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Abstract. This article presents a survey of a new dynamical systems theory for 2D incompressible
flows and its applications to geophysical fluid dynamics.

Topologia de flujos incompresibles 2-D y aplicaciones a la dinamica de los
fluidos geofisicos

Resumen. Este articulo presenta un estudio de los desarrollos recientes de una nueva teoria de sistemas
dindmicos para flujos incompresibles 2-D y sus aplicaciones a la dindmica de los fluidos geofisicos.

1. Introduction

The use of topological ideas in physics and fluid mechanics goes back to the very origin of topology as
an independent science. In this article, we present a brief survey on a newly developed dynamical systems
theory for 2D incompressible flows. This program of study consists of research in two areas: a) the study
of the structure and its transitions/evolutions of divergence-free vector fields, and b) the study of the struc-
ture and its transitions of velocity fields for 2D incompressible fluid flows governed by the Navier-Stokes
equations or the Euler equations.

Mathematically speaking, there are two general methods describing a fluid flow: the Euler representa-
tion and the Lagrange representation. For the Euler method, the motion and states of a fluid are described
by a set of partial differential equations, such as the Euler equations or the Navier-Stokes equations supple-
mented with proper boundary conditions, and possibly with additional equations of passive scalars, depend-
ing on different physical situations. The Lagrange representation of a fluid flow, on the other hand, amounts
to studying the dynamics and trajectories of fluid particles in the (two or three dimensional) physical space
that the fluid occupies. Of course the velocities of the particles satisfy the PDEs we just mentioned. Our
main philosophy is to classify the topological structure and its transitions of the instantaneous velocity field,
treating the time variable as a parameter. The aforementioned two aspects of study are based directly on
this philosophy.

The study in Area a) is more kinematic in nature, and the results and methods developed can naturally
be applied to other problems of mathematical physics involving divergence-free vector fields. The main
topics in this area include structural classification, structural stability, and structural bifurcation, as well as
their applications to fluid dynamics and to geophysical fluid dynamics.
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In fluid dynamics context, the study in Area b) involves specific connections between the solutions
of the Navier-Stokes or the Euler equations and flow structure in the physical space. We shall present
in particular a new rigorous characterization of boundary layer separations for 2D viscous incompressible
flows. As we know, boundary layer separations problem is a long standing problem in fluid mechanics
going back to the pioneering work of L. Prandtl [25] in 1904. Basically, in the boundary layer, the shear
flow can detach/separate from the boundary, generating bubbles and leading to more complicated turbulent
behavior. It is important to characterize the separation. It is clear now that the new dynamical systems
theory developed here provides a natural tool for the rigorous study.

The original motivation of this research program was to understand the structure and its stability/transi-
tions of geophysical flow patterns in the physical space. There are two general areas of study in geophysics.
One area of research devoted to the study of general circulation models; see [9, 10, 11, 12, 13]. The other
area studies specific physically phenomena. The study of these physically related problems involves on the
one hand applications of the existing mathematical theory to the understanding of the underlying physical
problems, and on the other hand the development of new mathematical theories. The program of research
presented in this article can be considered as an attempt to this latter aspect. Namely, it is motivated by the
study of geophysical fluid dynamics problems, the new mathematical theory is developed under close links
to the physics, and in return the theory is applied to the physical problems although more applications are
yet to be explored.

The results presented in this article are based on recent papers including [6, 7, 16, 14, 17, 18, 19, 20, 21]
in Area a), and [6, 7, 15] in Area b). This article is organized as follows. First, in Section 2, we present the
structural stability theorems for divergence-free vector fields with divergence-free vector field perturbations
in both the free boundary and the Dirichlet boundary conditions cases. Some examples are given with
schematic pictures, including in particular, the instability and transitions of the dipole structure. In Section
3, we present a theory on structural bifurcation and its applications to boundary layer separations, including
an application to the solutions of the quasi-geostrophic equations. Sections 4 and 5 short commenting
respectively the study for divergence-free fields on general 2D manifolds and further study on Area b).

2. Structural stability of 2D incompressible flows

The study of structural stability has been the main driving force behind much of the development of
dynamical systems theory following the program initiated by S. Smale and others (see among others
[23, 24, 26, 27, 28, 30, 31]). We are interested in the structural stability of an incompressible vector field
with perturbations of incompressible vector fields. We call this notion of structural stability the incompress-
ibly structural stability. We proceed in two cases: a) the free boundary condition case, and b) the Dirichlet
boundary condition case.

2.1. Flows with free-slip boundary conditions

Let M be a two dimensional differentiable Riemannian manifold with boundary @M and with the Rie-
mannian metric g. In this article, unless otherwise stated, we always assume that » > 1 be an integer.
Let C (T M) be the space of all r-th differentiable vector fields v on M such that v|sp € CT(TOM),
namely the restriction of any r-th differentiable vector field v € C"(T M) on the boundary M is a r-th
differentiable vector field of the tangent bundle of 9M.

Consider a vector field v € CI(TM). A point p € M is called a singular point of v if v(p) = 0; a
singular point p of v is called non-degenerate if the Jacobian matrix Dv(p) is invertible; v is called regular
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if all singular points of v are non-degenerate. For convenience, we set

D" (TM) = {v € CL(TM)| divv =0},

v,
B (TM) = {v € D"(TM)| aqu loar = 0},

Bj(TM) = {v € D"(TM)| v|rs = 0}.

Let ®(x,t) be the orbit passing through x € M at t = 0 of the flow generated by v. The w-limit set
w(z) and the a-limit set a(x) of the trajectory ®(x, t) are defined by

w(z) ={y € M| thereexistt, — oo such that ®(z,t,) = y},
a(z) = {y € M | thereexistt, — —oc such that ®(x,t,) — y}.

An orbit with its end points is called a saddle connection if its o and w-limit sets are saddle points.

Definition 1 Two vector fields u, v € D" (T M) are called topologically equivalent if there exists a home-
omorphism of ¢ : M — M, which takes the orbits of u to orbits of v and preserves their orientation.

Definition 2 A vector fieldv € X = D"(TM) or B"(T M) or Bf(T M) is called structurally stable in
X if there exists a neighborhood O C X of v such that for any u € O, u and v are topologically equivalent.

Consider now v € D"(T'M). Thanks to the divergence-free conditions, the properties of divergence-
free vector fields are quite different from those of general vector fields. In particular, it is easy to see that
forany v € D"(T' M), an interior non-degenerate singular point of v can either be a center or a saddle, and

a non-degenerate boundary singularity must be a saddle. An interior saddle p € ]\04 is called self-connected
if p is connected only to itself, i.e., p occurs in a graph whose topological form is that of the number 8.

The following theorem was proved in [14, 21], providing necessary and sufficient conditions for struc-
tural stability of a divergence-free vector field.

Theorem 1 A divergence-free vector field v € X = D"(T'M) or B"(T M) is structurally stable in X if
and only if

(1) v is regular;
(2) all interior saddles of v are self-connected; and

(3) each boundary saddle point is connected to boundary saddle points on the same connected component
of the boundary.

Moreover, the set of all structurally stable vector fields is open and dense in X. 0O

This theorem provides necessary and sufficient conditions for structural stability of a divergence-free
vector field. Notice that the divergence-free condition changes completely the general features of struc-
turally stable fields as compared to the situation when this condition is not present. The latter case was
studied in 2-D by Peixoto [24]. The conditions for structural stability and genericity in Peixoto’s theorem
are: (i) the field can have only a finite number of singularities and closed orbits (critical elements) which
must be hyperbolic; (ii) there are no saddle connections; (iii) the non-wandering set consists of singular
points and closed orbits.

The first condition in Theorem 1 above requires only regularity of the field and does not exclude cen-
ters; the latter are not hyperbolic and thus are excluded by condition (i) in Peixoto’s result. Our theorem’s
second condition is also of a completely different nature than the corresponding one in the Peixoto theo-
rem. Namely, Peixoto’s condition (ii) excludes the possibility of saddle connections altogether, while our
condition (2) requires all interior saddles are self-connected!
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Moreover, a direct consequence of the Peixoto structural stability theorem and the structural stability
theorem we obtained is that no divergence-free vector field is structurally stable under general C'" vec-
tor fields perturbations. Such a drastic change in the stable configurations is explained by the fact that
divergence-free fields preserve volume and so attractors and sources can never occur for these fields. In
particular, this makes it natural the restriction that saddles in the boundary must be connected with saddles
in the boundary on the same connected component, in the third condition.

2.2. Flows with the Dirichlet Boundary Conditions

For a divergence-free vector field u € BJ(T M) with the Dirichlet boundary conditions u|gy; = 0, all
points on the boundary are singular points in the usual sense. To study the structure of u, we need to
classify these boundary points.

Definition 3 Let u € BL(TM)(r > 2).

1. A point p € OM is called a O-regular point of u if 8“3*—15”) # 0; otherwise, p € OM is called a
0-singular point of u.

2. A 9-singular point p € OM of w is called nondegenerate if

Pu,(p)  ur(p)

aTon on2
det # 0. (D
Pun(p)  ’un(p)
aTon on?

A non-degenerate 9-singular point of u is also called a 0-saddle point of u.

3. uw € BY(TM) (r > 2) is called D-regular if a) u is regular in ]\04 and b) all 9-singular points of u
on OM are non-degenerate.

Then it is easy to see that each non-degenerate d-singular point of u € B (T M) is isolated. Therefore
if all 9-singular points of u on M are non-degenerate, then the number of all 9-singular points of u is
finite.

The following theorem generalizes Theorem 1 to divergence-free vector fields with the Dirichlet bound-
ary conditions.

Theorem 2 [20] Let u € By (T M)(r > 2). Then w is structurally stable in By(T M) if and only if
1) wis D-regular;
2) all interior saddle points of u are self-connection; and

3) each 0-saddle point of u on OM is connected to a d-saddle point on the same connected component

of OM.

Moreover; the set of all structurally stable vector fields is open and dense in B (T M ).

2.3. Examples

We examine now a few flow patterns as shown in Figures 1-4 below. By Theorem 1, it is easy to see that
both flow patterns given in Figures 1 and 2 are structurally stable.

By Theorems 2, the two flow patterns in Figures 3 and 4 are structurally unstable. The flow pattern given
by Figure 3 does not have d-saddle points. The instability is caused by the saddle connection connecting
two interior saddles p and ¢. With arbitrarily small perturbations with tubular divergence-free vector fields
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Figure 1.
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Figure 5. Dipole structure

near the saddle point p, the saddle connection will break, and lead to a new stable patterns such as given by
Figure 1.

In Figure 4, the flow pattern has four 9-saddles. Here the instability comes from the 0 saddle connec-
tions between different connected components of the boundary; i.e. p is connected to ¢, and r to s. As
in the previous situation, with arbitrarily small perturbations with tubular divergence-free vector fields sur-
rounding the inner island both saddle connections ( p to ¢ and r to s) break and lead to a new stable pattern
as given by Figure 2.

2.4. Dipole structure

The dipole flow pattern refers to the flow pattern as shown in Figure 5. It appears in many fluid mechanics
problems, and in particular in some typical weather patterns and ocean circulation patterns. By the structural
stability theorem, the flow structure as shown in Figure 5(a) is not stable, as two saddle points are connected.
In fact, by any small tubular flow perturbation as constructed in Lemma 4.1 in [21] around the saddle point
p in Figure 5(a), the flow pattern as shown in Figure 5(a) becomes the one as shown in Figure 5(b). Hence,
from the physical point of view, we would claim that the dipole type of flow patterns observed phyically in
fluid flows, and in particular in geophysical flows, should really be the one as shown in Figure 5(b) instead
of that in Figure 5(a).

3. Boundary layer separations and applications to oceanic bound-
ary currents

The nature of flow’s boundary layer separation from the boundary plays a fundamental role in many physical
problems, and often determines the nature of the flow in the interior as well. The main objective of this
section is to present a rigorous characterization of the boundary layer separations of 2D incompressible fluid
flows. This is a long standing problem in fluid mechanics going back to the pioneering work of Prandtl [25]
in 1904. The classical theory of boundary layer can be found in [8, 29, 1]. Also, we refer the readers
to a recent textbook [22] and articles [3, 4, 32] for the mathematical analysis of the Prandtl equation, an
approximation of the Navier-Stokes equations for the boundary layer analysis.

Basically, in the boundary layer, the shear flow can detach/separate from the boundary, generating
bubbles and leading to more complicated turbulent behavior. It is important to characterize the separation.
It is observed experimentally that the points where the normal derivative of the velocity field vanishes may
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just be the separation point. No known theorem, which can be applied to determine the separation, is
available until the recent work [6, 7, 20], which provides a first rigorous characterization. We address in
this section some results obtained in these articles.

3.1. Structural bifurcation

For convenience, we assume the boundary M contains a flat part I' C dM, and consider structural bifur-
cation near a 9-singular point Z € I'. For simplicity, we take a coordinate system (z, 25) with Z at the
origin and with I" given by

F:{(x170)||x1|§50}7 z=0,

for some &g > 0. Obviously, the tangent and normal vectors on I are the unit vectors in z; and x5 directions
respectively. Let u € C*([0,T], B5(TM)) (r > 2) be a one-parameter family of divergence-free vector
fields with the homogeneous Dirichlet boundary condition. In a neighborhood U C M of z € T, u(x,t)
can be expressed by

u(x,t) = zav(a,t). )

To proceed, we consider the Taylor expansions of both u(z,t) and v(z,t) at tg (0 < tg < t)

u(z,t) = u’(x) + (t — to)u' (z) + o(|t — to*)

ul(x) = u(z, to), 3)

ol (z) = au(gle tg)7

v(z,t) = 0(z) + (t — to)v' (z) = o(|t — to|)?,

00 (z) = v(x, to), )
') = 5

We proceed with the follwing defintions.

Definition 4 Let u € C1([0,T],X). The vector field ug = u(-,t9) (0 < tq < T) is called a bifurcation
point of u at time tg if. for any t~ < tg and to < tT with t~ and t* sufficiently close to tq, the vector field
u(+;t7) is not topologically equivalent to u(-;t+). In this case, we say that u(x,t) has a bifurcation at t,
in its global structure.

Definition 5 Ler u € C'([0,T],X). We say that u(x,t) has a bifurcation in its local structure in a
neighborhood U C M of xg atty (0 < to < T) if, forany t~ < to and to < t* with t~ and tT sufficiently
close to tg, the vector fields u( - ;t7) and u( - ;tT) are not topologically equivalent locally in U C M.

Let u! = (ul,ub), v' = (vi,vd), i = 0,1. We start with the following conditions for the structural
bifurcation.

ASSUMPTION (H). Let u® € C**! near € T for some k > 2, and Z = 0 be an isolated degenerate
d-singular point of u°(z) such that

oul(0)

o 0, (5
ind(v?,0) # —%7 (6)
71 (0)

“otron 7 @

1
8“8 © . ®)

n
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The main results on structural bifurcations of u(x, ¢) near a degenerate 9-singular point on flat boundary
are given in the following theorems. The detailed proofs of these theorems are given in [7].

Theorem 3 [7] Let u € C*([0,T], B(TM)) (r > 2) satisfy Assumtion (H). Then there exists a neigh-
borhood Ty C T of T and an £y > 0 such that all 9-singular points of u(z,to £ ) are nondegenerate for
any 0 < ¢ < gg. Furthermore,

1. ifthe index ind(v°, 0) is an integer, then one of u(x, to £ &) has two —singular points on Ty, and the
other has no d-singular point on T'y; and

2. if the index ind(v°, 0) is not an integer, then each of u(x,tg £ ) has exactly one 0-singular point on
To.

Theorem 4 (STRUCTURAL BIFURCATION THEOREM, [7]) Letu € C ([0, T], B5(T M)) (r > 2) satisfy
Assumption (H). Then

1. u(x,t) has a bifurcation in its local structure at (%, tg).

2. ifx € OM is a unique singular point which has the same index as ind(v°,0) on OM, then u(z,t) has
a bifurcation in its global structure at t = t.

Technically speaking, the proof of the results are highly nontrivial. Basically, the results are achieved
with delicate analysis of the flow structure near the boundary for both the free boundary and the Dirichlet
boundary conditions. The first step is to classify the flow structure and its transitions near the boundary
for flows with only no normal flow boundary conditions; see [6]. Second, we analyze in [20] detailed flow
structure in the boundary layer for flows with the Dirichlet boundary condition. Third, we make connections
in [7] between the structure of the original velocity fields and the structure of the normal derivative of the
velocity field. Here we only make a few remarks on Assimption (H), and will discuss the applications of
these two theorems to boundary layer separations in next section.

Remark 1 Condition (5) says that z = 0 € T is a d-singular point of u°(x), which is equivalent to the
leading order vorticity vanishes at Z. This is socalled Prandtl condition, which was suggested by Prandtl to
identify possible boundary layer separation points of incompressible flows. W

Remark 2 Since u® = z,v°, condition (6) is equivalent to that the index of v° at # = 0 is different from

—1. Hence, let

ind (v°,0) = _g (n #1).

Then there are exactly n # 1 interior orbits of u® connected to Z € T'. This shows that p € T (z = 0) is
a degenerate d-singular point of u°(z), which is necessary for structural bifurcation due to the structural
stability theorem. W

Remark 3 Condition (8) amounts to saying that the first order term u' of the Taylor expansion for the
normal derivative of u is different from zero. Also, this is necessary; otherwise, we need to work on higher
order Taylor expansion, and the corresponding results proved in this article will be true as well. In view
of fluid mechanics applications, Condition (8) is equivalent to nonzero vorticity for u!. F is is a necessary
condition for the bifurcation. In addition, it is easy to see that

Oui(0) _ Oui(0)
61‘2 - on

0,

which shows that the acceleration of fluid in tangent direction at p near the boundary layer is nonzero. W
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(@) (b) (©

Figure 6. Boundary layer separation of shear flow

Remark 4 Condition (7) is a technical condition, and amounts to saying that the tangential component
u? of the leading order term is Taylor expandable. Furthermore, let k be the smallest integer satisfying
condition (7). It is easy to show that & > 2. In fact, u®(z) has the Taylor expansion at z = 0

cxy + 2ax1 T + b2 + xohy (2),
uo(:v)z{ 2 172 5 2hy () ©)

— a:v% + xoho(z),

with h;(z) = o(|z]) (i = 1,2). Since p € T (x = 0) is a degenerate d—singular point of u°(z), it follows
that ¢ = 0, a = 0, which implies thatk > 2. W

Finally we remark that the same results hold true as well for structural bifurcation near a curved bound-
ary. In that situation, we only need to replace Condition (6) by the geometrical condition: There are n
(n # 1) interior orbits of u® connected to Z. We refer the interested readers to [7] for details.

3.2. Boundary layer separations

Boundary layer separation is a long standing problem in fluid mechanics going back to the pioneering work
of L. Prandtl [25] in 1904. In the boundary layer, the shear flow can detach/separate from the boundary,
generating bubbles and leading to more complicated turbulent behavior. The streamlines breaking away
from the boundary is called boundary layer separation. Prandtl suggests to identify the point of separation
Z where the circulation vanishes: du/9n|; = w(z) = 0. This is the condition 5.

From the mathematical point of view, the above structural bifurcation theory provides a nature tool
for characterizing boundary layer separations of incompressible flows. More precisely, in the case where
ind (v9,0) = 0, the above structural bifurcation theorem corresponds to boundary layer separation of fluid
flows as we mentioned before. Schematically, the structural bifurcation theorem in this case can be illus-
trated schematically in Figure 6. The velocity field at the bifurcation instant, i.e. u°, is given by Figure 6(b).
For any small ¢ > 0, u(x, tg — €) given by Figure 6(a) has no singular points near Z, representing a typical
shear flow. On the other hand, after the bifurcation/separation, u(Z,tq + €) given by Figure 6(c) has two
singular points near  on the boundary and one center near 7 in the interior, all of which are non-degenerate.

We now apply the above results to the boundary layer separation problem for a quasi-geostrophic model,
which reads

ur+ (u-Viu+Vp+ fkxu—vAu=W,
divu =0, (10)
u=20, on OM.

Here u = (u1, uq) is the (horizontal) velocity field, p the surface pressure, W the wind stress forcing, k is
the unit vector in the vertical direction so that k X u = (—ua,u1), f = fo + Bz2 is the Coriolis parameter
with fy and 3 constants.

Regarding to the context of wind-driven, double-gyre oceanic behavior with respect to boundary layer
separation, we denote a section of the vertical line zy = 0 as a boundary section I, with its normal direction
going leftward; see Figure 7.
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Figure 7. Structural bifurcation for ind(v°,0) = 0

Let (u, p) be the solution of the quasi-geostrophic equation (10) such that Assumption (H) holds true at
(Z,to) withZ € T and to > 0. Moreover, for t < to and near tg, the vorticity w = —Ouy /Oxa+0us /Ox1 >
0. Namely, u is an upward shear flow for ¢ < ¢ as shown in Figure 7(a). Then the following results hold
true:

1. The velocity field u has structural bifurcation in its local structure and boundary layer separation at
the boundary point T as ¢ crosses to with flow structure for ¢ > tq given as shown in Figure 7(b).

2. There is an adverse pressure gradient in the tangential direction present at (Z, ¢), see [5].

We end this section with a few remarks. First, an important issue is to estimate the time to and the
location z¢ in terms of the Reynolds number, the forcing or the outer flow, as well as the initial velocity
profile. Very interesting things can be obtained, and will be addressed by the authors in a forthcoming
paper.

Second, it is not hard to see potential applications of the above theory to the Gulf stream separation
from the North American coastline at Cape Hatteras.

Third, our study opens a door to classify the structural transitions in the interior points. For the interior
flow separation/spin-off, one extra degree of freedom allows more patterns mathematically, which in general
do not appear in the physical situation. This project is to develop a rigorous theory to identify physically
interesting patterns and their transitions, and to apply the theory to typical oceanic flows. Another important
example we shall study is to classify the structure and its transitions of the Jupiter’s Red Sport as shown
in http://heritage.stsci.edu/public/aug5/jupgrsbig.html, which shows clearly the
formation and separation of bubbles from the zonal flow.

Fourth, in both Figures 6 and 7, we see reattachment of the stream lines to the boundary, although the
real particle line may not be. One could think the real particle moves into the interior of the domain as
the bubbles (of the stream lines) amplifies as the time evolves. This fact is proved in [6, 7], and supported
by numerical simulations for the driven cavity flow in [5]. Also, the reattachment is in consistant with
experiments as shown in the von Dyke’s book [2].
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4. Periodic structure and block stability

For incompressible flows defined on 2D tori or on nonzero genus 2D manifolds, quite different senerio
appears. However, it is still possible to derive a complete classification on the structure and stability of
divergence-free vector fields on general 2D orientable compact manifolds, including the torus correspond-
ing to the periodic boundary conditions in the Euler representation of fluid flows.

The main technical method is based on a complete understanding of the w and « limit sets of general
divergence free vector fields. It is well known that flows on a torus may be non-trivially recurrent, and the
w and « limit sets can be very complicated sets. For instance, the w and « limit sets of the Cherry flow can
have the structure of Cantor sets. Thanks to the incompressibility conditions, the divergence-free vector
fields have better properties. First, we prove in [42] a Limit Set Theorem, a version of Poincare-Bendixson
theorem. It shows that the w (resp. «) limit of a regular point of a regular divergence-free vector field is
either a saddle, or a non-limiting closed orbit, or an ergodic set which is a closed domain with boundaries
consisting of saddle connections of finite length. The structure of the Cherry flow shows that the same result
is not true for general vector fields, and the divergence-free condition is crucial for the ergodic set being a
closed domain. Furthermore, the detailed structure of the ergodic set is fully characterized with its Euler
characteristic explicitly calculated.

With the structure of limit sets at our disposal, the following results are then quite nature.

1. No divergence-free vector fields is structurally stable with divergence-free vector fields perturbations.

2. For a complete classification, we need to beyond this instability result. To this end, we can introduce
two new concepts: block structure and block stability. We call a divergence-free vector field a basic
vector field if its phase diagram has a block structure. Namely, the phase diagram is decomposed into
a finite number of flow-invariant retractable blocks and ergodic sets such that the restrictions of the
vector field on the retractable blocks are self-connected. We prove that (i). all basic vector fields form
an open and dense set of all divergence-free vector fields, (ii). the block structure is stable, (iii). the
flow is either periodic or non-trivially recurrent on the ergodic sets, and (iv). the structural instability
is due completely to the ergodicity and/or periodicity on the ergodic sets.

3. In addition, the periodic structure defined by the Taylor vortices can also be fully classified. More
precisely, we classify in [17] the structure and its transitions/evolution of the Taylor vortices under
small perturbations of either the Hamiltonian vector fields or divergence-free vector fields on the two-
dimensional torus. In particular, we show that there is only one stable block structure near the Taylor
vortices with Hamiltonian perturbations, and there are exactly five block stable structures near the
Taylor field with general divergence-free vector field perturbations.
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