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Gelation in coagulation and fragmentation models

M. Escobedo

Abstract. We first present very elementary relations between climate and aerosols. Then we introduce
the homogeneous coagulation equation as a simple model to describe systems of merging particules like
polymers or aerosols. We next give a recent result about gelation of solutions. We end with some related
open questions.

Gelificacion en modelos de coagulacion y fragmentacion

Resumen. En primer lugar presentamos de una manera muy elemental las relaciones entre clima
y aerosoles. Posteriormente se introduce la ecuacién de coagulacion en el caso homogéneo como un
modelo sencillo para describir sistemas de particulas como polimeros o aerosoles. Finalmente se exponen
algunos resultados recientes sobre gelificacién de soluciones y algunos problemas abiertos.

1. Aerosols, Contaminant & Climate.

1.1. Chemical components of the atmosphere.

a.- Major chemical components: nitrogen, oxygen, water, carbon dioxide & noble gases.
b.- Trace gases: 1 part per million and even, | part per trillion parts of air. There are myriad of trace species.
The role of trace species is disproportionate to their abundance. They are responsible for:
-urban photochemical smog
-acid deposition
-stratospheric ozone depletion
-potential climate change.
c.- Composition of the atmosphere is changing. Increase in long-lived so-called greenhouse gases:
-carbon dioxide CO5, methane CHy4, nitrous oxide N>O.
In the last century and in the North hemisphere, increase of:
-concentration of tropospheric ozone Og,
-sulfate and carbonaceous aerosols.
These changes alter the basic chemistry of the atmosphere.
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1.2. Aerosols: Particles suspended in the atmosphere.

a.- They arise,

- either: directly from emissions of particles (e.g. carbonaceous soots)

- or: from conversion of certain gases to particles in the atmosphere (e.g. sulfates).
b.- The atmospheric aerosols interact with the cycles of trace gases. The aerosols particles affect the climate
and interact chemically in heretofore unrecognized ways with atmospheric gases:

- volcanic aerosols in the stratosphere participate in the catalytic destruction of ozone.

- Aerosols reflect solar radiation back to space and contributes to the cooling of the Earth.

- Aerosols are the nuclei around which clouds droplets form:
No aerosols no clouds. Clouds are one of the most important elements of our climate system. So the effect
of increasing global aerosol levels on the Earth’s cloudiness is a key problem in climate studies.

1.3. Athmospheric models.

In the athmospheric models we have:
A.- Primary meteorological variables:

-wind speed, wind direction,

-air temperature, air density, air pressure and water content.
These variables are simulated by solving a set of equations including:

-the momentum equation,

-the thermodynamic energy equation,

-the continuity equation for air,

-the equation of state

-the continuity equation for total water.
B.- Primary radiative variables:

-heating rates (used to calculate changes in the temperatures)

-actinic fluxes (used to calculate photolysis rate coefficients.? ).
These two variables are calculated with the radiative transfer equation.
The radiative transfer equation gives the change in radiance and/or inradiance along a beam of electromag-
netic energy at a point of the athmosphere. The radiance is used to calculate actinic fluxes, the inradiance
is used to calculate heating rates.

The radiation is affected by different processes. All of them depend on the pollutant parameters which
are the gas and aerosols concentrations.

1.4. Specific projects underway.

a.- Measurement and theoretical description of the formation of secondary organic aerosols from the atmo-
spheric oxidation of hydrocarbons.

b.- Thermodinamics of atmospheric organic aerosols.

c.- Aircraft measurement of aerosols (and clouds) to understand the effects of aerosols on the Earth’s radi-
ation balance and climate.

d.- Assessment of past and projected future effects of aerosols on climate using General Circulation Models
coupled with models of detailed aerosol microphysics and tropospheric chemistry.

e.- Formation and growth of aerosols particles (in order for instance to develop strategies of particulate air
pollution). Modelling of growth and aggregation of fine particles formed in combustion. This formation of
fine particles in combustion and other industrial processes has been addressed in a number of studies. In
coal combustion, fine particles are formed from volatilized metals and metal oxides. The particles tend to
grow as low density aggregates that are not well-described by classical aerosol theories. The emission rates,

2When a gas absorbs radiation, it often breaks into smaller molecules or atoms during photolysis

368



Gelation in coagulation and fragmentation models

the thermochimistry of ash vaporisation must be known. Understand the influence of growing particles on
the rate of homogeneous nucleation.
(C. M. Sorensen et al. at K.S.U and R. C. Flagan, J. H. Seinfeld et al. at Caltech.)

2. Coagulation fragmentation equations.

2.1. The simplest model: homogeneous coagulation.

Coagulation fragmentation equations are very simplified models to describe systems of particles merging to
form clusters which can also merge to form larger and larger clusters. This may give rise to crowded states
of dispersed particulate mater.

Such crowded states are ubiquitous in Nature and technology: gels, colloidal emulsions, self associating
polymer networks and aerogelation in soot aerosols are all examples of a transition to a crowded or packed
state.

We then consider a system of particles (or monomers) such that:

(1) Clusters composed of different numbers of monomers move through the space.

(i1) When two clusters- say composed of 7 and j monomers- are sufficiently close, they merge into single
clusters of size i + j.

(iii) A cluster of size i and one of size j merge at a stochastic rate given by K (i, j) /N where, N is the
total number of particles and K (i, j) € R defined as follows.

(iv) K(i,j): Given a cluster of size . We assume that the instantaneous rate at which it merges with
some cluster of size j is proportional to the density n(j,t) of such clusters. The number K (i, 7) is the
constant of proportionality. It is usually taken in the physical literature so that,

K(i,j) = K(j,i), K(rirj)=r*K(i.j), »>0. ()
There is a great variety of such kernels in the physical chemistry literature, these are some examples:
K(i.j) = (iY* + j*/*)*, K(i.j) = (i + 0)(j + )
K(i,j) = (i =)+ )7 K(i,5) = @/° + j/9)7.
A more complete model would incorporate mass, position, velocity (or diffusive rates) of each cluster,
together with the exact rule for coalescence of two clusters.
The equation obtained in that way, is known as Smoluchovski equation. It was introduced in 1916 by M.

Smoluchovski [20] to model the coagulation of colloids moving according to Brownian motion. It describes
the evolution of the concentration n(k, t) of clusters of k monomers and reads:

o
Gkt = 5 37 K@) ni 0 nGit) = nlkit) 3 K (ki) nGio). @
i+j=k Jj=1
This equation describes irreversible coagulation processes. This means that there is no equilibrium possible
in this model. Alternatively, one may think of the system as being far from chemical equilibrium in the
begining. The model then only holds as long as the system is still sufficiently far from equilibrium. In
order to describe reversible systems of particles we need to introduce also a fragmentation process and

coagulation fragmentation equations.

Remark 1 The Continuous modelThe corresponding continuous model is also considered in the scien-
tific literature:

1 xT
—n(r,t) = 5/0f&'(ﬂf—y,y)n(fv—yvt)n(y,t) dy 3)

(1) / K (e, y)n(y.1) dy.
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It appears as a limit when & ranges over a large range. In that case the kernel K (x,y) satisfies similar
properties:
K(a,y) = K(y.a). K@ary) =r*Ky). ®

If one considers a system containing only at most N particules or monomers, no molecule of more than
N particules may be formed and one obtains the equation,

d 1
kD =5 }j;kK(i,j) n (i 1) n (), 1) “

N—j
—nn(k,t) ZKk]nN],t)
j=1

The equation (2) may then be formally seen as the limit of equation (4) as N — oc.
If we multiply the equation (4) by k and sum from k = 1 to k£ = N, we obtain:

N
d
EanN(k,t):Q vt > 0. ®)

This reflects the conservation of the total number of particles or monomers. It is not possible to show in
general the analogue of (5) for the infinite system (2). The reason for this is easy to understand. Let us

assume that,
lim ny(k,t) =n(k,t), Yk >0, Vt>0;
N—o0
N (6)
> knn(kt)=1, YN >1, vt > 0.
k=1
Then,

M—-1

k;kn(m) Jim > kn(k,t) = Jim - Jim ; Eknn(k,t) =

k=1
N
g (123 ko) <1 gt 3 kot

The last term need not vanish: If the dynamics (4) can produce, in finite time, a finite quantity of clusters,
the size of which goes to infinity as NV does, then clearly it will not vanish. This phenomenon is well known
in chemistry as gelation.

As it can be seen in P. J. Flory ([10]) and W. H. Stockmayer [25] the Smoluchovski equation was used
from the beginning in the study of the kinetics of polymer growth, and especially gelation, to describe the
distribution law of N -particules system, to study the ocurrence of gelation as well as the post gelation be-
haviour of the system.

Sol Gel transition. The sol-gel transition is a phase transition in which there is a loss of mass from finite
size clusters (sol particles) to the infinite cluster (gel particles). This loss of mass is due to the cascading
growth of larger and larger clusters, where the process accelerates, as the clusters grow larger. Finally, a

positive proportion of mass lies in infinite gel clusters.

The sol gel transition in colloidal and polymeric liquid solutions is a common and important phenomenon
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in Nature and for the creation of materials of practical value. Much less examples seem to be known in
aerosols. Nevertheless, aerogelation, induced by an applied electric field has been observed by A. A. Lush-
nikov et al. [18]. It has also been reported in aerosols of freely aggregating clusters like in flame soot
aerosol (C. M. Sorensen et al. [21]). Carbonaceous soot is a common by-product of fossil fuel combustion
and, as such, is a major atmospheric pollutant. Evidence of the formation of superagglomerates in a laminar
acetylene/air diffusion flame has been recently reported by Sorensen et al., ([21]) where this interconnecting
web of superagglomerates is described as a gel state.

2.2. Mathematical results and questions.

Let us come now to the equation stated above:

%n(lm) = % > K, j)n( t)n(,t) — n(k,t) > K(k,j)n(j, ).

i+j=k j=1

Since the dynamics of the clusters is contained in the kernel K (4, j) we may expect that the behaviour of
the solutions of this equation will strongly depend on the properties of this kernel.

The first results about the existence of solutions to the Cauchy problem associated to the Smoluchovski
equation,where obtained by M. Smoluchovski ([20]), W. H. Stockmayer ([25]), Z. A. Melzak ([19]).
Further and more general existence results where obtained by several authors J. B. McLeod ([17]) W. H.
White ([26]), J. M. Ball & J. Carr ([2]) and may be summarized as follows. To this end, let us define, for
every

me(t) =k n(k,t).
k=1

Theorem 1 For any kernel K such that,
K(i,j) < Ko (1+i+j)
for some positive constant K, and for any initial data n(i,0) such that,
mo(0) < oo, my(0) =1, ma(0) < o0

the Smoluchovski coagulation equation has a unique solution which satisfies the same conditions, mq(t) <
00, my(t) =1 and my(t) < oo forallt >0 [

This result is based on the following formal argument. Multiplying the equation by k2, using the condition
on the kernel K (4, j), and summing formally from & = 0 to co we obtain

d
i ma(t) < Ko (2ma(t) ma(t) + mi(t)) .
This shows that mo(t) remains bounded as long as m; (¢) is bounded. It is then easely deduced that m ()
is finite for all ¢ > 0. Moreover this shows that we may actually multiply the equation by k£ and sum from
k = 0 to +o00 and obtain,

m1 (t) = ma (0)7 Vit Z 0.

Gelling kernels. 1In contrast, if we consider, for instance, the case K (i, j) = 7 j the same formal argument
gives,

& ma(t) = ma (1)
—m =m .
Pl 2
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From where,
ma(t) = ma(0)(1 — t)_l.

This kernel is the prototype example where the process exhibits the gelation transition. It corresponds to
the Flory-Stockmayer model of gelation.

A gelling solution is defined precisely as one for which, there exists a finite time, 7" > 0 such that
m1(T) < my(0).

The gelation time T is then the largest time T' > 0 such that the solution satisfies 11, (t) = my(0) for all
t<T.

The gelling solutions are not unique in general. An explicit example of non uniqueness has been con-
structed in [24]. Nevertheless, in the case K (i,j) = i j uniqueness of global solutions is proved in [13].

Sometimes in the physical literature the gelling phenomena is exhibited by showing that the second
moment m5 (¢) blows up in finite time even if this is not enough to identify a gelation transition phenomena.
Nevertheless, when K (i, j) = 4 j it has been proved that the two phenomena coincide at the same time. It
is an open question if this is always true or not.

The gelation phenomenon has been first exhibited in the physical literature, calculating explicit solutions as
in W. H. Stockmayer ([25]), G. Stell and R.M. Ziff ([23]), F. Leyvraz and H.R. Tschudi ([16]), M.H. Ernst,
R.M. Ziff and E.M. Hendriks, ([7]) and also, using scaling arguments E.M. Hendriks, M.H. Ernst, R.M.
Ziff ([11]).

The first general and rigourous result on the ocurrence of gelation is furnished by F. Leyvraz and H.R.
Tschudi ([16]) for the kernel K (7, j) = i j. They prove that for any kernel K (i, j) > 4 j it can not be true

that the solution satisfies
oo

> kn(k,t) = kn(k,0), Vt>0.
k=1

k=1

Using probability arguments, I. Jeon ([12]) was able to construct gelling solutions for any initial datum and
for the kernel K (i, j) = (i j)* with A > 1. More recently the following result has been proved.

Theorem 2 ([8]) Assume that \ > 1. Then, for every n(-,0) and every weak solution of the Smoluchovski
equation, there exists a positive constant C,. depending on mo(0), m1(0) and X such that for every t > 0,

C

As a consequence, gelation occurs in finite time and

.\
T, < |——] .
gel = <m1<o>
The proof of this result is based on some a priori estimates which are true for any weak solution of the
coagulation equation. We only give one of them in the continuous model contex (the same inequalities hold

true in the discrete case and the proofs are essentially the same): for every k € [A\/2,\/2 + 1/2), (and for
k=1if A = 2):

/T T2 (1) dt < Cy (mo(T) + ma (T)). )

Notice that we immediatly deduce from (7) that m; € L?(R™) so that m(¢) can not be constant in time
and gelation must occurs.
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The proof of this estimate may be sketched as follows. Any weak solution of the continuous coagulation
equation satisfies:

1 t1 poo poo , L I ’ )
5/to/o /o a(y,y') f(t,y) f(t.y) (=0 (y.y")) dydy'dt = ®
:/ f(to,y)ibdy—/ flty) v dy.
0 0

forany 1) € L>(0,+00) and where t(y, ') = v (y +y') = ¥(y) — ().
Taking first ¢» = 1 we obtain that

1 t1 poc poO
s ) 5w sty dvaytde = moe0) = mo(e) ©
tog 4O 0
Choosing 1 such that ¢)(y) = min(y, A) for A > 0 a fixed constant we obtain,
t1 e} 2
/ </ y*/zf(t,y)dy> <20 gy o (10)
to A A

Then, using Fubini’s theorem

1 oo o0 2
/t (/ &'(4) / f(ty)ymdydA) dt < 2.C3m (to).
to 0 A

for every increasing function @ such that ®(0) = 0 and ®'(-) (-)~ /2 is integrable over (0, +00). If we

choose now ®(y) = (y'/2/(Iny)° — 7“1/2/(1nr)‘5)Jr with 6 > 1 and r = exp(2§) we obtain

oo oo y2+1/2 2
/:r (/e f(tay)wdy> dt < Csmy(T) (I

Finally, for every k € [A\/2, /2 4+ 1/2) we have,

e o) 2
mi(t) < O (/0 y%f’(w)dy+/e ykf(ty)dy)
© y3+3 ’
< Gy mi/z(t)+</ :(ylny)2 f(t,y)dy>

and (7) follows from (9) and (11).
Gelling profile. An interesting related question is to establish the profile of the solution at gelling time. It
is conjectured in the physical chemistry literature that :

342 2
n(k,1) ~ (Tgey — 1) ¥ B(k (Tge —1)3°7)

as k — oo, (Tgel —t) — 0and k(Tgel —t) > 1, for some function P,

and that s
n(k,t) ~ C() k=5, as k — +oo,

forevery t > Tgel (c.f. PG.C. van Dongen & M. H. Ernst [4] for a discussion and some results).
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Coagulation fragmentation system. The case of coagulation with fragmentation is also of great im-
portance due to its greater generality and the possibility of describing reversible systems both near and far
from equilibrium. The Smoluchovski equation generalized to include fragmentation reads,

dn(k,t) 1

=5 2 K@) nlt)n(t) = Fi.j) nit] (12)
i+j=k
= DGk )y nlk, ) (s t) = F(k, j) ).

where F'(i, j) is the fragmentation kernel.

The first work on coagulation-fragmentation system appears to be that of P. J. Blatz & A. V. Tobolsky
([3]D) who studied a polymerization-depolymerization reaction for the special case of constant-rate coeffi-
cients (homogeneity equal to zero for each kernel).

The dynamic of these system is of course much richer than that of the coagulation equation. Only partial
results on the ocurrence of gelation for the weak solutions of such systems have been obtained up to know.
They consider fragmentation kernels satisfying the following type of conditions:

F(i,j) = F(j,i) < B(i+j), with B(z) = ﬁ (13)

For instance it has been proved (cf. [9]) that when % +v > % gelation occurs for all weak solution whose
initial total mass m4 (0) is large enough. On the other hand, if A + v < 2 it can be proved that for every
initial data there exists at least one weak solution for which gelation does not occurs.

A more detailed introduction to the mathematical theory of coagulation equations may be found in the two
survays [5] and [1] as well as in the monography [6]. The interested reader may find in [15] an example of
model where spatial diffusion of the particles is taken into acount.
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