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Some mathematical problems arising in heterogeneous
insular ecological models

S. Gaucel and M. Langlais

Abstract. In this note we discuss two deterministic mathematical models found in ecological problems
caused by the introduction of alien species into a heterogeneous insular environment. In the first model
we develop an epidemic model with indirect transmission of the virus via the environment. In the second
model we introduce a specific predator-prey model exhibiting finite time extension of species. Both
models involve systems of partial differential equations having interesting features.

Algunos problemas matematicos planteados en modelos ecologicos
insulares heterogeéneos

Resumen. En esta nota se analizan dos modelos mateméticos deterministas planteados en problemas
ecoldgicos causados por la introduccién de nuevas especies en ambientes insulares heterogéneos. En
el primero desarrollamos un modelo epidemoldgico con transmisién indirecta del virus por medio del
ambiente. En el segundo se introduce un modelo especifico de depredador-presa que exhibe la extincién
en tiempo finito de las especies. Ambos modelos involucran sistemas de ecuaciones en derivadas parciales
con interesantes propiedades.

1. Introduction

We are interested in some deterministic mathematical population dynamics models motivated by ecolog-
ical problems caused by the introduction of alien species into heterogeneous insular environments. It is
commonly observed that naive local populations are quite unable to develop efficient anti-predation or
anti-competition strategies, yielding extinction of many native species; see Atkinson [1], Courchamp and
Sugihara [9], Pontier e al. [28] and references therein. Mathematical models are thus required to, first,
better understand interactions between local and newly introduced populations, and second, to help develop
and design strategies to protect native populations.

In this note we describe two specific examples involving domestic cats, Felis catus, purposely or acci-
dentally introduced in various isolated islands and quickly becoming a dominant predator for native species,
i.e. birds, mammals and reptiles; see Atkinson [1], Pontier et al. [28] and references therein.

The first example is based on the work in Berthier et al. [7]. It is an a posteriori mathematical model de-
vised to understand the obvious success of the eradication programm developed in 1977 on Marion Island
to eliminate a cat population that was becoming a threat for many native bird species. A highly pathogenous
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virus (feline panleucopenia virus) was introduced in the cat population. A first feature of this virus lies in
its two propagation modes: horizontal (from infective to susceptible individuals) and indirect (from con-
taminated environment to susceptible individuals). Within an average 18 days an infected individual either
dies or recovers, while the virus can survive up to one year on infected premises. Compared to standard
compartmental epidemic mathematical models of the S.E.LR type, [8] [14] [27], it becomes necessary to
introduce a new state variable taking care of the contamination via the environment. A second feature is the
impact of the virus, much stronger on young individuals than on adult ones imposing an age structure. This
will lead to a coupled age structured system of partial and ordinary differential equations, having spatially
discontinuous coefficients in order to take into account heterogenous spatial and social structures.

The second example is based on the work in Courchamp and Sugihara [9]. This is a theoretical attempt
to model specific interactions between native species and introduced alien predator or competitor species,
possibly yielding finite time extinction of some species. In [10] [11] and [12] this work is extended to a
three species system; as a typical result it is shown that, under some circumstances, eradicating the top
predator can be more harmful to native preys than controlling it to such a level that it can efficiently con-
trol the intermediate introduce species. The mathematical tool is a singular system of ordinary differential
equations, with a simple functional response to predation as compared to standard ones (see [27] and ref-
erences in [3]); it offers a variety of dynamical behaviors. This model is developed to take into account
spatial heterogeneities. This will lead to a three component system of singular reaction-diffusion equations.
Numerical experiments will examplify typical dynamics.

2. An epidemic model with indirect transmission through con-
taminated environment

This section is a work still in progress, in the continuation of an earlier model developed in Berthier et al.
[71, to which we refer for more details and bibliographical references.

In 1949, five domestic cats Felis catus were introduced on Marion Island, a 290 km? uninhabited island in
southern Indian Ocean. The cat population was estimated at 2100 individuals in 1975, 40% of the cats being
kittens, killing about half a million burrowing petrels per year. In March 1977 the cat population reached
about 3400 individuals when feline panleucopenia virus (FPLV) was introduced: 96 cats were trapped,
inoculated with the virus, and then released. The population size declined to an estimated 600 cats in 1982,
with an annual decay of 8%; antibodies found in survival individuals suggested that the virus was unable
to eradicate the cat population. An important culling effort, using more conventional methods, lead to the
eradication of cats in 1992. At least one local species was driven to local extinction.

2.1. The motivating unstructured epidemic model

In most standard unstructured compartmental host-microparasites epidemic models the host population is
split into subclasses according to the health status of individuals: Susceptibles, Exposed, Infectives and
Recovered (or Removed); see [8]. In [7] this approach is followed first, and it is concluded there that such
a model cannot explain the impact of the virus from 1977 to 1982: qualitative properties of solutions to the
resulting system of ordinary differential equations did not fit the observed data, e.g. the epidemic curve.
FPLV is resistant to harsh physical conditions: it has been observed that the virus excreted by infective
cats could survive about a year on infected premises; this is to be compared to the lengths of the exposed
stage (four days) and the infective stage (two weeks). Then, introducing indirect transmission from the
contaminated environment to susceptible cats gave reasonably good qualitative results.

Prior to derive an epidemic model, we first look at the population dynamics model without parasite. Let
N be the host population density; let b > 0 be the natural birth rate, m with 0 < m < b, the natural death
rate, and m + kN, k > 0, the density dependent death rate. In a parasite free setting the host population
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dynamics is driven by the ordinary differential equation
dN/dt = bN — (m + kN)N, N(0) > 0. €))

When £ = 0 the host population experiences an exponential growth, while when £ > 0 it follows a logistic
dynamics with a carrying capacity K = (b — m)/k, this is N(¢) = K as t — +oc.

Next, ignoring the exposed stage, let S, I and R be the respective densities of susceptible, infective and
recovered individuals; thus N = S + I + R is the total population density. Let C', 0 < C < 1, be the pro-
portion of the environment contaminated by viruses excreted by infectives. To derive a S.I.R.C. epidemic
unstructured model one needs to introduce a set of parameters: e is the percentage of infected hosts subse-
quently recovering from the disease (0 < e < 1), & > 0 is the reciprocal of the length of the infective stage,
p > 0 is the rate of indirect transmission of the virus so that pC' is the force of infection of the environment
on the host population, ¢ is the rate of transmission of the virus from infectives towards the environment so
that ¢ is the force of infection of infective cats on the environment, and 4 is the decontamination rate of the
environment. A last but important point is horizontal transmission from infective to susceptible individuals
given by an incidence term ¢ (S, I, R). No vertical transmission (from infected mother to kittens) being
observed, this leads to the following model

dS/dt = b(S + I+ R) — (m + kN)S — o(S, I, R) — pCS, S(0) > 0,

dI/dt = —(m + kN)I —al +o(S,I,R) + pCS, 1(0) > 0, @
dR/dt = —(m + kEN)R + eal, R(0) >0,
dC/dt = ¢I(1 — C) — 46C, c(0) > 0.

Then, the impact of the parasite on the host dynamics is seen from the equation for the global host density
derived upon adding the first three equations in (2), this is

dN/dt = bN — (m + kEN)N — (1 — e)al, N(0) > 0. 3)

A rather unclearly settled and controversial issue is the incidence term, see [8], [14], [18]; two of the most
popular parametric forms are

SI . -
o(S,1,R) = apmﬁ7 opm > 0, proport10nate.m1x1ng, 4)
OmaSI, Oma > 0, mass action;

Going back to the motivating cat-FPLV problem, in [7] it is chosen an exponential growth for the cat
population, i.e. £ = 0. Then, both incidence forms from (4) were tested against field data, using numerical
simulations and stability analysis of steady states. As a conclusion it is found that a mass action incidence
gave better results than a proportional mixing one.

2.2. Heterogeneous structured problems

At least two important features are not incorporated in (2): first, spatial and social heterogeneities, and
second, an age structure.

Coupled with or related to food abundance variability, spatial heterogeneities locally modify host densities
and social structures in host populations; this is specifically true for domestic cat populations: see Fromont
et al. [18] and references therein. As a consequence contact rates are also affected, and also transmission
rates of parasites. In such circumstances, parasites can take advantage of heterogeneities for locally sur-
viving in some specific small parts of a large spatial domain and control a host population, while a host
population can escape a parasite through a reverse process.

A last feature is the fate of infective individuals: 20% of infective adults and 80% of infective kittens die,
others develop immunity for about six years and have a normal life expectancy. Introducing an age structure
is thus required due to the strong effect of FPLV on kittens; this is the main reason of choosing FPLV to
eradicate the cat population that was experiencing an exponential growth with a large percentage of kittens.
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2.2.1. A spatially structured model

Let Q be a bounded domain in R” , n > 1, with sufficiently smooth boundary 9€2; 7 is the unit outward

normal to 2 on 9. The spatially and time dependent state variables are S(z,t) > 0, I(x,t) > 0 and

R(z,t) > 0sothat N(z,t) = N = S + I + R s the total population density, while 0 < C'(z,¢) < 11is the

local proportion of contaminated environment.

Spatial heterogeneities are modeled upon defining open sub-domains Q; of Q, ¢ = 1--- L, with Q, C Q,
L

QN Q= 0 for k # ¢, and letting Qp = Q — U Q.

=1
In each class, population fluxes take the form —d,, () VP + Pc,(z), P = S, I, R; herein, for each P, ¢, is
a C'(R™) vector field, and d,, is a piecewise discontinuous and bounded diffusion coefficient satisfying
0 < dpmin < dp(2) < dpmag < +00,Vz € Q, P=S,1,R; )
dp(x) = dpe(z) for © € Qp, dpe(-) €C(S), (=0---L. )

Furthermore more assumes standard continuity properties of densities and fluxes across interfaces, namely

(H1) continuous densities S, I, R across 9§y, { =1--- L,
(H2) balanced fluxes across 9y, { =1---L
[(dp(2)VP(x,1) = P(x,t)ep(x)) - 1me(x)] 50, =0, P =S, I, R, ©)

wherein 7, is a normal unit vector to the boundary 9, of 0, and [-]sq, stands for the saltus across 9€),.
Heterogeneities in the incidence term are modeled upon introducing the characteristic function y of {2, and
setting for some nonnegative and bounded functions oy, and oy, 0n

o(xz,S,I,R) = x(z)oma(x)ST + (1 — X(:v))apm(x)%. @)

Following [18], ¢ would represent a favorable area with middle to large host densities, while for each /,
1< /¢ < L, Qy would represent less favorable locations with small population densities.
Remaining coefficients are nonnegative and bounded functions on 2.

This yields the following four component system of partial and ordinary differential equations

(0S/0t — div(ds(z)VS — S(z,t)es(x)) =
b(z)N — (m(x) + k(x)N)S —o(2,S,I,R) — p(z)CS,
dI/0t — div(d;(x)VI — I(z,t)ci(z)) =

—(m(z) + k(x2)N)I — al +o(x,S,I,R) + p(z)CS, ®
OR/0t — div(d,(z)VR — R(x,t)c,(x)) = —(m(z) + k(z)N)R + e(z)al,
\ 0C/0t = ¢(x)(1 — C)I — §(x)C,
supplemented by no-flux boundary conditions on the boundary of {2
(dp(z)VP(z,t) — P(z,t)ep(x)) -n(x) =0, 2 € 0Q, t >0, for P=S5,1,R, )
corresponding to isolated populations and a set of nonnegative and bounded initial conditions
P(z,0) = Py(z) >0, for P=S,I,R,
x e (10)

0<C(2,0) = Co(x) <1,

Due to the nonnegativity of ¢ and 0, as long as I(x,t) > 0 it is easily checked that 0 < C < 11is
forward invariant by the differential equation for C' in (8).
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Then, assuming diffusivities to be continuous functions on €2, instead of assuming the second part of (5),
uniform estimates can be derived in L>°(Q2 x (0,T")), VT > 0, for the first three components of nonnegative
solutions to (8), (9) and (10) upon using duality arguments of Pierre [24] or intermediate sum conditions
techniques of Morgan [25]-[26]. As a consequence global existence of suitable nonnegative solutions to
(8), (9) and (10) can be proved using standard fixed point methods.

But these L (€2 x (0, T")) norms of solutions depend on the moduli of continuity of diffusivities; a new idea
is thus required when the weaker assumption from (5) holds. A similar problem is handled in Fitzgibbon et
al. [16], imposing some positivity conditions on demographic parameters

3kmm > 07 kmzn S k(I) S kmam < +o0. (11)

Using this condition one can follow the methodology in [16], this is local a priori estimates, regularity
results from [22] and cut-off functions, to get a priori estimates and show in [17]

Theorem 1 Assume that coefficients in (8) and data in (10) are nonnegative and bounded functions. As-
sume diffusivities satisfy (5), and assume condition (11) hold.
Then, problem (8), (9) and (10) has a unique suitable nonnegative solution in L>=(Q x (0,00)). O

Existence results in L'(Q x (0, 7)), VT > 0, can be derived along the lines of Bendahmane et al. [5].

Similar population dynamics mathematical problems are found in various host-parasite systems with
indirect transmission in heterogeneous environment, e.g. [29].
This is also the case for indirect contamination by chemical pollutions or nuclear wastes.

2.2.2. An age-dependent and spatially structured model

Introducing an age structure can be done, using standard techniques [4], [21] and [30].

As in [15] two age variables are required: chronological age a, with 0 < a < A4, for susceptibles, infectives
and recovered, and age of the disease b, with 0 < b < 7, for infectives; A; is the maximal life expectancy
of individuals and 7 is the length of the infective stage, i.e. &« = 1/7 from subsection 2.1.

State variables are densities s(z,t,a) for susceptibles with 0 < a < Ay, i(z,t,a,b) with 0 < b <
max(a, 7) for infectives and r(z, ¢, a) with 7 < a < A4 for recovered.

Both constraints 0 < b < max(a, 7) for infectives and 7 < a < A; for recovered are imposed by the lack
of vertical transmission of immunisation. Set 7(a) = max(a, 7).

Spatial densities are retrieved upon integrating over age(s)

At

AT AT T(a)
S(z,t) :/ s(z,t,a)da, I(z,t) :/ / i(z,t,a,b)dbda, R(z,t) :/ r(z,t,a)da, (12)
0 o Jo T

and one stillhas N = S + I + R.
The system of ordinary and partial differential equations governing the dynamics of the age structured
host-parasite system needs to be modified. One has for z € 2,¢ > 0and 0 < a < A4
0s/0t + 0s/da — div(ds(z,a)Vs — s(z,t,a)es(x, a)) = 13)
—,u(:v,a,N)s—U(x,a,s,i,r)—p(m,a)C’s, )

where p is the age dependent death rate of susceptible and recovered individuals; then, forz € Q,¢ > 0
and0 <a < A;yand0 < b < 7(a)

0i/0t + 0i/0a + 0i/9b — div(d;(z,a,b)Vi —i(z,t,a)c;(z, a)) = —pi(x, a,b, N)i, (14)

where y; is the age specific death rate of infectives (0 < u(x,a,N) < pi(x,a,b, N)); last, for x € Q,
t>0and7 <a< AT

or/ot + 0r/da — div(d,(z,a)Vr — r(z,t,a)c.(x,a)) = —u(x,a, N)r +i(x,t,a, 7). (15)
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The equation for C' remains the same
0C /ot = ¢(z)(1 — C)I — é(x)C. (16)
No-flux boundary conditions corresponding to an isolated population are imposed on 92
(ds(z,a)Vs(z,t,a) — s(z, t,a)es(z,a)) -n(z) =0, 2 €90, t >0, 0 <a< Ay, (17)

with similar boundary conditions for 7 and r.
A set of nonnegative and bounded initial conditions is given at t = 0

s(z,0,a) = so(x,a) >0, 2 € Q0 < a < Ay,
i(x,0,a,b) =ip(z,a,b) >0, 2€Q, 0<a< A4, 0<b< 71(a), a18)
r(z,0,a) =ro(x,a) >0, 2 € Q, 7 < a < Ay,
0<C(x,0) =Co(x) <1,
with ig(z, a,b) = 0 for 0 < a < b, corresponding to a lack of vertical transmission of the disease.

A set of initial conditions at @ = 0 for susceptibles, in 0 < a < b < 7 for infectives, and on 0 < a < 7 for
recovered individuals describes the birth-process and the lack of vertical transmission of the disease

0

Ay 7(a)
s(x,t,0) = B(z,a) (s(x,ha) +r(x,t,a) +/ i(x7t,a7b)db> da,
0

(19)
i(z,t,a,0) =0, 0<a<b<,

r(z,t,a)=0,0<a<T;
herein, 3(x,a) > 0 is the natural birth rate of individuals, assuming the virus has no impact on the fertility
of infected individuals.

Last, the recruitment in the infective class, this is infectives having an infection age 0, is given by the
susceptible individuals contaminated by either horizontal or indirect transmission

i(x,t,a,0) = o(x,a;s,i,7) + p(x,a)Cs, v € Q, t >0, 0 <a < A4 (20)

In order to complete this age-structured model one needs to give some explicit form for the incidence term.
Along the lines of [8] and [15], two typical forms for o(x, a; s,i,r) are

A pr(ed i(x,t,a’,b
/ / opm(,t,0,',0) et
0 0 s(x,t,a’) + fg i(x,t,a’,b)db+ r(z,t,a’)
d

dbda’ s(z,t,a), 21

an
Ay pr(a)
/ / Oma(x,t,a,a ,b)i(x,t,a,b)dbda’ s(x,t,a). (22)
o Jo

A heuristic analysis along the characteristic lines of 9/t + 9/0a and /0t + 9/0a + 9/0b shows
solutions to (13), (14), (15) and (13), satisfying the initial and boundary conditions in (17), (18), (19) and
(20) should stay nonnegative with i(z,¢,a,b) = 0 for 0 < a < b.

Existence results can be derived upon combining methods of [15], [23] and [31].

Assuming the virus has an impact on the fertility of infected individuals and still no vertical transmis-

sion, the equation for s(z, ¢,0) in (19) should be modified into

Ay 7(a)
s(x,t,0) = /0 <,6’s(x,a)s(x7t,a) +/0 ,Bi(x,a7b)i(x,t7a,b)db+ﬁw(x,a)r(:mt,a)) da.
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3. A predator-prey model with naive preys, introduce preys
and alien predators

This section is in the follow up of Courchamp and Sugihara [9] and Courchamp er al. [10]-[11]-[12] to
which we refer for more details and bibliographical references.

As it is outlined in the Introduction, alien predators introduced in isolated insular environments can cause
severe ecological problems, e.g. extinction of native species in the long run or in finite time. The main
goal of the model devised in [9] was to analyse the impact of two viruses on the dynamics of a predator
in such an insular environment, and to understand how it would help protect native species by controlling
the predator. It turns out that this simple predator-prey model is a singular planar system of ordinary differ-
ential equation. A mathematical analysis shows it exhibits very interesting dynamics, including finite time
extinction of both species.

Built on the same ideas, a three component singular system is considered in [10]-[11]-[12]. Some math-
ematical analysis is performed to understand the respective ecological pressure put on native species by a
top predator (a cat) and either an intermediate predator (a rat and mesopredation effect) or an intermediate
competitor (a rabbit and hyperpredation effect).

3.1. The motivating model from Courchamp and Sugihara [9]

This is a two component system of ordinary differential equations. States variables are U the prey density
and W the predator density, i.e. birds and cats in the original paper.

Prior to introduction of alien predators it is assumed that the prey population has reached a stable equilib-
rium, the carrying capacity K of the environment. This means U is a solution to a differential equation
similar to (1) with & > 0 and r,, = b, — m,, > 0, so that K = r,, /k.

Next, define p as the annual individual intake of prey per individual predator, so that U/u becomes the car-
rying capacity for the predator population. Let r,, = b,, —m,, > 0 be the natural growth rate of predators.
The simple model of [9] does not include realistic predator functional response, e.g. a Holling type II
functional response to predation (see Murray [27] and references in [3]), in order not to complicate it, and
reads

dU/dt =1, (1= %) U —uW, U(0) >0, 23
dw/dt =r, (1 — p¥) W, W(0) > 0. )
From a mathematical point of view (23) is a singular system of ordinary differential equations at U = 0; it
is not totally obvious that nonnegativity of solutions is preserved, as well as global existence granted.
In order to settle these two points it is convenient to introduce a new state variable, Q = W/U the
proportion of predators per prey. In the state variables (Q),U) one gets a nonsingular system of ordinary

differential equations preserving nonnegativity
{ dUjdt =r, [1 -2 — Q] U, U(0) >0,
dQ/dt = I:fr’w — Ty + TU% - :u(TUJ - I)Q] Q7 Q(O) > 07

with complicated dynamics depending on 7., and r,,; see [19]. When r,, > 1 it is rather straightforward to
check one has global existence with a global attractor in the (U, W) state variables, e.g. (0,0) forr, <1
and (U*, W*) with positive components for 7, > 1. When 0 < r,, < 1 various local behavior can be
exhibited in the (U, W) state variables: finite time extinction for 0 < 7, < 1, < 1, coexisting local
attractors (0,0) and (U*,V*) with positive components for r,, + r,, > 2, a local attractors (0,0) and a
Hopf bifurcation along r,, + r,, = 2, and finite or infinite time extinction elsewhere.

24

3.2. A spatially structured model with introduced preys

Many islands located in southern Indian Ocean exhibit heterogeneous landscape offering various types of
shelters to native and introduced species. This is the case for Kerguelen Islands where it is observed that
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native birds are primarily found along the ocean side, introduced rabbits or rats are found in the center of
islands, with cats settled everywhere. Intermediate distribution with coexistence of three populations may
or may not be found depending on local environmental conditions.

One natural way of trying to model these patterns is to consider a three components singular reaction-
diffusion system with spatially heterogeneous coefficients based on [9] and models in [10], [11] and [12].
A preliminary analysis is performed in [19] for the bird-rabbit-cat system of [11] with spatially variable
coefficients along the lines of subsection 2.2. It formally reads

AU 0t — (div(dy (2)VU — Uey(2)) = 74 (1 - KL) U— AUV — =40, W,
AVt — (div(dy(2)VV — Vey(2)) = 14 (1 - AL) V- oW, 25)
AW /0t — div(dy (2) VW — Wey(@)) = 1o (1 . pupvm) W,
supplemented by no-flux boundary conditions on the boundary of {2
(dp(x)VP(x,t) — Pz, t)cp(x)) -n(x) =0, x € 09, t >0, for P=U,V,W, (26)
corresponding to isolated populations and a set of nonnegative and bounded initial conditions
P(z,0) = Py(z) >0, for P=UV,W, x € Q. 27

Herein, X is a nonnegative parameter modeling a decrease of the bird population induced by rabbits, e.g.
hyperpredation in [12]. Last, cats are known to prey on different species according to their availability. For
w = 1, fractions wl‘jgv and ﬁ represent the respective proportions of birds and rabbits in the prey
population; native populations being less adapted to predation, w > 1 represents a preference effect of cats
for birds.

An exhaustive mathematical analysis of this singular three component reaction-diffusion system is not
straightforward; for the underlying system of ordinary differential differential equations some results are
found in [11] and [19]. Such a mathematical analysis, concerning global existence vs finite time extinction,
is the aim of some undergoing work for the two component system in the (U, W) state variables deduced
from (25) (26) and (27) upon setting V' = 0, or built directly from (23). Much help is to be expected
from Diaz and Herndndez [13] or Hernandez et al. [20], and references therein, where related problems are
handled for scalar equations whose solutions have a dead core.

A further mathematical problem is a control problem. It follows from results in [11] and [28] that
eradicating the cat population in finite time can have indesirable side effects.

Some general global existence results in heterogeneous environments and stabilization results for more
standard predator-prey systems are found in [2], [3] and [6].

3.3. Some numerical experiments

Numerical experiments are performed in [19] on (25) (26) and (27), for constant and small diffusivities and
ignoring advection terms. As long as we were more interested in middle to long term behavior we chosed
positive initial data not to handle short range problems caused on transient solutions by nonnegative data.
The goal was to analyze whether large time spatial coexistence of various dynamics predicted by the un-
derlying system of differential equation (see [11]) can be simultaneously observed through numerical sim-
ulations. More specifically we are interested in mimicking the extinction of either U or V' on some spatial
sub-domains and persistence of the three species elsewhere, a pattern observed on Kerguelen islands, [28].
Some care is required to handle singular terms. One of the most efficient way is to modify singular
terms, this is proportions of prey U and prey V in the equations for U and V' in (25). A simple choice is to

. . . wU wU : : V+4v
1ntr0(3/uce a small parameter v > 0; then, substitute s vaay © oty In the equations for U, and T
to sy in the equations for V.
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outer zone

intermediate
zZone

inner

zone

Figure 1. Spatial domain.

Then, choosing a set of positive initial data, a suitable splitting method proved efficient, and gave reasonably
good results.

In Figure 1, Q is the unit square in R?, split into three radial pieces, an inner square, an outer and an
intermediate zones. The set of growth rates used in numerical simulations for each population in each sub-
domain in given in Table 1; for each set of parameter values solutions to the underlying system of ordinary
differential equations exhibit different dynamics, as depicted above: coexistence of the three species in the
intermediate zone and extinction of one prey species in each of the other two zones

Ty Ty Tw
inner zone 0.05 3 0.95
intermediate zone 2 3 0.95

outer zone 2 0.05 | 0.95

A w Hu Mo K, K,
0O 1.5] 180 | 180 | 1000 | 800
0] 15] 180 | 180 | 1000 | 800
0O 1.5] 180 | 180 | 1000 | 800

Table 1: Set of parameter values.
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Figure 2. Alien predator population.
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In Figure 2 to Figure 4 numerical results for solutions to the heterogeneous system (25), (26) and (27) with
positive initial data, small and constant diffusivities and no advection are displayed.

500

250

0
0.0

Figure 3. Native prey population.

577

‘““\\\\,,,..!\... il

|\\l i

il
'“\\\\m\\\\\\\\\\\\\\\\\‘\\\\\‘\\\\\\\\\\.\‘{f{ﬁ!

/
’///7'////// ‘ \“m\\\\\\\\ \\\\\\\\
\

Figure 4. Introduced prey population.

One may observe extinction of the introduced intermediate prey in the outer zone, extinction of the native
prey in the inner zone, and coexistence of the three species in the intermediate zone.
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