RACSAM

Rev. R. Acad. Cien. Serie A. Mat.
VoL. 96 (3), 2002, pp. 411-445
Matemética Aplicada / Applied Mathematics
Articulo panordmico / Survey

Estimates based on scale separation for geophysical flows

F. Jauberteau and R. Temam

Abstract. The objective of this work is to obtain theoretical estimates on the large and small scales for
geophysical flows. Firstly, we consider the shallow water problem in the one-dimensional case, then in
the two-dimensional case. Finally we consider geophysical flows under the hydrostatic hypothesis and
Boussinesq approximation. Scale separation is based on Fourier series, with /N modes in each spatial
direction, and the choice of a cut-off level N1 < NN to define large and small scales. We establish that,
for a given (quite high) cut-off level, and for (quite regular) initial conditions, the small scales (and their
time derivative) are small in energy norm by comparison with the large scales (and their time derivative).

Ecuaciones basadas en separacion de escalas para flujos geofisicos

Resumen. El objetivo de este trabajo es obtener estimaciones teéricas sobre escalas grandes y pequefias
para flujos geofisicos. En primer lugar, consideramos flujos geofisicos bajo la hipdtesis hidrostatica y la
aproximacién de Boussinesq. La separacién de escalas estd basada en series de Fourier, con N modos en
cada direccién espacial en la eleccién de un conjunto de nivel de corte N1 < N para definir las escalas
grandes y pequefias. Mostramos que, para un nivel de corte (bastante grande) y para condiciones iniciales
(bastante regulares), las escalas pequefias (y sus derivadas con respecto al tiempo) son pequefias con la
norma de de la energfa en comparacion con escalas grandes (y sus derivadas con respecto al tiempo).

1. Introduction and motivation

In meteorology problems, the stability constraint on numerical schemes are quite strong. For example,
for the one-dimensional shallow water problem, the stability constraint for an explicit scheme (Leap-Frog
scheme) can be written (see e.g. [40]):

Az? At
2 T | T g <
U+ \/gH+ f Sn(hAn)? | Ax sin(kAz) <1, (1)

with U a constant advecting velocity in the « direction, H the mean height, f the Coriolis parameter as-
sociated with the rotating systems (considered as constant here), and g the gravitational constant. The
discretisation parameters are At (time step), Ax (mesh size) and k (wavenumber).
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From the stability condition (1) we can define three stability conditions. One stability condition comes
from the explicit treatment of convective terms (CFL condition), setting f = g = 0:

At
|U|A—x31~ 2

Another stability constraint comes from the explicit treatment of the terms associated with rotation, i.e.
setting U = g = O:
fAt<1. 3)

Finally, the third stability condition is due to the explicit treatment of the gravity terms, namely setting
U=f=0

At
\/gHH sin(kAz) < 1. 4)
For kAz sufficiently small, we have sin(kAz) ~ kAz. Moreover, Az can be expressed in terms of the
largest wavenumber k. in the following manner: Az ~ L 5o (4) can be rewritten:
A
Vo AL oy )

kmam Ax

Numerically we have (see [40] and [28]): U ~ 10 m/s (common wind) to 100 m /s (Jet-Stream) for atmo-
spheric type flows, H ~ 10* m (troposphere), g ~ 9.81 m/s? and f ~ 1074 s~1. So the more restrictive

stability condition in (1) is (5), requiring At < 300Azx Fpas . Moreover, the stability constraint (5), as-
sociated with an explicit scheme is wavenumber dependent : it is stronger for the small scales (associated
with high wavenumbers) than for the large scales (associated with small wavenumbers).

In order to improve the previous stability constraint, we can use semi-implicit schemes. Since (5) is
due to the explicit treatment of the gravity terms, it is usual to use an implicit scheme (Crank-Nicholson)
to integrate these terms and an explicit scheme (Leap-Frog) to integrate the convective and rotation terms.
The stability condition associated with this semi-implicit approximation can be written (see [40]):

2 Ax? At .
U+ \/gH (cos(vAt))” + f2m s sin(kAz) <1, (6)

where v is the frequency associated with the wave propagation. The factor (cos(yAt))2 multiplying the
gravity term gH reduces its value. So the stability constraint due to the implicit treatment of the gravity
terms is weaker than (4):

v/ gH |cos(vAt)] % sin(kAx) <1. 7

However, the drawback of the semi-implicit scheme is that it modifies the propagation speed (dispersion
error) of the gravity waves. But the relative error induced on the propagation speed is smaller for the small
scales than for the large ones, because propagation speed is higher for the small scales than for the large
scales.

Furthermore, it is important to compute accurately the slow waves (i.e. the large scales). Indeed the
Coriolis force has a more important effect on the slow waves and, in the atmosphere, the rotation effect is
important (quasi-geostrophic flow). For more details, see [5].

So, since the stability constraint is stronger for high wavenumbers than for small wavenumbers, and
since accuracy is more important for the large scales than for the small scales, we want to compute differ-
ently the small and large scales. The aim of this paper is to establish some estimates to compare the small
and large scales and their time derivative, in order to deduce new schemes to compute them. Previously,
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theoretical estimates have been established on the Navier-Stokes equations by Foias, Manley and Temam in
[13], and theoretical and numerical studies of schemes, based on scale separation, have been done in [12],
[36], [18], [24], [35], [3] and [9] for example.

In this work, firstly we consider the shallow water problem in the one-dimensional case and then in the
two-dimensional case. We then consider the more general case of geophysical flows, under the Boussinesq
approximation and hydrostatic hypothesis.

We consider linearized problems. Indeed, in many cases, the study of linear shallow water problem
gives quantitatively correct results for orders of magnitude, that is the flows are often not too far from linear
in their instanteneous behaviour (see [39]); on Figure 1, we can see that the nonlinear terms are indeed not
dominant.
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Figure 1. Spectra of velocity (energy spectrum) and height: thin lines. Spectra of nonlinear terms for velocity
and height equations: thick lines.

In all cases, we consider a spatial discretisation of the equations using a Fourier spectral Galerkin
method. The scale separation between the large and small scales in the physical space (global separation) is
done using the wavenumbers in the spectral space. We consider the semi-discretized equations, since it is
on these equations that time schemes are applied for numerical computation (see [10]). From the theoretical
estimates obtained on the large and small scales, we shall propose numerical time schemes accurate on the
large scales, and saving computational time (better stability properties). This numerical work is in progress;
it necessitates extensive implementation work, it will be presented elsewhere (see [10]).
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2. The shallow water problem: the one-dimensional case

The shallow water problem is deduced from homogeneous and frictionless geophysical flows, integrating
the incompressibility constraint over the entire fluid height. For more details, see, for example, [5], [15].
Let us consider the linearized shallow water problem (see [40]):

ou ou Oh

S UG —fotgg =0, ®)
ov v
5 U+ fu=0, )
LN L (10)

ot ox ox

where (u, v) denote the velocity components in the (z,y) directions, h is the height of the surface of the
water above (or below) some mean height H, and U is a constant advecting velocity in the z direction.
The Coriolis parameter f is considered as constant here. We have assumed in (8)-(10) that the independent
variables u, v and h are uniform in the y direction (one-dimensional case).

For explicit examples, the numerical values of the physical parameters are chosen as follows (see pre-
vious section): U ~ 10 to 100 m /s, H ~ 10* m, g ~ 9.81 m/s®> and f ~ 1074 571

Let us consider a solution UT = (u, v, h) for (8)-(10) of the following form (spectral method):

N2 N/2 U (1)
Uz, t)= > Ur)explika) = ) k(1) | exp(i ko) . (11)
k=1—-N/2 k=1-N/2 \ hi(t)

where NNV is a given parameter. The choice of this parameter depends in particular on the regularity of the
initial condition. We suppose that U is periodic in the spatial direction z (periodic boundary conditions)
and with zero average, so that (U(t)), = Uy = 0, at each time ¢ > 0, where 2 = (0, 2). This will be the
case if the initial condition has zero average.

Using (11), we can rewrite (8)-(10) in the following manner:

dU;, .
— 2+ AU, =0 12
7 + Ap Uy, ; (12)
with:
Uk = ?k 3
Iy

and the matrix Ay is defined by:
iUk —f 1igk
Ay = f iUk 0 . (13)
iHk 0 iUk

The eigenvalues of Ay, are:
My =iUk,

Xo =iUk +i+/f2 + gHE , (14)
Xsp =iUk—i/f2 + gHR? .
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Foreach k € [1 — N/2, N/2], we have | A x| < |A2,x| and |1 | < |A3,x| as we can see on Figure 2 .

If we consider the basis made of the eigenvectors of Ay, we obtain:

= )\Lk 0 0
dU =
—dt’“ +] 0 Xk 0 |[Up=0, (15)
0 0 I

where U denotes the vector U written in the eigenvectors basis. Time integration of (15) gives:

U (1) = g (0) exp(=Aixt)
Uk (t) = 0,(0) exp(—Aa i) , (16)

=
Eal
—~
~
~
I
=

£(0) eXp(—/\3’kt) ,

which can be written also: R R
Ui (t) = Uk(0) exp(=Dit) , )

]

where Dy, is a diagonal matrix, Dy = Diag (Aix),_; 5 5 - We deduce from (16) that ‘ﬁk(t) f)k(t)‘ and

‘;Lk(t)‘ are time independent: ||U(t)||> = ||U(0)|» for each value of ¢ > 0, denoting by || - ||» the

Euclidean norm of a vector.

Let us consider:
wix = —Uk 3

wp == (Uk+ /7 + gHR?) | (18)
wse = — (UK = /74 g2 ;

we obtain, using the spectral expansion (11) for the eigenvector basis and (16):

N/2
a(x,t) = Z 1, (0) exp (i (kz + wi xt))
k=1—N/2
N/2
oo, t) = Y 0x(0)exp (i (kz +wait)) (19)
k=1—N/2
N/2
Wz, )= Y Tw(0)exp (i (kx +wsit)) |

k=1-N/2

where wy i, wa 1, and ws i, are associated with wave propagation (Rossby waves and inertial-gravity waves).
As we can notice on Figure 2, |wy | is smaller than |wo ;| and |ws x|. Moreover, |w; ;| increases with
|k|, fori = 1,2, 3. So, the wave propagation is faster for high wavenumbers (small scales) than for small
wavenumbers (large scales); spatial scale separation induces temporal scale separation.

Let us denote by Py, k # 0, the modal matrix defined by:

U k ’ak 'ak U k
o | =P o | =] o | =P o |. (20)
hi, ilk ilk D,
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Figure 2. Representation of | A1 x|, |A2,x| and |As x| as functions of k.

We can verify that, for & # 0, the matrix P}, and P, ! are as follows:

0 1 1
P = L —iffyar iflvar |
i f/gk Hk/Jax —Hk/\/ag

and:
0  gHEK?/ay ifgk/ay

P=| 12 if2vam ek2va |
1/2 —if/2\/@ —gk/2/ax

where o, = f? + gHk>. Since ‘uk ®)], ‘ are constant for all ¢, we have:

Ty (t

[Tx@)113 = 1T (O)[3 = 1P, ' T (0|13
2

gHE fok. 1o 1]if . gk
‘ - 05 (0) + o i (0)| + 5 |4k (0)|” + 5 mvk(O) + \/@hk(O)
2H2k4 f2 2 2 A f2 R 92k2 R 2
< 310 + LLE )]+ lis 0)F + L 1u0) + £ [ (0)]
k Qg

2H |k . ; ks i
+2f9 B |5, 0) x \hk<o>\ +20 95 ) [u0)]
k Ok
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Using the inequality 2ab < a® + b?, Va > 0, Vb > 0, we obtain:

g 2 Lok
1P 0O < L (o O + 25— [ (0)] + Jan(0)
k Qaj,
92k2

2 2
+a 10:(0)]” +

- fin)] + 228 s, 07 + fin |

FPHIEE [ ove 4 i o]
+HEE 16k 0) + | (0)]

~ 2 + 1A 2 + |7 2
=l () + 87 100)” + 5 | (0)]

with:

2
g af (677 g

22 A 2 k 2l k]
ﬂ::<92 I 1L AL

and:

L (PR PR fglkl | fgPH K]
Wl + 5 :
k k Qf ay,
Finally, we have:

100115 < max (1, 5, %) 1TO)]]5 -

1e+01 ¢
1e+00 ¢ E
1e—01 | E
— B+ (0
***** v+ (O
1e-02 | E!
e o i e E
1e—04 .
o 10 20 30 40 50 60 70 80

Figure 3. Representation of 3,7 and ~;" as functions of .

417



F. Jauberteau and R. Temam

On Figure 3, we have represented ,6’,': and fy,:' as functions of k. So we have established the following
result:

Proposition 1
1Tk(t)]]2 < [[TL(O0)]]2 . V> 0. (23)

More precisely, it follows from (23) that U has the same regularity as the initial condition (same decrease
of the Fourier coefficients when |k| increases). So, under the hypothesis that the initial condition is regular,
we can deduce that, ¥t > 0, the waves associated with fast propagation (high wavenumbers, i.e. the small
scales, see Figure 2) have small spatial oscillations: when the propagation speed increases, the height of
the oscillations decreases. [

Let us now consider the velocity vector in the eigenvector basis. Writing (11) in the eigenvector basis,

we have:
N2

INJ(:v,t) = Z Uk Yexp(i kx) . (24)
k=1—N/2

Let Ny < N;using (24), we define as follows a scale separation based on the given cut-off level /Vy:

U=Y+7Z, (25)
with:
Z Uk Yexp(i kx) , (26)
keln,
and: R
Z(z.t)= Y Upt)exp(ika), 27)
k€In\In,

where we have denoted Iy, = [1 — N1 /2, N1/2] and IN\IN, = [1 — N/2,N1/2]|J[N1/2+ 1,N/2].

As it has been said previously, we denote by 2 = (0, 27) the domain associated with (8)-(10). We want
to compare ||Y||£2(q)s with ||Z[|2(q)s. We have, using Parseval’s equality (see [4]):

OB =11 S Telt)expliha) oy = 3 T
k€ln, keln,
= 3 BB = [ F0)] gy, ¥t > 0.
kEINl

In the same manner, we obtain that:

1Z(®)||72 (s = ||1Z(0)][72(qye: V>0
So we have: _ _
IZONBagye I1Z(O0)] e
IO Baye  Y(0)]Bay:
In order to establish a majoration (resp. a minoration) of the previous ratio, we look for a majoration (resp.
a minoration) of ||Z(0)[|72(q)s (resp. [[Y(0)][72(g)s). Using Parseval’s equality and (23) we have:

(28)

1ZO) oo = S NTOBE< S 11T = [12(0)|Z2gas - (29)

ke€In\In, keIn\In,
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Now, considering Y (0) we have:

IYO)llz2@2 = Y 0O = 1B, T O)]l5 -

kEINl kEINl

Yet:

2 2

gHE?
ay,

T 00| + 51O + 5| =) + i (0)

2| var T Var

Using the inequalities ||z — |2/|| < |z + z'| < |z|+]|z]. Vz and 2’ € C, we obtain the following minoration:

f)k( ) lhk(O)

Haﬂmw@{

P gHK? . falkl s S 1 X glk| |-
PO )13 JTTmmw——iHmw\+—mmm+——— SUILYTAO
k Q.
2H2k4 f2 2k2 . 2 fg2H k R
_CHE o+ L2 iy o - 222 5 )¢ i)
i aj,
L S e @R 2 fglk] ;
3l (O 45— 106 O + G- |n(0)] = T ax(0)] x [u0)]

As previously, using the fact that 2ab < a® + b2, Va > 0 and Vb > 0, we obtain:

R 2H2k.4 2 . 1 R f292k2 92k2 R 2
IO > (L2554 L) o0 + a0 + (L5 + 25 [inc)

aj, 2a,

2H k] (. . 2 El (. . 2
LEBEL (oo + [u ) - 2 (1P + i) )
Finally:
277214 2 2 3
—173 g"H k f f9"H |k falkl\ .
1P UO)] > %| K(0)] + < o2 + 2ar a2| o _ 201k| |6 (0)]?
k k
2 2k2 2k? 211k k . 2
<f 204k _ fg a%| | _ f29a|k| hk(O)‘
Let us set ,
5 = gHEY 2 felkl _ fgH |k
k a% 20&/c 20&/c a% ’
and

a% 2ozk 2ozk a%

__ (PR @K fglkl _ feHIK
e = + - - .
We can prove and check on Figure 4, that 3, and +, are positive for every k. Consequently, we can write:
15 N RN WS
177 B0 2 min (3. 5725 ) TR0 30)

If we set m,, = min (%7 B > fy,;), we have obtained that:

1Y (0)[[72)2 > D mi[UK(0)[[5 = m[[Y(0)]|72(qs 3D
kEln,

since, as we can notice on Figure 4, m; ~ m~ ~ 1073 for every k. So we have proved the following
result:
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Figure 4. Representation of 8, and ; as functions of &.

Proposition 2

IZO e _ 1ZO)llz@e _ 1 12Oy
I¥Ollz@p ¥ Ollze Vi YOl

V>0, (32)

I1Z(0)]|r2(0)
1Y (0)[|z2()

< 1, Vt > 0, for a given cut-off level N1 quite high (we will come back on the choice of

with m~ ~ 1073. It follows that if the initial condition is regular, we have

||§(t)||L2(Q)3

1Y (D)2 ()2
the level Ny later). O

< 1, so

Now we consider the velocity vector in the canonical basis, instead of the eigenvector basis as previ-

ously. We have (see (11)):
N/2

U.t)= > Up(t)exp(ika). (33)
k=1-N/2
As previously, we define a scale separation based on the given cut-off level Ny < N:

Y(x,t)= > Uk(t)exp(ika), (34)
k€ln,
and: R
Z(z.t)= > U(t)exp(ika). (35)
k€IN\In,
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|Z()||12()s
1Y (£)]]22(0)s

. We have (Parseval’s equality):

We want to compare Y and Z. In order to establish a majoration of the ratio

minoration of Ww in function of M

1Y ()| z2(0)s 4GIEE

, we look for a

1ZOlF2e = >, NT@IE= Y 157" Telf5-

keIN\INl keIN\INl
From (30) which is valid at each time ¢ > 0, we deduce that:
1P U013 > m[[Tx(0)]]5 - (36)

Hence

1Z) 32 =m™ Y NO®IE =m ||1Z(10)][32(q)s -
keIN\IN,

In the same way, proceeding as for (29), it follows that

IYOlFe@e = Y IT@IE= Y 1B OO < Y [T = 1Y) [720pe - GD

k€ln, k€ln, kEln,

Finally, we can write:
W22y o NZOlzzas
IYOIBagye YOIz

b

and, using (32) we obtain the following result:

Proposition 3
1ZOllz2@p2 1 I1Z(O)llr2()e
Y ()]l z2()z — m™ [|[Y(0)||z2()s

I|1Z(0)]| 203
1Y (0)[|£2(q)s

L VE> 0, (38)

I|Z(1)]|L2(0)s <1

with m™ ~ 1073, If the initial condition is regular, we have .
1Y ()220

< 1, s0
Vit > 0, for a given cut-off level N1 quite high. [

Remark 1 More precisely, if we assume that the initial data U(0) lies in (H;”(Q))B, with H'(Q) =

{u € H™(Q), u'9) periodic for j = 0, ..., m}, the decrease of the velocity spectrum is like |k|~™ (see
[4]). So:
N c
2 > ot Y
NZO)72q)  keln\In,  kEIn\Iy,
2 - EN - [
1Y O)IZ2 () > T3 3 o
k€ln, k€N, {0}

where ¢ is a positive constant depending on the initial condition.

1 [1Z0)ll> )2
m~ [[Y(0)[[z2(0)2
for different choices of the cut-off level Ny = aN, a € ]0, 1], and for different values of the regularity
parameterm (m =1,2,3). W

For N = 1024, we have represented, on Figure 5, the ratio appearing in (38),
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We are now interested in comparing the time derivatives of the quantities associated with the large and
small scales. In the eigenvectors basis, we have (see (19) and (24)):

1 (0) exp(i wi_gt)
Z Uk yexp(i kz) = Z 6Ic(O) xp(iwait) | exp(ika) .

kel kel
N N hk( ) exp(i ws xt)
The time derivative U (x, ) of U (x, ) is written:

wlﬁkﬁk(O) exp(iwy it)
Uz, t) = Z wa, 0k (0) exp(i wa, yt) exp(i Z Uk Yexp(i kx) ,
kel w37kilk(0) exp(iws it) kel

with: .
R w1,k Uk (0) exp(i w kt)

Up(t) = | warti(0)exp(iwait) | . (39)
(U3,kilk (0) exp(i w3 xt)
Scale decomposition for the time derivative is obtained as previously (see (25)):
= Z U (t) exp(i kz) + Z Uk ) exp(i kz)
kEINl keIN\INl
=Y (z,t) + Z(x, 1)
Using Parseval’s equality and (39) it follows that:

1Z0)I2oge = S N00E= 3 1003

k€IN\IN, k€IN\IN,
2 =
< Z ‘wl |k|‘ [[UL(0)]|]3 (see Figure 2)
ke€In\In,
9 =
< |wa N2 Z 1T (0)]]5
keIN\IN,

9~
= |wa,ny2| NZ(0)]172(q)s
2
< wanya| [1Z(O)[[Z20ps - (see (29))
For the large scales, proceeding as before, we obtain:

YOz = D IIUk M= IIUk 5

kEINl kEINl

> Z |w1,k|2||I~Jk(0)||g (see Figure 2)
keln,

v

|ws 1] Z ||Uk 0] (by hypothesis, U is zero average)
k€ln,

= U2||?(O)||%2(Q)3
> U2m_||Y(O)||iQ(Q)3 ) (see (31))

422



Estimates based on scale separation for geophysical flows

Finally, we can write:

Proposition 4 .
||%(t)||L2(Q)3 < w2, /2| 1Z(0)]| 203 V>0
Y ()llz2@ye ~ UVm~ YOz

with m™ ~ 1073, U ~ 10 10 100 m/s and ws n/» =~ 25 x 10% for N = 128 (see Figure 2). So, if the

7||Z(0)||L2(Q)3 < 1, and thus 7”%(””9(9)3

1Y (0)[|z2(0)2 1Y (1) 72 (02
suitable choice of the cut-off level Ny. O

; (40)

initial condition is quite regular, we have < 1,Vt >0, fora

Proposition 4 gives a comparison of the large and small scales in the eigenvector basis. Now we look
for a comparison in the canonical basis, i.e. we want to compare Y and Z. We have:

DL D DR T s RO

||i(t)||2L2(Q)3

keIn\In, keIn\In,
>m= Y U@ (see (36)
keIN\IN,

m7||z(t)||%2(9)3
and:

IYOlljee = Y IU@IE= Y 1Pl

]CEINl k}EINl
< DO (see (37))
kEln,

= ||Y(t)||%2(9)3
So we have obtained: )
Z()|| 1200 Z®O|| 120y
||.()||L (I 1 ||&()||L @ s,
Y (Dllz2@s — V™ ||1Y (1) 3

||L2(Q)

The following result is infered from (40):

Proposition 5 ‘
|Z()]|L2(0)2 < |wa,n/2| 1Z0)]] 20
Y (D)2 — Um™ [[Y(0)]|z2(a)s

v/ Z(t
If the initial condition is regular, we have W W
L2(Q L2(Q)3

cut-off level Ny quite high. [

, VE >0 1)

< 1, s0 < 1, ¥t > 0, for a given

Remark 2 If, as for Proposition 3, we consider that the initial condition lies in H, 7 (), the decrease of the
velocity spectrum is like |k|~". Similarly with Figure 5, we have represented, on Figure 6, the majoration
of |wa n/2| 1Z(0)]]L2(0)

Um~ [[Y(0)llr2(e)
regularity parameter m. W

33 for N = 1024 and for different choices of the cut-off level N; < NN and of the
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Figure 5. Representation of %M as a function of N, /N, for N = 1024.
m ||Y(0)||L2(Q)3

3. The shallow water problem: the two-dimensional case

In the two-dimensional case, the linearized shallow water equations are written:

ou ou ou oh
E‘FU%-FVa—y—f’U——g%, (42)
ov ov ov oh
— — — = —g— 43
8t+U8x+V8y+fu g@y’ (43)
Oh Oh oh ou Ov
S § SC U ol LRI R 44
8t+U6x+V8y+H(8x+8y> 0 (44)

Here u, v, h, H, f and U have the same meaning as in the one-dimensional case, and V' is a constant
advecting velocity in the y direction: U and V" are typically of order of 10 to 100 m/s.

Let us consider a solution U?" = (u,v, h) for (42)-(44) of the following form (see (11) for the one-
dimensional case):

Uy
Uxt)= > Ux)explik-x)= > | o |(t)exp(ik -x), (45)
keln keln iLk
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Figure 6. Representation of |w2’Nﬁ2| 1ZO)llz2 @2 ¢ 4 function of N1 /N, for N = 1024.
Um~ | 12(0)3

where Iy = [1— N/2,N/2)°, kT = (ky, k») is the wavenumber vector, and k - x = k2 + kyy is the
Euclidean scalar product. We suppose periodic boundary conditions in the x and y directions and that
(U)g, = Ug = 0 (U has zero mean value), at each time ¢ > 0; here Q = (0, 27)?. This will be the case if
the initial conditions have zero average.

Using (45), we can rewrite (42)-(44) in the following manner:
dU N
—E 4+ AUk =0, (46)
dt

with Ay the matrix defined by:

ihl-k —f gi ky
Ax = f ild-k  giko , (47)

iHky, 1iHky iUk

where U -k = Uky + Vko, UT = (U, V) being the constant advecting velocity vector. The eigenvalues of

the matrix Ay are:
Mx=1U "k,

Mo =il -k+iy/f2+gHIK, (48)
s =il -k—iy/f2+gH|K|.
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In the eigenvector basis, (46) gives:

dd% + DkUk =0, 49)

where Dy denotes the diagonal matrix Diag (\;, )Z 123" Results similar to (17), (18) and (19) can be
deduced for the two-dimensional case. The matrix Py defined by (20) is as follows:

—ky  ifky+Jarks 1 fks— Jark

Bo=| ® —ifki+agks —ifk— Jagks | (50)
=L H k|

with ay = f2 + gHk? and k = |k| = \/k} + k3. For k # 0, the inverse matrix P is expressed in the
following manner:

_ngQ ngl m
ag Qf ag
B kivag —ifks  koJar+ifk g
P = 20 |k|? 20 |k 2o 6D
_kiag+ifky ko +ifk g
20 |k 20 k| 2ok

In order to establish, for the two-dimensional case, results similar to (38), we look for a majoration and a
minoration of || P 1Uk| |2, k # 0. Firstly, consider a majoration. We have:

i gH ifg; |
1P Uk|3 = |=— (—koti + knt) + —ha| +
&%3 g

2

vk 5 (k1 + ka20k) + i/ +

20y, [k|? 20, |k|?

VO e + ko) + —

N o g 3
—k k —h
(—kotli + k10x) + 20, k

2

~ N g 3
—k k —1
(—katie + k10x) + 0 Tk

20y [k 20 |k|?
H ) . ifg. |?
= goé_k(_k2uk+k1vk)+aikghk +
2 .f 2
~ o . . g -
—— (k k 2| —— (—k k ——h
2ar |k|2( 1k + kaly )| + S0 |k | 5 (—katiy + 1Uk)+2ak K
So we find:
2
PO O3 < ‘g o +Q‘EH Y VAL F Ny
|| k k||2_ |k| an 2ak|k|2 k
f 2
Al 5o
h
2oy [ T 2y |1
Finally we obtain:
i~ 22 202 1 12 2fd*H 1 P
1R Oull < S fonl” + T [+ 2 o ] + g
Y @ 2ay K|
2 2
Z 9 |z g - 2
7 lénel” + he| + ——— |@x| X |hxk| ,
"2l K] 203 o2 [k|?
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where we have denoted by w = g% — % the vorticity, and by § = g% + gﬂ the divergence. These scalar

variables w and § are well appropriate for the approximation of the shallow water problem on a sphere, as
opposed to vector velocity components which are multi-valued at the pole (pole problem). For more details
see, for example, [40].

Using the inequality 2ab < a® + b2, Va > 0, Yb > 0, we find:

A 22 f g f2 f 2 1 ~ 12
P U3 < <9 + 155 4 + L ) fon +7‘5k‘+
2 2 2y 2 .12
(LF + L8 1 s 1) [in]
aj, ay 207, 202 k|
Finally, we have obtained:
2 2
—117 ~ 12 N 7
IR Oy < B el 4+ 33 o] + G [
- (52)
< my || Ugiv |13 -
with:
10°
107% | 4
107 E
107° —\\‘ 4
107° 4\\‘\ -
o
10777 -\ — B+ o 8
N s + (1K)
o L N S ES |
1ot L \\\\:\\:\\\f;‘ o ]
107'° L ;;\\\\‘*‘~—\;\ -
107 B
1072 ‘
o 10 20 30 40 50 60 70 80

Figure 7. Representation of 3;", v~ and ¢; as functions of .

427



F. Jauberteau and R. Temam

2 2 2 2
+ _ g°H® | fg°H f fyg
= + + 7
i ol "ol T2 222 kP
+ 1
Tk 20 |k|4 ’
+ _ [ g fg2H el fg
= + + + 19
Ck ar ai 207 203 k|?
m: = Max (5k7”/k7Ck) )
and:
w
Ugiv=1 ¢
h

The graphs of ,6’:, fy,j and C,‘: as functions of £ are shown on Figure 7.

Now we aim to derive a lower bound. We have:

o gH ifg; |’
||Pk_1Uk||§ = ‘— (—kzﬁk + klﬁk) + hy| +
ag Qf

2
+ 2

2

2 (YK (gt + Kaine) kot + ki) + %/&k
k

20ék| |

2ak |k|

H e 1
‘g—|—k2ak+k1@k|—@‘hk” ke + R +
ag ag

QO(k |k|
f 2
~ ~ g ~
2| kot + ki ——‘hk‘
2ozk |k|2 | 2 ! | 2ak
So:
~ 2 22 2 2 2H
POl > LI |+ kil + 22 Jin] "= 25T i s b+ i +
k k
f? P
—4|k1uk+k2uk| + e i+ i+ 5 hk‘ -
|k| 207 K| 2aj,

‘hk‘ X |~ kot + 10|

2 |k|
2 2 .2
> g |—k2uk+k1vk| + I hk fg <‘h ‘ + | —kotie + k1 0k| )
ai
k k P Fonl + 2 ||
+ b | =kt + ki) + ‘ -
W' L + kat|? 202 ] |—katie + K10k 202 Kk

N 2
_fa__ <‘hk‘ + |~ kot + k16k|2>

2a;, ||
27172 2 2
_ (PH? _ f’H f fg ) .2
= - + - wk| +
(4 ai 20 W7 2ay i) 1
2 92 2 2 9
1 ff9° f9°H g fg 5 ‘
g + T VR
2y, |k|zI <a,% o 207 202k )"
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Finally, we have established the following inequality:

1P U153 > my |[Ugiy ell? (53)
with: - ) ,

- = M _foH ., F _fo

k a3 a3 202 |K| 203 |k|°

- _ 1
,yk - 2ak |k|4 9

- . PE_fPH, ¢ _fg

k a a3 207 202 |k|2 ’

mi =min (B590G) -

The graphs of 3,7, v, and ¢, as functions of k are given on Figure 8.

1o L SN |
107" - T T .
16 -

10 + --- E

—18

—20

10

Figure 8. Representation of 3, , v, and ¢, as functions of k.
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As for the one-dimensional case, we have (see (28)):
o . PORRIVNOIT:
NZDN72 e NZ2O0)I720)s  xeln\In,

Y1720 1Y (O)]F2(0)s S 110k
keln,

54

with Q = (0, 271')2, In, =[1-DNy/2, N1/2]2. Using the fact that Uy = P,;lﬁk (see (20)), and since m:
and m;; decrease when k increases (see Figures 7 and 8), we deduce the following bounds:
LN ||Zdiv(t)||2L2(Q)3 < ||Z(t)||iz(ﬂ)3 < m%/z ||Zdiv(0)||iz(g)3
my ¥aiv®l7z@p = (Y020 ~ Mz 1YaivOllZz 0

(55)
We have denoted U g;y, = Y giy + Zdiy> With Ugiv = (w, 4, h). From (55) we conclude the following

Proposition 6

+, +
mymy, e ||Zgiy (0|20

1Zgiy (D] 2202 <
N, 22 1Y iy (O]l 220y

Y giv(Ollzz)p ~

(56)

If the initial condition U y;y(0) is regular, we have ¥ gy O Py < 1, so M < 1
iv L2(Q

1Y giv(®)[2(0)s
|Z()||12()s
1Y ()] 22(0)s

, since U has more spatial regularity than U g;,. O

)

Vit > 0, for a given cut-off level Ny quite high. Moreover, the ratio will be smaller than

|Zgiy ()| L2(0)s
1Y div(®)2()s

Remark 3 If we choose an initial condition such that 6(¢ = 0) ~ 0 (which implies that convergence in
one horizontal direction must be neutralized by a divergence in the other horizontal direction, see [5]) and
h(t = 0) ~ 0, we can see on Figures 7 and 8 that m'zt,l/Q = mz_\71/2' It follows from (56) that, V¢ > 0,

1 Zgiv (D] 222 mi 1Zgiy(0)ll22(0)2
1Y giy ()] 22 (2)s my s 1Y div(O)lz2 ()8
condition is associated with a two-dimensional turbulent flow (developed turbulence), the decrease of the
kinetic-energy spectrum is like £~3 (see [22]), and the kinetic energy is essentially contained in the large

1Z4iy Ol 2012 |€diV(0)||L2<Q)3 will be small. W
div(Ollz2)

decreases, when N; increases, as . In particular, if the initial

scales (see [27]); so the ratio

Now we compare the time derivatives of the quantities associated with the large and small scales. We
proceed as for the one-dimensional case. We have:

10kl < w3 4l|Ukll3 = wi 1|1 A Okl
with wa i = ||U]|2k + +/ f? + gHk? and k = |k|. Using (52) we obtain:

1013 < w3 emi Uiy 13 - (57)

In the same manner, using the fact that |wy x| < |w; k|, i = 2,3, (since, for the characteristic values retained

here for H, U and V, we have: |w; x| — |wix| > V/ f2+gHE? — U - k| — |wi x| > /2 +gHE? —
2k||U]]2 > 0, for all k), we obtain:

-~

1013 > wracl” x 10xll3 = wral* x 1P Ol 3 -
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So, using (53), we deduce that:

[1Ok]13 2 Jwr x* m; [[Ugiy |13 (58)
with wy x = —U - k. ForUT = (U, V) with U ~ V ~ 10 to 100 m/s, we have wy i ~ U (k1 + ka), s

|wr, k| ~ Ulky + ko) > U, if ky + ko # 0. So, if we choose an initial condition of zero average, we w1ll

have Ule k(t = 0) = 0 for k; + ko = 0. Using the first inequality in (55) for the time derivative, (57) and
(58), we arrive at the following result:

Proposition 7

. +,+
|Zgiy(®) 220 < Y2ny2 | TNy I1Z diy (0)|] 22 ()
Y giv@ll2@e — U M, oMy s 1Y div (0l 2208

(59)

. . .. . ||Zd~ (O)||L2(Q)3
Hence, if the initial condition U 4:.,(0) is regular, we have —9V-——="0J" <« 1, so that
f div(0) is reg NEROIETS

”Zdiv(tw < 1, Vt > 0, for a given quite high cut-off level Ny . Moreover, the ratio M
Y givDllz2@s Y (#2223
1Zgiy (D1l 203

will be smaller than
Y iy ()l 2(0)s

, since U has more spatial regularity than deiv- O

4. Geophysical flows

The geophysical flow equations, under the hydrostatic hypothesis and Boussinesq approximation, are ex-
pressed as follows (see [5], [15] for example):

1 2
% +U g—z + Vg—z + W?}—u — s gﬁ + 1/271; ,  (conservation of momentum in the x direction)
(60)
1 2
% +U g_v + V% + W? + fu=-— p_o Z_]; + I/% ,  (conservation of momentum in the y direction)
(61)
Op . .
0= 9. pg , (hydrostatic equation) (62)
z
a_u + @ + 8—w =0, (continuity equation) (63)
dr Oy Oz
2
% + Ug—p + V? + W? % ., (density equation) (64)

where UT = (U, V, W), with U, V and W ~ 10 to 100 m/s, is a constant advecting velocity vector. The
vector (u, v, w) denotes the velocity components in the (x, y, z) directions, p is the hydrostatic pressure and
p is the density variations around a mean value po (for example, pg = 1028kg/m? for sea water, see [5]).
The constants f and g are the Coriolis and gravity parameters; v and « represent diffusion. More precisely,
v is associated with molecular diffusion, or eddy diffusivity if an eddy viscosity model is used for turbulent
diffusion; « is function of thermal diffusivity. Generally x ~ 10~2m? /s (see [5]). If v is a molecular diffu-
sion, we will have x >> v. For example, for water v = 10~ 5m?/s. If v is an eddy viscosity model, we will
have v ~ . Equations (60), (61), and (64) are linearization, around the mean velocity U7 = (U, V, W), of
a general nonlinear geophysical flow.
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We suppose that UL = (u,v,w, p) is periodic in the spatial directions (z,y, z) (periodic boundary
conditions), with zero average: (Uy,)q = Uy,0 = 0, at each time ¢ > 0, where Q = (0, 27)3. This will be
the case if the initial condition has zero average.

Let us consider a solution U,, for (60)-(64) of the following form:

Uy (x,t) = > Up(t)exp(ik-x) , (65)
keln

where Iy = [1 — N/2,N/2]>, k = (ky, ks, ks) is the wavenumber, and k - X = ky2 + kay + ksz is the
Euclidean scalar product. Using (65), we can rewrite (60)-(64) in the following manner:

(W iy ki - fie =~ bk - vk
D it Ko+ fine = —Eikope— vhdin,
0=—iksp—gi = Pe=—pfin (ks #0) . (66)
kit + kabi + ke = 0,
L %% +ill-kpe = —kkipk.

For k3 # 0, the system of equations (66) can be rewritten as follows:

Dottt in — fone = L p— v
W 45y Kine + fine = ﬁ%’,j—gﬁk—ykg@b 67)
Wit kpe = ki,

wy being then determined, for k3 # 0, by using the continuity equation. Finally, (67) can be rewritten in
the following manner:

dU -

d—t“ + 44Uk =0, (68)

with UT = (u, v, p) and Ay is the matrix defined, for k3 # 0, by:

. k
iU -k + vk —f —p%é
= . k
Ax f R B (69)
0 0 iU -k + Rk

The eigenvalues of the matrix Ay are:

Mx =il -k + kk,
Aox=1iU -k+vki+if, (70)
Ak =il -k+vki—if.
In the eigenvector basis, equation (67) gives:
AUy

—DGZO 71
dt+kk ) (71)
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with Dy the diagonal matrix Dy = Diag (A\;x),_; 5 3- Time integration of (71) gives us:

Uw(t) = U (0) exp (= Dat) | (72)

ok (t)| and ﬁk(t)‘ decrease when t increases (dissipation due to v and k). If we

showing that ‘ﬁk(t)‘,
denote by P, k3 # 0, the non singular matrix defined, as previously, by:

Tk e e Uk
e | =P o | =] o |=P7"] % |, (73)
P ka ka Pk
we have:
—p:;kg (fho + (v —w)K3k1) § i
A= | —od (< fl+ = kk) 1 -1 | a4
—(f*+ k3(v —K)?) 0 0
and:
1
P71
k 2i (f2+ki(v—k)?)
0 0 2i
x| —(FPHRE=r?) 1 (P+EE -8 I (U +ik)(v - Rk —i 1))
—(P+Ev-r?) i (fP+Ew-kr)?) _poﬂ;kg (k2 — k) f+ (v — K)KD))
(75)
If we set:
W1k = -U -k 5
wak =—(U-k+f), (76)
W3’k——(U'k—f) 5
we obtain, using (65) and (72):
(i(x,t) = Z t1c(0) exp (—rkst) exp (i (k- x + wikt)) ,
keln
o(x,t) = k; f}k(O) exp (—l/k%t) exp (i(k-x+w2kt)) , a7)
plz,t) = o1 (0) exp (—vk3it) exp (i (k- x + ws kt)) -
\ keln

Now we look for a majoration and a minoration of ||Pk_1ﬁk||2. We set a, = (f2+ k3(v —k)?). We
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have, for k3 # 0:

PN 1.

1B 'Okl = |——pk| +

ak3

2

g +

i 1 i
1. L 9 k -k _ k?_' A
2Uk+ 2Uk+ Spoksan, ((ky +ike)((v = R)K3 =1 1)) e

i 1. ig 2

_§Uk B E’Uk B 2p0k304k3

(ke = k)G f+ (v = R)E)) frc

— 1 52
= a%m |Pk| +
2

i, 1. ig
——Ux + Uk + +

5 7 M((V—fi)k%/ﬁ—ik1f+i(y—n)k2k§+fk2)ﬁk

2
— =y — =0k (—kof +i(v—K)koki —ikif — (v — K)k1K3) px

1. 1. ig
2 2

B 2p0k304k3

—177 A 12
1B Ol = = [ +

k3
1. ig 9 N 1, g 2\ ~
e+ = (v — )k + fh Lot —I (b f— (v — K)kok
‘ 2uk+ 2poksay, ((V K)kiks + f 2) Pre 2vk+ 2poksa, ( 1f = v =Rk 3)Pk
i ig ) o1 g 2\ A
et = (= R + fe)) e — b — — I (ki f — (v — R ko
‘ 5l + Spokson, (v = K)k1 kS + fk2)) frc 3% = S ksan, (ki f — (v — K)kak3) p

2

1 1~ 2 1 .~ ig 2 ~
-1 S — Kk k2 + fh
a?% |px|” + 2‘ luk+p0k3ak3 ((V k)ki ks + f 2) Px| +
Do+ —L— (knf — (v — K)kak?) 2 :
poksap,
1 1 92 2 2
P ]U 2 — L ~ 12 s 2 g _ k k2 k ~ _
1P " Uxkll5 ol |Al” + 5 ™ + 2Rkal ((v = K)krk3 + fk2)” | pxc]

i g _ 2 s _0 g _ 2 -
eyt (v = )RS + fh2) re = Tyl (v = R)Ra b + f) pret

92

17~ 2 2\2 |~ |2
2‘|Uk| +M(klf_(y_“)k2k3) |pk| +

o g —(y— 2\ 5 5 g —(y— 2\ 7
Uk T (kv f — (v n)kgkg)pk+vk2p0k3ak3 (kv f — (v = K)k2k3) py -

Finally, we obtain:

R T ST B S
ROl = g find” + 5 1l + o il +
3
2

9 _ 2 2 ol 2\2Y) (4 12
setzar (0= Ok 4 o)+ (laf = (v = m)hakd)”) 1l +

Pokgakg Re (~tc (v = k)k1k3 + fha) py + 0 (kof — (v = £)k2k3) )

Re(z) denoting the real part of z € C. Now we consider two distinct useful cases: v ~ k and v < k.

434

b

2

+

2



Estimates based on scale separation for geophysical flows

4.1. Case of a Prandtl number of order one (v ~ k)
Firstly, we consider the case v ~ k (eddy viscosity). We obtain, for k3 # O:
RPN . 1. 1.
1RO =~ 3 lind® + 5 ol + — [l +
Qg

2 2

L (R R3) |l
k|” +

2p%k§oz,%3 ( 1 2)|P |

9

—__Re (fpy (—hotie + k1)) -
pOkSOZk3 Re (fpk( 2uk + lvk))

We denote by w, = g—g — g—Z the vorticity component in the z direction (vertical direction), and since

ag, ~ f2, we obtain:
—177. 112 1.~ 2, 1. 2
1P Ukl = 5l + 5 loul” +

1 ngQ(k%+k§)> 512 9 = -
= + + Re W, .
<f 2p3k3 f4 [P poks f2 (/P21

If we consider a flow such that Re ( fﬁk®27k) ~ 0,Vt > 0and Vk € Iy, (for example small density
variations around the mean value pg, i.e. essentially incompressible flow), we can deduce that:

1.002
1.0015 - -
1.001 4
1.0005 -
! o] ‘ 20‘00 40‘00 60‘00 80‘00 10000
k_1**2+k_2**2
- - (1 gk +k3) 1 :
Figure 9. Representation of the ratio (F + W) / (F) as a function of (ki1, k2) and k.
PoR3
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A 1 1 1 g2k} + k) 2
P, 1U 22— finc|? — o |? — A Sk S A O X 78
17 Ol = 5 il + g ond” + (Fr+ S5 A ) I 79)

Finally, we have established the following upper and lower bounds for || P 1[AJk| |2, k3 # 0:

my [[OWl3 < 1P O3 < mid (1Ol (79)
with: s R
(11, P+ k2)>
m = min R ey s s el N
) <7 T 2k 50)
+o_ 11 gZ(k%+k§)>
m = max s + ==
) <7 7T 203k3 7
On Figure 9 we can display the representation of the following expression:
1 (k] + k3 1
(7+ G2 (5) @D
f 2poks f f
as a function of (k1, ko) and k3 (# 0). We can see that my, ~ m~ = % and myf ~m* = % for every k.

As previously, we define a scale separation based on a given cut-off level N; < NV in the following
manner

U=Y+7Z, (82)
with R
Y(z.t)= Y U(t)exp(ik-x), (83)
keln,
and ~
Z(z,t)= Y Uk(t)exp(ik-x), (84)
keln\In,

where Iy, = [1— Ny/2, N1/2]3. Moreover, we deduce from (66) that, if @, x = 0 for k3 = 0 at the
initial time, then px = 0 (z-momentum equation), Sk = 0 (continuity equation) and @, x = 0 (z and
y-momentum equations), V¢ > 0, where J is the plane divergence and w, the vertical component of the

vorticity. So Uy = 0, V¢ > 0, for k3 = 0. Using Parseval’s equality we can write, if we denote by
Q = (0,2n)":

IY @)z =1 Y Ox(®)explik-x)|[Fape = Y 0@ - (85)
keln, keln,

According to (72) and (77) we have, using the hypothesis v ~ k:

1U(1)]]3 = exp (—2vk31) [[Uk(0)|3 = exp (~2vk31) || P Tk (0)][5 - (86)

With (79), we can obtain from (86) that:
m= exp (~20k30) [[0(0)[13 < [Tw(0)l3 < m* exp (~2030) [T (O)]3 (87)

From (85) and (87) we obtain, using the fact that ﬁk =0,Vt >0, forks =0:

. N 5
™ exp (—m/ (%) t)||Y<o>||iz(m3s||Y<t>||iz(m3sm+exp<—2ut>||Y<o>||iz(ms- 58)
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In the same manner, for Z(t) we obtain:

- NY? ~ N2
mexp (—2u (3) t) IZ(O)]32(aye < NZOIBx(@ys < m*exp (—2u (%) t) 1Z(0)] 3 gy -
(89)
Finally we can write that:
||?(t)||L2(Q)3 m* NZOlez @2 1 2Oz @2 ©90)
IYO)lz2ys ~— V™ YOz — F2 Y (0)]r2(0)
Now, we want to bound from below the previous ratio ”,Zv(t”w, using the ratio M Using
1Y ()] 2208 1Y (t)[|22(0)s
(79) and (85) we have:
m™ > OOl < Y720 = Y, 1P Tkl <m™ > ([0l 4
keln, keln, keln,
ie. _
m Y ()]1220p < NY OI720)2 < mTI[Y (@)][72(a) - ©n
In the same manner, we have:
m|ZO|[F2p < ZONF 20 < mTZOI72(0) - 92)
We deduce from (91) and (92) that:
1Z()]]22 (@) < m_ir ||?(t)||L2(Q)3 ©3)
Y (D) 22 ()3 MY ()] L2 ()3
Finally, with (90) and (93) we have established the following result:
Proposition 8
1ZW)llz2@p2 o m* [1Z(0)lz2(0)2 | 1 [1Z(0)]]12(0)0 o4)
Y ()l — m™ 1Y)z — fA Y (0)]L2(a)e
|

Z(0
If the initial condition is regular, we have Mﬂ

level N1 quite high. [

|1Z(t)|]|2()s

< 1, so
1Y (0)]]22()s

< 1, for a given cut-o
YOl forag i

More precisely, after a transient period, we will have that p(t) will be small since p(t) decreases in
energy norm (see (66), density equation). It follows from (78) and (79) that my = mi(" = %, Yk € Iy.
NZ()]| 20
Y (@)][L2(0)2

. In particular, if the initial condition is associated with a three-dimensional turbulence flow,

We deduce from (94) that, for ¢ > 0 sufficiently large,

|Z(0)||L2(@)2
1Y (0)][L2(0)2
the decrease of the kinetic energy spectrum is like &=5/3 (see [19], [20], [21]) and the kinetic energy is
I1Z(0)|[22(0)2
1Y (0)[|z2(0)2

decreases, when [V; increases, as
essentially contained in the large scales (see [38], [17]); so the ratio will be small.

Remark 4 Choosing an initial condition with p(¢ = 0) small allows to reduce the transient period after
which (94) is valid with m™ ~ m™ ~ % Moreover, if p(t = 0) = 0, then p(t) will be equal to zero,
Vit > 0 (see (67), density equation). H
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Now, we compare the time derivatives of the quantities associated with the large and small scales. From
(76), (77), and using the fact that:

|- k3 +iwj,k|2 = k’ks + Wiy ~ K2ks + U - Kk,

for j = 1,2, 3, we deduce the following result:
[[Owl13 = exp (~2ek3t) (w25 + o0 -kI*) |[Oxl 3 (95)
So, using w , = K2k* + ||U||3k* with k = |k| = (k] + k3 + k§)1/2, we have the following majoration:

-~

[Okl[3 < exp (—2kk2t) wa, k]| Uk f3 - (96)

For the minoration, from (95) we can write for T = (U, V, W), with U ~ V ~ W ~ 10 to 100 m//s:

~

10w]I3 > exp (—26k3t) (x2K3) |[Uslf3 - ©7)

So, using Parseval’s equality and (97) we deduce:
2 N \? 217 (4112
VOB z@p > exp =26 (5] ) @IV OB a0 ©98)
In the same manner, for Z(t) we have, using (96):
~ N1 2 [
Z ()] 32 0ye < exp (—% (7) t) o, Z8) ey - 99)

With (98) and (99) we obtain:

|Z(8)]] 12 (02 o [ern 1Z(t)]] 120y

= S o) = (100)
1Y ()]|L2 ()3 Y ()| L2 (a)e
Finally, using (93) for time derivative, (90) and (100), the following result comes:
Proposition 9
. 1/2
1ZONlz2@)z _ m* [wanys 1ZO0)l[z2@s | “avyz 1 11ZO0)]]z2(0)e (aon
Y ()lz2z — m V& YOl — & fHIY )20
7 Z
showing that, if the initial condition is regular, we have % < 1, 50 _||||Y((?)||||LL22((Z);_ < 1, fora
given cut-off level Ny quite high. [
IZ ()] @5/ns 1200
More precisely, after a transient period, we will have —— L2(Q)? < 2’,2\’ /2 L2(Q)3
1Y (D) 2(0)2 1Y (0)]|22(0)s
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4.2. Case of a small Prandtl number (v < k)

Now we consider the case v < k (molecular diffusion). We obtain, for k3 # 0:

| P Ol I} ~ %|ak|2+ i) +—| Pl +
Qg
2
L ((—kk3ky + fha)? + (fhy + kkak3)?) |pxc]” +
2p0k3ak3
mRe (—tine(—kk3k1 + fho)py + O (fh1 + Kk2k3) py)
1P O3 = i + = |vk| +—| pel® +
st (KRG (R + k3) + 283 + 13)) |onl” +
2p0k3 k3
mRe (h}k3 (kluk + kQ’Uk)pk + f( kotiy + klﬁk)zk)
1 2k2k2(k2 + k2 R
~ |uk| + = |Uk| + +% |pk|2+
akg Po%y,

W%Re (Rk%gkﬁk + f@z,kﬁk) s

with § = g“ + g” the plane divergence, and w, the vorticity component in the z direction.

We consider flow such that: .
Re (nk%ékﬁk + f®27kzk) ~0.

This will be the case if p(t) is small, like fully incompressible flow. As it has been said previously, p(t)
decreases in L2-norm when ¢ increases. Moreover, since v < & by hypothesis, we will have that, in energy
norm, p(t) decreases faster than velocity. So, after a transient period, the hypothesis will be valid. To reduce
or eliminate the transient period, we can consider an initial condition for the density, such that p(t = 0) is
small or equal to zero.

We can deduce that:

1 PREE +E) . e
T 9202 o™
ks Po%,

BBl = 3 b + 5 ol + (a
With the hypothesis v < k, we have a, ~ f2 + k2k3 ~ k2k3 (k3 # 0). So we can write:
Blant? + 3100+  foaprre + Lokt 2 ) 1
= Bl g fof? o (AR LRI

12

1P Ukl 3
(102)

With pg = 1028 kg/m? (sea water), as it has been said previously, we obtain the following majoration and
minoration for || P, ' Ux||2, k3 # 0:

a0kl < 1B MOl 3 < il 10wl 3 (103)
with: o | o +R292(k2+k2)k

e T | (104

Lo 1 203+ k2g% (K + k)3

mk = max <7 2p2k'§li4 .
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Figure 10. Representation of the ratio as a function of (k1, k2) and ks.

On Figure 10, we see the representation of the following ratio:
(205 + K*g* (k7 + k3)k3)
22 ’

as a function of (ky, ko) and k3(# 0). Moreover, as it has been said previously, we choose an initial condi-
tion such that @, x = 0, Vt > 0, for ks = 0.

(105)

We have, Vk € Iy, k3 # 0:
2R R _ 28+ KRN /D) (/)

po(N/2)%kt = 2pgk3 K - 2p5"
2 220772 2
So, denotingm™ = - (]\}/2)8 andmt = 2pp t K 922](2:;4/2)(]\[/2) , proceeding in the same manner as

in Section 4.1, we establish result similar with Proposition 8:

Proposition 10

1Z(#)]|z2 () <N1>2 m* [|Z(0)||12()
————<exp || —=— ]| t| ———————, (106)
1Y ()] 2202 2 m= Y (0)]]2(as

|Z()||12()s

(the exponential being due to p(t)) showing that if the initial condition is quite regular, the ratio YOl @e
L2 (9)3

will be small, for a given cut-off level Ny quite high. [
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More precisely, after a transient period, we will have that p(¢) will be small, since £ > v. So, using
(102) and (103), it comes that m,, = mﬂ' = %, Vk € Iy. It follows from (106) that, for ¢ > 0 sufficiently

. |Z(#)||r2(0)3 |Z(0)[] 22 (e
large (in order to neglect p(t)), =5 TR T——— .
g glect PN IZ @) 112 YOz

As for the comparison of the time derivatives, we establish a result similar with Proposition 9:

decreases, when [V; increases, as

Proposition 11

Z(t)||L2 > \m*t Z(0)|| 2
I / ) L2(0)3 <exp [ # <&> ) w2,z;f/2 1Z(0)]|2> (02 7 (107)
1Y ()] 22()s 2 m &5 1Y ()2

showing that, if the initial condition is quite regular, and for a given cut-off level Ny quite high, we will

have M & 1 quite small. O

1Y (t)]|£2(0)s

More precisely, after a transient period, p(t) will be small and we will have

. 1/2
||Z(t)||L2(Q)3 < o‘)2,N/2 ||Z(0)||L2(Q)3
Y (D)@ — & 1Y O)r2q)s

Remark 5 We can improve the estimates in Propositions 10 and 11 using the fact that, for Y, we have
k € Iy, . Hence, for k3 # O:

1 2+ BB _ 2+ K2 (N /2)(V1/2)?

]
k(Np/2)8 = 2p2 kS K - 2p3 K

Remark 6 Since k; and ks have a symmetric part, but not k3 in the previous computations, we can envis-
age a scale separation only in the plane (k1, k2) or only in the k3 direction. W

5. Conclusion and future work

In this paper, we have presented some theoretical estimates based on scale separation. We have established
that, for some geophysical flows and for a suitable choice of the cut-off level (chosen to separate the small
and large scales), depending on the initial condition, the quantities associated with the small scales, and their
time derivatives, are much smaller, in energy norm, than the quantities associated with the large scales. The
separation and the comparison between the small and large scales (and their time derivative) have been
established in the canonical basis.

For normal mode initialization and approximate initial theory, a separation is used based on the eigen-
vectors basis (normal modes), see for example [1], [25], [2], [37], [23], [6], [7], [8]).

Following this theoretical work, the aim is to develop new schemes with better stability properties for
geophysical problems. Allowing larger time steps, this allows a reduction of the CPU time. In meteorology,
several works, using other ideas, have been done in order to obtain more efficient time integration schemes
(see, for example, [16], [14], [26], [33], [6], [29], [34], [30], [31], [32]).

As it has been established previously, since, for a certain norm, the quantity Z associated with the small

scales is smaller than the quantity Y associated with the large scales, we can plan on computing less ac-
curately Z than Y, without too much damage on the solution U = Y + Z. For example, we can use an
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explicit scheme for Y and an implicit scheme for Z. Moreover, we have Z less than Y for a certain norm.
So we can consider computing Z with a time step larger than that of Y. This numerical work is in progress
and will be presented in [10].

The dynamical behavior of the large and small scales being different (since ||Z|| L2(Q)s < ||Y|| L2(Q)3)s
another possibility is to update dynamical equations in function of the size of the scales. For example,
shallow water problems correspond to gH > f2L?, with L a characteristic length. The quasi-geostrophic
equations are established from shallow water problem when gH ~ f2L? (see [5], [15]). So the dynamical
equations are modified according to the ratio % i.e. the ratio vertical/horizontal characteristic lengths.

Now, if we consider the numerical stability constraint (1) for the shallow water problem, rewritten for a
computational domain of characteristic length L, we obtain:

Ax? At
U+ H 2 | —sin(k'Az) <1 108
\/g +f (sin(k'Ax))? | Ax sin(k'Az) <1, (108)
with Az the mesh size, Az = #, N being the total number of modes retained, and k' = %Tﬂ (periodicity

=

equalto L), k € In = [1 -5, —]2\1] . Under the square root, there are two terms: gH associated with the

vertical characteristic length H, and f?L? associated with the discrete horizontal characteristic length Ly.
The characteristic length L; depends on the wavenumber k:
A
Ly= —5—. (109)
sin(="Ax)

The stability constraint (108) being function of gH and f?L3, we can, as previously, compare gH with
f?L?%, according to the values of k. For example, we can look at the values of k& € Iy for which we have
gH ~ f%L2 (quasi-geostrophic equations for the scales of size Ly) i.e.:

M ~ gH <= (sin <2k_7r>>2 ~ fL

(sin(ZE L))2

P L
@sin(%>:i]\[fﬁ<:> forl € Zandk € Iy ,
2km :ﬂ:tarcsin( fL >+27rl,

k ~ ﬂ:QM arcsin f7> + NI,

<~ forle Zandk € I .

~ N LN s fL
k ~ 5 ﬂ:2 arcsm(N\/g—H)—%Nl,

€]0,1],i.e. f2L? < N%gH, implying that N is updated in terms of L and H to

f2 L2
N2gH
satisfy this inequality.

This requires that

We can consider modifying the dynamical equations according to the values of the ratio f%llj:% , thus
according to the values of the wavenumber k. For theoretical work on the possibility of updating dynamical
equations in function of the size of the scales, see [11].
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