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Evolution equations for dunes and drumlins

A. C. Fowler

Abstract. Dunes (in the desert, or in rivers) are ridges of sand which are built by the erosive action
of wind (or water) over the underlying, mobile substrate. Drumlins are small hills which are similarly
formed by the erosive action of ice sheets over mobile sediments, particularly during ice ages. Both
types of bedform are caused by an instability in the coupled system which relates bed evolution to the
shear stress exerted by the wind, water or ice which flows over it. Mathematical models predict this
instability, but the development of realistic nonlinear models is difficult, because the flow separates behind
the developing bedforms. Simplified models which include such separation in a realistic way have not yet
been developed.

Ecuaciones de evolucién para dunas y drumlins

Resumen. Las dunas (del desierto o en los rfos) son monticulos de arena formados por la accién erosiva
del viento (o del agua) sobre el substrato mdvil subyacente. Los drumlins son pequefias colinas que se
forman de manera parecida por la accién erosiva de los casquetes polares en los sedimentos méviles de la
base, particularmente durante las eras glaciales. Estas formaciones son causadas por una inestabilidad en
el sistema acoplado que relaciona la evolucién del lecho con las fuerzas de cizalla ejercidas por el viento,
el agua, o el hielo que fluyen a lo largo de la base. Los modelos matemadticos predicen esta inestabilidad,
pero el desarrollo de modelos no lineales que sean realistas es complicado, puesto que el flujo se separa
trds las formaciones geoldgicas que se producen. Todavia no se han desarrollado modelos simplificados
que incluyan tal separacin de manera realista.

1. Dunes and drumlins

Dunes and drumlins are examples of bedforms, geomorphological patterns in which the surface of the Earth
is shaped by the erosive power of wind, water or ice. Aeolian dunes (i.e., desert dunes) are the most familiar
such feature. Coastal sand dunes are a feature of common experience, and we are also familiar with the
existence of dunes in deserts. Dunes are formed by the erosive power of the wind, which transports the
sand particles at the surface, and sculpts them into a variety of shapes. These can be very large (hundreds
of metres in elevation), and take a variety of geometric forms depending on the prevailing wind speed and
direction(s) (Tsoar [2001]). A spectacular example is shown in figure 1.

The simplest kind of dune is the transverse dune, which forms when prevailing winds are uni-directional.
Transverse dunes are orthogonal to the wind direction, and form in a regular, more or less periodic, array;
they have a gentle upstream face and a steeper downstream face, also known as a slip face, because its slope
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A.C. Fowler

Figure 1. Three-dimensional dunes in Mauritania. Photo ©Yann Arthus-Bertrand, from the book La Terre
Vue du Ciel, Editions de la Martiniére. Dromedaries for scale.

is limited by the angle of friction of the sand. The prevailing turbulent wind flow over the dune separates at
the dune crest, which is therefore sharp, and the flow is illustrated schematically in figure 2.
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Figure 2. Separation in the lee of a transverse dune.

Dunes also occur in the flow of water over sand, in rivers and estuaries (Allen [1985]). Typical wave-
lengths are of the order of metres, but apart from this, they are essentially similar to transverse aeolian
dunes. Since water flow is typically unidirectional, these fluvial dunes do not come in the exotic (barchan,
star, seif) shapes which one finds in deserts.

Dunes in both rivers and deserts are a low Froude number phenomenon. The Froude number is given
by

U

r= W’ (1)
where u is the velocity, g is the acceleration due to gravity, and h is the fluid depth. In the atmosphere,
this might be taken as the atmospheric boundary layer thickness, about a kilometre, so that a wind speed
of 20 m s—! gives a Froude number of 0.2. In streams, the Froude number can occasionally (e. g., in
stormflow) become larger than one, and in this case anti-dunes are formed. These are time-dependent bed
waves which interact with the fluid to form surface waves, but are essentially transient features. They can
be seen on beach streams (for example, I have seen them on streams of a few centimetres depth on a beach
in Normandy).

Drumlins are small, typically oval hills, of length some hundreds of metres, and typical elevation thirty
metres. They occur in swarms, and are found widely over formerly glaciated areas of Northern Europe and
North America. Figure 3 shows a view of a typical drumlinised topography which is found in Northern
Ireland, while figure 4 shows a typical aerial relief of similar terrain near Seattle in the U. S. A. ‘Drumlin’ is
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Figure 3. Drumlins in the Ards peninsula, Northern Ireland.

an Irish word, meaning a small hill, and the early literature on these bedforms concerned their occurrence in
Ireland (Kinahan and Close [1872]); later authors extended the discussion to North America (Davis [1884]).

Although the geological literature on drumlins is over a hundred years old, there is still no consensus as
to how they are formed, although it is generally accepted that they are the results of the erosive action of an
overlying ice flow on a deformable substrate. This substrate consists of an angular mixture of coarse rock
fragments with a finer grained mixture of sediments, and is known as till. Its easily recognised presence is
an indicator of the former presence of ice sheets.

2. The Exner equation

In order to construct a mathematical model of either dune or drumlin formation, we consider a two-
dimensional flow in the x direction, where « is essentially horizontal, and z is the upwards coordinate
orthogonal to x. The bed profile is then denoted by z = s(x,t), and the basic equation to describe its
evolution is

ds 0q

(1-0)5 +5. =0, @)
where ¢ is the bed porosity, and ¢ is the bedload (or till) flux. This equation simply represents conservation
of bed material. The restriction to two dimensions is feasible for transverse dunes, although not for other
types of dune. For drumlins, it seems less appropriate, but in fact it appears that drumlins represent a three-
dimensional modification of a two-dimensional ‘ribbed” moraine pattern known as Rogen moraine (Sugden
and John [1976]) after the region in Sweden (Lake Rogen) where it was first identified (Lundqvist [1989]).

In any case, the extension to a three-dimensional theory is easily made.
Our basic strategy is to identify dunes and drumlins as the result of an instability, and the primary
modelling issue is to understand how this instability arises. To get some idea of this, consider the case of
river flow. It is generally accepted that bedload transport of sand is prescribed by a functional dependence,

q=q(7), 3

379



A.C. Fowler

Figure 4. An aerial view of drumlinised topography in the environs of Seattle, Washington. The area shown
is 6 km x 6 km; ice flow was from the upper right to the lower left, to the southwest. The image was
calculated from the Puget Sound Lidar Consortium 6 foot digital elevation model, and is supplied courtesy of
Ralph Haugerud.

where T is the basal shear stress, and a typical form of this is the prescription due to Meyer-Peter and Miiller
[1948]:
a(r) = C(r = 7)1, 4

where [2]; = max(z,0), and 7. is a yield stress, called the Shields stress (after Shields [1936]); bedload
transport only occurs for stresses above this value. The important point is that ¢ increases with 7.
Consider a simple flow in which the surface z = 7 is undisturbed (this is appropriate at low Froude
number), so that the flow depth is
h=mn-s. (®))

If the mean velocity is u, then

uh = Q, (6)

where () is the water flux per unit channel width. Finally, a common empirical estimate for the boundary
shear stress in the turbulent flow appropriate to rivers (Reynolds numbers typically > 10) is

T = fpu?, (7

where p is density and f is a dimensionless friction factor. If we put these together, we find that ¢ = ¢(s) is
an increasing function of s, so that (2) is a first order hyperbolic equation for s. Thus disturbances propagate
forwards as waves and form shocks (perhaps analogous to dune slip faces), but there is no mechanism for
instability.

We can follow essentially the same discussion for ice sheets, except that here the Reynolds number is
effectively zero. Flow in an ice sheet is driven by surface slope (through its effect on the cryostatic pressure
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field); we could then write
7= pg(n—s)sina 3

(Paterson [1994]), where p is ice density, and « is the surface slope. If, as we expect, till flux increases
with increasing shear stress, then we would have ¢ as a decreasing function of s, and disturbances would
propagate backwards.

Neither of these theories can explain instability, but neither of them is very useful in calculating the
perturbation to the shear stress at the bed. Equation (8) is particularly suspect because the basic model of
slow flow is elliptic, and we would expect 7 to depend on a convolution integral of s over the whole x
axis. Somewhat surprisingly, this is also the case for the high Reynolds number flow, although for different
reasons.

Instability

Kennedy [1963] first advanced the notion that instability would arise because the maximum of the shear
stress occurs upstream of the maximum of the bed profile. In the simple theory above for dunes, we have
7  1/(n — s)?, and the maxima in s and 7 coincide. Kennedy suggested taking 7 as a function of
s(x + 0,t), so that with § > 0, the maximum of 7 occurs on the upstream face of a nascent bump, and this
causes instability. However, Kennedy’s model is unphysical (and ill-posed) as it stands, and it was not until
the work of Smith [1970] and Engelund [1970] that it was shown that the phase shift in bed shear stress
could be predicted on the basis of a fully two-dimensional turbulent shear flow calculation. Their analysis
consisted of solving the Orr-Sommerfeld equation describing small perturbations (due to the bed profile) of
a unidirectional flow in order to calculate the perturbed shear stress.

Despite the apparent similarity of the problem, the linear stability theory of aeolian dunes has not fol-
lowed the same track. Stam [1996] used a parameterisation of the bed stress due to Jackson and Hunt [1975]
(of which more below) in order to demonstrate instability of the bed. For drumlins, the stability theory is
even more recent, being initated by Hindmarsh [1998] and Fowler [2000]. The important point is that the
instability arises through the same upstream phase shift of the maximum shear stress.

3. Bed stress parameterisations

For a mathematician, the next step beyond a linear stability theory is the development of a nonlinear theory.
In fluvial dune theory, this appears not to have been done, although such theories are now appearing in the
context of aeolian dunes (Kroy et al. [2002]. The Exner equation is essentially nonlinear, and the difficulty
with developing the theory lies in the problem of providing an analytic parameterisation of the bed shear
stress in terms of the bed profile.

The reason this is at all possible is because the typical slope of dunes and drumlins is relatively small.
We can thus consider the effect of the bed as a small perturbation of the overlying flow, and hence construct
an approximation to the resulting shear stress. For dunes, the difficulty we face in doing this is that the flow
is turbulent, and the result we get is dependent on the turbulent flow model we choose.

The simplest model to choose is one in which the Reynolds stresses are modelled by an eddy viscosity,
which is taken to be constant. If the bed slope is small (and the bed varies slowly compared to the flow’s
convective time scale), then the perturbed flow is described by a stationary Orr-Sommerfeld equation. This
is still intractable, unless one uses the fact that the turbulent Reynolds number is relatively large (essentially,
f < 1in (7)), and in this case one can develop an approximate expression for the bed stress, using asymp-
totic methods of Reid [1972] (see also Drazin and Reid [1980]. This work is reported by Fowler [2001];
the expression for the shear stress takes the dimensionless form

1 € . Js
R | Ka-95End ©)

T1-es  (1-e8)? )_o 13
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where we have written horizontal lengths in terms of the mean flow depth &, and the bed stress in terms of
that of the undisturbed flow; thus when the bed is flat, s = 0 and 7 = 1. ¢ is the (unknown) aspect ratio of
the evolving bedform (i.e., its height is O(¢h). The kernel K is defined by

K(:v):i x>0,
- 0, x<0, (10)

and the numerical parameter a & 6, depending on the precise value of the turbulent Reynolds number.

Tt is fairly clear that this model distributes the effect of the bed slope on the stress upstream of the current
position, and thereby allows instability. In fact it is easy to show that waves of (dimensionless) wave number
k travel downstream, and grow at a rate proportional to k*/3. The resulting infnite growth rate at high wave
number is an indicator of ill-posedness, but if one takes into account the fact that the effective stress to drive
bed transport is the difference between the stress delivered from the flow and that offered by the slope of
the bed (it is harder to move sand uphill), then we find that the effective stress that needs to be incorporated
in the bedload formula is

_ 1 ca [T 08, _ 9
T = 1 S + (1 _ 55)2 ‘/0 6 ax (x £7t) dé. Eﬁax7 (11)
where AoaD
p==P (12)
To

where Ap is the density difference between solid grains and fluid, Dy is the mean particle diameter, and g
is the dimensional mean bed stress. This parameter is the inverse of the dimensionless Shields stress, and
typical values of the parameters suggest 3 ~ O(1). Its inclusion allows the unstable growth rate oc k*/* to
be damped at large k (growth rate oc —k2): the slope effect is in fact diffusive, as might be expected.

The above discussion shows that an analytic description of the bed stress can indeed be obtained, and
that it predicts instability, as we seek. However, the assumption of a constant eddy viscosity is crude, at best.
In fact, there is a substantial literature in the context of atmospheric boundary layer meteorology which has
been devoted to precisely this question, of ascertaining the correct form of bed stress for turbulent flow over
low hills. The basic paper is by Jackson and Hunt [1975], and later editions of the theory are presented by
Hunt et al. [1988] and Weng et al. [1991]; a recent review is by Belcher and Hunt [1998]. The essential
modification to the constant eddy viscosity model is to allow Prandtl’s mixing length to depend on distance
from the bed, so that the eddy viscosity takes the dimensional form

0
n = pl? 8—: L= k(2 — 3). (13)
(In the constant eddy viscosity theory, we take n = % fpth, where the overbars denote mean values.)

This allows for a logarithmic velocity profile to be obtained, which in the atmosphere is observed to be
appropriate for some thirty metres above the surface. There is also a natural dimensionless parameter
which arises, which we can define to be

Us K

T Ux In(dfzo) 14
d is the relevant macroscopic length scale, while zg is the roughness scale (of thickness millimetres), over
which the velocity is reduced to zero at the bed; u, = (7/p)'/? is known as the friction velocity. The
Jackson—Hunt theory uses the smallness of € to construct an approximate theory which has a basic similarity
to the constant eddy viscosity theory discussed earlier. There is an outer inviscid (but rotational) flow and
an inner shear layer. Matching this to the bed roughness layer shows that the dimensionless bed stress can
be written in the form

VT=1+¢eA; +245+ ... (15)
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The different basic velocity structure allows the inviscid pressure field to be found as the solution of
Laplace’s equation, and we have

A1 = —po, (16)

where pq is the bed pressure, given by

1 o Sgdf_

T N ]

Po = H(sa); a7
H denotes the Hilbert transform.

Inspection of the stability characteristics of the steady state shows that the term A; is neutrally stable;
it gives rise to dispersive waves with wave speed o |k|, where k is the wave number. Instability requires
determination of A,. At this point we deviate from the exposition by Jackson and Hunt [1975], and in subse-
quent papers, because the approximation methods used appear not to be self-consistent. Formal asymptotic
approximations do, however, lead to similar qualitative results, of which the essence is that

A2:(£+3n)s$+..., (18)

where the omitted terms are neutrally stable or nonlinear. The effect of (18) is to give a negative diffusion
term in the equation for s, and is thus destabilising as we want, but it is

Drumlins

In studying the same instability in the subglacial context, we have to solve the (Stokes) equations of slow
flow, together with suitable boundary conditions on the ice surface and bed. A simplification occurs if
we take the surface to be far away, so that the perturbations due to the bedslope die away at large z. The
boundary conditions at the bed are complicated by the fact that the stress 7 is non-zero, but also the ice
will ‘slide’ and have a non-zero basal velocity. We suppose this is accommodated by deformation of the
subglacial till layer on which the ice rests (essentially we think of sliding on lubricated ball bearings). An
essential physical feature of this deformation process is that it depends on the effective pressure N, which
is the difference between ice overburden pressure and the pore water pressure in the till. Physically, then,
we expect that basal velocity u will be a function of stress 7, till thickness (of which bed elevation s gives
a measure), and [V; in addition, we can thus expect till flux ¢ (the analogue of bedload) to depend on the
same variables. For simplicity we will suppose that till is sufficiently thick that there is no dependence on s.
This is consistent with apparent observations of deforming till thicknesses of order tens of centimetres, and
a nearly Coulomb plastic flow law (e. g. Kamb [1991]. Thus we suppose

u=u(r,N), q=q(r,N), 19)

and we expect the partial derivatives to satisfy v, > 0, uy < 0, ¢ > 0, gy < 0: the N derivatives are
negative because higher pore water pressure (lower effective pressure) facilitates deformation of the till.
Fowler [2001] reports the calculation of the perturbed shear stress at the bed on the basis that the aspect
ratio is small: the result can be written in the dimensionless form

0 (ds Os
1—6aH |:a—${a+a—x}:|7

T o= 1+4(N-1), (20)

N

where u, 7 and N have been scaled with the values ug, 79 and Ny of the unperturbed state when s = 0, x
has been scaled with [, s with el, and ¢ with [ /ug. The equations (20) assume that 2uug /Il > 1, where [
is the bedform wavelength: this is a reasonable assumption. The parameters v and 3 are given by

2 UN
= = = 21
podm () o
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and are positive and O(1).
Linear stability of the uniform state can be studied using (20), and the growth rate of perturbations o< %

is found to be Sak? |
_ @ v
Reo = 15 0%a2kin?’ (22)
where

h

and the till flux ¢ has been scaled with ughg, thus hg is essentially the depth of deforming till. Instability
occurs if v > 0. Satisfaction of this criterion depends on the till flux law, but is plausibly satisfied. Per-
turbations of wavelength O(100-1000) metres may grow on a time scale of about a year, and the growing
ridges move in the ice flow direction at speeds which are less than, but comparable to, the ice velocity.

4. Nonlinear evolution equations

It is only relatively recently that efforts have been made to study the nonlinear evolution of these various
bedforms. The principal effort in this direction has been made by Herrmann and his co-workers (Kroy et al.
[2002], Herrmann et al. [2001], and Sauermann et al. [2001], who have shown that finite amplitude dune
shapes can be predicted on the basis of a combination of the Exner equation with the Jackson—Hunt formula
for bed stress. Specifically, for bedforms of aspect ratio €, the dimensionless Exner equation can be written
in the form

ds dq

SE’F%:O, (24)

where ¢ = ¢(7) (for dunes) or ¢ = ¢(7, N) (for drumlins), and we use expressions such as (11), (15), or
(20) to prescribe 7. The important point about all these recipes for the bed stress is that they require only
the bed elevation to be small. Despite this, it is still possible to describe nonlinear evolution equations for s.

There is an important scaling issue which could affect the usefulness of this theory for drumlins. In
order to obtain the dimensionless Exner equation in the form (24), we have to rescale the dimensionless
time t ~ £/§ = sqg/hg, Where sq is a typical drumlin elevation, and hg is the deforming till thickness. For a
successful theory, this will be large (e.g. ~ 100) and indicates that it takes of order 100 times the convective
time scale to build drumlins. But the drumlins move at the convective speed. So if we are to see drumlins at
all, they will be at distances of order 100 times their length scale from where they start to form. This is in
the range 10—100 km, and suggests that drumlins should be prevalent nearer the margins of ice sheets—as
indeed they are. The alternative possibility (and the reason dunes do not share this problem) would be that
slip between the ice and the till occurs, so that the ice can rush over the till, much as air or water does over
sand.

The expressions (11), (15) and (20) give corrections to the shear stress as power series in the bed
amplitude e; both (11) and (15) contain nonlinear terms, and these may be used to develop nonlinear
evolution equations for the bed profile s. We restrict ourselves here to the constant eddy viscosity equation,
and write

T%1+€S+5282+6a/ 571/3%(x—§,t)d§—5ﬂ§. (25)
o ox ox

We also expand ¢ as ¢(7) ~ q¢(1) + ¢'(1)(t = 1) + .... If a ~ e=1/3, 3 ~ O(1), then over length scales
of O(1/¢), we find that to leading order, s is given by a non-dispersive travelling wave, but at second order,
the wave amplitude satisfies a nonlinear evolution equation which can be written in the scaled form

9s 0 [1o, [T 1305 _0s)_
o7t 5y [23+/0§ Fr(X —ET)dE— 5| =0, (26)

The derivation of the equation is similar to the derivation of the Korteweg-de Vries equation at the order
beyond tidal theory (Kevorkian and Cole [1981]).
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0 " 0 20
X

Figure 5. Solution of (26) starting from small amplitude random data, at T = 80. The wave shown travels
forward at a speed of approximately dX/dT = 0.73.

The equation (26) bears resemblance to other nonlinear evolution equations, notably the Benjamin-
Ono equation in its singular integral term, and the Kuramoto-Sivashinsky equation in its short wavelength
instability and long wavelength stability. It has the form of a Burgers’ equation with the extra ingredient of
the integral term providing a mechanism for instability. As such, we expect the long time solution to consist
of a series of shock waves which develop out of the initial wave instability. Such shock waves in Burgers’
equation have a speed dependent on the jump in elevation, and thus larger shocks will capture smaller ones.
In a numerical solution of (26) on a large domain, we might expect to see a final state consisting of one
travelling wave, and figure 5 shows that this is indeed the case. This is hardly consistent with observations
of periodic dunes (as in figure 1).

Fowler [2001] suggested a similar nonlinear evolution equation for drumlins, based on the nonlinearity
of ¢q(7, N, s), and assuming dependence on s (which we have excluded). No comparison can therefore
be made with the nonlinear evolution equation (18.113) of Fowler [2001], but for the record, numerical
solution of that drumlin evolution equation (which takes the form in a moving coordinate frame

ds  9s 0 [, , s

— 4+ = |ils2_F =0), 27

ot 9z "oz [25 {8Z8t ) @7)
shows growing instability forming shock like features upstream of bumps (which is what is commonly

observed in drumlins, whose steep face is upstream), but no saturation occurs, and the instability leads to
unbounded growth.

5. Discussion

The derivation of linear evolution equations for dunes is in a relatively satisfactory state; this may also be
the case for drumlins. However, the prescription of their nonlinear evolution is less well developed. We can
derive an evolution equation for dunes which takes the form of a modified Burgers’ equation, which does
form forward travelling waves, but these have no intrinsic length scale, and the solutions evolve to fill the
domain.
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The situation with drumlins is less good. There is indeed an instability mechanism, but as yet there is
no nonlinear evolution equation in which the growing waves saturate.
The remedy for both these ills may lie in the consideration of separation, which is actually essential for
a realistic description of both dunes and drumlins. In dunes, the slip face forms behind a sharp ridge, where
the turbulent boundary layer separates from the upstream face, thus forming a wake. Previous treatment of
this in models has been essentially schematic (Kroy et al. [2002]. The simplest way to model separation is
by assuming that a wake of constant pressure forms in the lee of dunes. If we use the mixing length model
in (15) and (17), then s satisfies \
ds  0*H(s)
Eri +O(e) (28)
outside the separation bubble (note that 9H (s)/0x = H(ds/dz), but in the bubble, s is determined as a
free boundary by the solution of a Hilbert problem. Specifically, ' = p + tw is an analytic function of

(=x+izinIm( > 0. We define F' in Im { < 0 by the Schwarz reflection F'(¢) = F(({); then F satisfies

F,—-F. = 2is, in B,
Fi, +F. = pp in B,
F - o~ as (— oo, (29)

where B denotes the separated region(s), and pp is constant. The method of solution for this Hilbert
problem subject to suitable continuity assumptions has been given by Fowler [1986], and then s is given
on B by s, = (F; — F_)/2i. It remains to be seen whether this introduction of separation bubbles will
introduce a natural length scale for the developing dunes.

A similar comment applies to drumlins. Cavities form if the subglacial effective pressure reaches zero,
and this always appears to occur as drumlins grow (C. Schoof, private communication). It is then at least
plausible that the cavities provide the mechanism which limits the drumlin growth. In addition, many drum-
lins appear to contain water-borne sediment layers, whose presence can be understood, at least conceptually,
through sediment deposition in water-filled cavities.

Acknowledgement. Thanks to Felix Ng for obtaining the image in figure 4 and to Christian Schoof
for discussions.
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