3. the output is V¢, J = Co.

An adjoint model will compute z — (fc—f_’zl)‘TC__l w,_, 2 We refer to the next section for an application to
a CTM.

5. The example of POLAIR: a 3D Eulerian model for atmo-
spheric dispersion

5.1. Description of POLAIR3D

POLAIR3D is a three-dimensional chemistry-transport model (CTM) developed at ENPC/Air Team for
modelling of transboundary dispersion (e.g. acid rains) and forecast of regional photochemical events.
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It solves Eq. (1) with state-of-the-art numerical solvers as described in Section 2. The numerical
schemes used are a third-order direct space time scheme with Koren-Sweby flux limiting for advection
([66))), the second order Rosenbrock solver ([13]) for chemistry and diffusion and a classical three point
scheme for spatial discretization of diffusion. ”Strang” splitting operator or AMF may be used to solve the
model equation. Emission and dry deposition are treated as lower boundary condition of vertical diffusion.
Forcing by a larger-scale model is implemented as boundary condition of advection.

A key point for a CTM is the ability to represent sophisticated chemical mechanisms. In practice, a
symbolic preprocessor for multiphase chemistry, called SPACK (Simplified Preprocessor for Atmospheric
Chemical kinetics, [13]) is used to generate chemical models (e.g. MOCA [2], CBM4 [16] or RADM?2
[59]). The input of SPACK is a syntaxic description of the chemical mechanism. For instance:

% GAS PHASE REACTION G3

OH + 03 > HO2

KIN ARR2 1.6d-12 -940.

$AQUEOUS PHASE REACTION A2

AQ3 + 0O*2— > AQOH + OH- + 2. AO02

KIN ARRC2 1.5D9 -1500.0D0 298.

% ESTABLISHED HENRY’S EQUILIBRIUM FOR 03
03 =H= AO3

KIN ARRC2 1.1D-2 2300.0D0 298.

In this mechanism there is one gas-phase reaction (G3), one liquid-phase reaction (A2) and in-cloud
scavenging for ozone. The output of SPACK is a set of Fortran files used in the time integration of the
chemical mechanism. SPACK may be directly coupled to ODYSSEE ([40]) in order to generate automati-
cally the related adjoint models.

We refer to [11] for an application to sensitivity analysis of a comprehensive multiphase model.

5.2. Numerical platform

POLAIR3D has been developed in order to be fully modular as far as applications are concerned, e.g.,

e acid rain computations at the continental scale have already been performed by comparison to the
Diffeul model carried on at Electricité de France ([69]),

e dispersion of radionucleides over Europe and inverse modelling of sources in the framework of
ETEX2 have been tested,

e simulation of photochemical events (for instance, comparison with results of the field campaign ES-
QUIF over Paris.

Some typical outputs can be found in figure 4 for the continental scale (the grid cell is typically one degree
latitude x one degree longitude) and in figure 5 for the urban scale (the grid cell is 6 km x 6 km, the
emission data are provided by AIRPARIF, the Air Quality Board for Paris).

Moreover, the tangent linear and adjoint versions of POLAIR3D are available. They have been de-
veloped by automatic differentiation (with ODYSSEE, [40]) in the framework of an INRIA cooperative re-
search action, Comode (http://www.enpc.fr/cereve/HomePages/sportiss/polaire/pole/projets/Ecomode.html).

The speed-up ratio (CPU of adjoint version/CPU of the forward version) is of magnitude 5, which is a
result comparable to the theoretical attended ratio.
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Figure 4. Average NO, over vertical columns for 1997
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Figure 5. O3 computed by POLAIR for the 18/7/1999 over Paris
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5.3. Future extension

POLAIR3D is a research numerical platform for Air Quality modelling at regional scales. The current ex-
tension concern multiphase models (aerosols) with size-resolved and modal approaches. Many applications
are concerned ranging from pesticides dispersion to heavy metals dispersion.

POLAIR3D will be inserted in a modelling chain with appropriate post-processing tools (for instance,
use of uncertainties propagation tools for impact studies, [62]).

Some open issues

We have briefly reviewed in this paper some of the main issues for air pollution modelling. What will be
the next generation of CTMs ?

More accurate parameterizations (for instance: chemistry/dynamics turbulence in the Boundary Layer)
will probably be used.

The growing extension to multiphase models has many numerical consequences and developing mod-
ular and fast codes describing size-resolved aerosol models remains a challenging point. Many physical
aspects remain poorly known (for instance nucleation, transition between dry and wet aerosols).

Coupling of current comprehensive CTMs with radiative transfer models is another key issue for the
study of the climate forcing due to aerosols: the resulting coupled models will increase the computational
burden. Another application is the direct assimilation of radiative data.

Data assimilation and inverse modelling through 4D-var methods are more and more widespread tools
and lead to a dramatic increase of CPU costs. Optimal design of the related environmental monitoring
network ([56]) is probably one of the next points to be investigated and needs even more computational
resources. Ensemble prevision ([35] could be an issue for air quality forecast.

More generally, the resulting models will be inserted in a modelling chain: ranging from emission mod-
els to impact models, with various purposes (forecast, inverse modelling, sensitivity analysis, uncertainty
propagation).

These points (among others) motivates the need for a continued development of the current Air Pollution
Models with state-of-the-art multiphase models, numerical algorithms and modelling tools.
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