RACSAM

Rev. R. Acad. Cien. Serie A. Mat.
VoL. 96 (3), 2002, pp. 322-341
Matemética Aplicada / Applied Mathematics
Articulo panordmico / Survey

Numerical simulation of internal tides in the Strait of Gibraltar

M. J. Castro, J. M. Gonzalez-Vida, J. Macias, M. L. Munoz, C. Parés,
J. Garcia-Rodriguez and E. Vazquez-Cenddn

Dedicated to the memory of J.-L. Lions

Abstract. A two-layer one-dimensional numerical model developed for the simulation of flows through
channels with irregular geometry both in breadth and depth is used for the study of the internal tides taking
place at the Strait of Gibraltar. First, model equations and the numerical scheme used are presented. Then
model performance is tested comparing the numerical solutions for simplified channel geometries with the
analytical approximate stationary solutions provided by Armi and Farmer. Maximal exchange solutions
for these channel geometries are obtained from lock exchange experiments. Some results for a barotropic
periodical forcing as those obtained by Helfrich (1995) are also presented. Finally the model is used
to simulate the location and evolution of the interface separating the Atlantic from the Mediterranean
waters in the Strait of Gibraltar. Real bathymetric data were considered to include in the model the abrupt
geometry of this natural strait. Newly, the maximal exchange solution resulting from lock exchange initial
conditions is numerically found, and the evolution of the interface along a tidal period is also presented.

Simulacion numérica de mareas internas en el Estrecho de Gibraltar

Resumen. Presentamos un modelo numérico unidimensional para flujos bicapa que se ha desarrollado
para la simulacion de flujos a través de canales con geometria irregular tanto en anchura como en pro-
fundidad. Este modelo se utiliza para el estudio y simulacién de las mareas internas que tienen lugar en
el Estrecho de Gibraltar. En primer lugar presentamos las ecuaciones del modelo y el esquema numérico
que se usa para su resolucién. A continuacién evaluamos el buen hacer del modelo numérico comparando
las soluciones suministradas por éste para canales con geometrias simples con las soluciones estacionarias
analiticas aproximadas obtenidas por Armi y Farmer. Para estos canales de geometria sencilla las solu-
ciones de intercambio maximo se obtienen de la integracién del modelo a partir de condiciones iniciales
de tipo “lock-exchange”. También se presentan resultados andlogos a los de Helfrich (1995) para un forza-
miento barotrépico que varfa de forma periédica. Por dltimo llevamos a cabo la simulacién de la posicién
y movimiento de la interfaz que separa las aguas atldnticas de superficie de las aguas mediterraneas que
fluyen en profundidad a través del Estrecho de Gibraltar. En esta simulacién se han tomado datos ba-
timétricos reales para incluir en el modelo el efecto de la geometria abrupta de este canal natural en la
evolucién de la interfaz. De nuevo las soluciones de intercambio maximo, ahora para esta geometria real-
ista, se obtienen a partir de un experimento de tipo lock-exchange. Presentaremos resultados mostrando
la evolucién de la interfaz a lo largo de un ciclo completo de marea
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Dedicated to the memory of J.-L. Lions

1. Introduction

The Strait of Gibraltar is the sole natural link between the Mediterranean Sea and the Atlantic Ocean.
Located at the vicinity of the 36° parallel with its axis slightly turned (about 12°-15°) in its east-west
orientation. Its northern and southern boundaries are clearly determined by the Spanish and Moroccan
coasts, while the eastern and western boundaries are not so sharply defined. If we consider as western
boundary the Trafalgar-Spartel section and as eastern end the Punta Europa-Punta Almina section, the
Strait of Gibraltar has a length of about 60 km with a variable width ranging from the 44 km at the west
section to the 12-14 km at the so called Tarifa Narrows (the Tarifa-Punta Cires section). Besides the Strait of
Gibraltar bathymetry is very irregular with a minimal depth of about 300 meters at the main sill (Camarinal
Sill) located between Punta Paloma and Punta Malabata.

The Strait of Gibraltar controls the water mass exchange between the Mediterranean Sea and the Atlantic
Ocean. The Mediterranean Sea needs a supply of Atlantic waters to counteract the excess of evaporation in
its basin, but this does not imply a one directional flow through this strait. The mean flow is composed of
two counter-flowing layers of water: The surface layer of Atlantic less saline water flows eastward toward
the most western part of the Mediterranean (the Alboran Sea), while the lower layer of Mediterranean
saltier and denser water flows westward toward the Atlantic Ocean. This mean flow is modulated by the
predominant semidiurnal tidal flow, by the wind, and by atmospheric pressure variations.

The importance about the understanding of the processes determining the flow through oceanic straits
has stimulated the interest in the hydraulics of two-layer exchange flows. The question of what controls
or limits the exchange exchange flow is important not only in determining the overall fluid flow, but also
in determining what processes influence the flow and how things are likely to change with the greenhouse
effect, for example. But, while the study of single-layer hydraulics flows is mature, the development of
two-layer theory is still under progress. The key feature of an oceanographic two-layer exchange flow is
the production of buoyancy in one or both of the adjacent basins connected by the strait. Thus, for the case
of the Strait of Gibraltar, a negative buoyancy is produced in the Mediterranean as the rate of evaporation
exceeds that of precipitation and surface runoff combined.

Theoretical investigation on two-layer exchange flows through straits have been carried out before
within the framework of the hydraulic theories by [1], [8], and [12]. [1] and [8] have given solutions
for the steady and quasi-steady exchange flow through a strait which contains a sill and a lateral contrac-
tion. [12] has shown that the exchange flow is a function of two non-dimensional parameters, the dynamic
length of the strait and the forcing strength.

This paper is organized as follows: The model and the numerical scheme are briefly described in sec-
tions 2 and 3, respectively. Section 4 is devoted to testing the model and presenting some numerical results.
First, model performance is tested by comparing the numerical solutions against the approximate analytical
solutions provided by Armi and Farmer for simplified channel geometries. Then the effects of imposing
a periodic barotropic forcing are studied. Finally, the model is used to investigate the two-layer exchange
problem in the Strait of Gibraltar: maximal solution and tidally forced effects.

2. Two layer shallow water equations for symmetric channels
with arbitrary sections

In order to apply the numerical methods developed by the authors for the two layer shallow water equations
for symmetric channels with arbitrary sections, we present a conservative form for these equations (see [6]
for more details). The following notation is considered: p;, denotes the densities, supposed to be constant
at each layer (¢ = 1 for the upper layer and ¢ = 2 for the lower layer), Q;(z,t) = v;(x,t)A;(z,t) is the
discharge at each layer, where A;(z,t) is the cross-section area at location a and time ¢, and v; (z, t) is the
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velocity. Channel bottom bathymetry at its axis of symmetry is given by b(x). Fluid depth at each layer is
denoted by h;(z,t), i = 1,2 and o(z, z) represents channel breadth, and is related to A; by the integrals:

b+ha+h1 b+ha
Ay :/ o(x,z)dz, As(x,t) :/ o(x,z)dz. €))
b+ha b

Finally, 0®(x) = o(z,b(z)), 03(z,t) = o(x,b(x) + ha(x,1)), o1(z,t) = o(z,b(x) + ha(z,t) + hi (2, 1))
and o4 (2, t) is such that
1 1—r T

= =+ .
(m(l‘,t) US(xat) 01 (ib,t)

The constant r denotes the ratio of densities, 7 = p; /p2. In oceanographical applications, r is always very

closed to 1. Using these notations, the system of equations for a 1-d two-layer shallow water flow through

a symmetric channel with arbitrary cross-sections can be written as follows:

oW OF oW
W(fvvt) + %(U(xat)vw(xvt)) = S(I,W(I,t)) + B(W(l‘,t))%(l‘,t), (2)
where
_ Wl(l',t) _ A _ g1 .
W<x7t)_|:W2(.I‘,t):|7W]_|:Q;:|7a_|:02:|‘7_172’ (3)
F(Ul,Wl) 2 Qj .
F(o,W) = [ Flos, Ws) }  Floj, W) =| U] N iA? ,i=12, “4)
Aj 20']‘
0 0
_ 0 By (W) (W — j— . _
B(W) - [ B2(W2) 0 ] I B](Wj) - _g’r; lAj 0 sy J = 172a (5)
1
and
S(z, W) = V(o, W) + S(z, W). 6)

In this last formula, the source terms have been split into two parts, one corresponding to the derivatives of
o:

_ | Vi(o1, W) oy 0 o
V(o, W) = [ Va(o9, W) ] » Viloj. Wj) = l %(%) A? » J=12 @
and another corresponding to the breadth and bottom terms:
St (@, W) + Son (2, W) 0
a _ | Sz, W o2,1(@, Wi g N — b
S(e, W) = [ Si2(x, Wa) + S 2(x, Wa) } S W) _g%blAj ’ ®)
J
and
0
g, . ) — Jj—1 ) 1—p)-1 i—=1.92
Sa j(x, W;) g [T (L + (j— 1)) + &b} 4; | J 12, )
g1 025—1
where,
b+ha+h1 do b+hao do
Ii(z,t) = — d Iz, t) = — dz. 10
= [ e ban= [ e (10)

Source terms modelling drag force between the layers, bottom friction or wind effects could also be con-
sidered (see [6] for more details).
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2.1. Equations in channel with local rectangular cross-section

If local channel sections are supposed to be rectangular, channel breadth only depends on coordinate x,
o(x), therefore,

i l’,t
Sie.0) = (a0 9(0),  ai(e.t) = L, ay
Considering the relations given above, the previous equations can be written as,
( Oh1 | Oq o
S, T Ao T T4,
bn 8 C on
oq1 a |, 9,2 / 2 Oz
hi) =—ght —ghy — — ——
2t " ox <hl+2 > g I e T e by (12)
6h2 6q2 (o
ot = e,
oo 5 i g o 2
42 42 2 ;rP1 U Oz 4
— h = —ghyb' — —ghy— — ——.
ot tor ox < *t3 ) i pgg 2 ox a h2

3. Numerical scheme

In [5] and [6] some numerical schemes based on Approximate-State Riemann Solvers have been adapted
to systems of conservation laws of the type (2). The commonly used technique is to solve a local linear
Riemann problem in order to approximate the fluxes at each intercell. In this particular case we use the
fact that, for linear problems, the coupling terms with derivatives can be considered as standard flux terms.
Nevertheless, another difficulty appears in (2): the specific dependence of the flux on x and ¢ through the
breadth ¢. In [10] a suitable treatment for this problem is proposed.

The expression of the generalised Q-scheme of Van-Leer for system (2) is as follows:

Wit = Wi+ Ar (Fiz1/2 = Fip1)0)

At [~ n n

+ 5a- (Biaje - (WP = Wi )+ By - (W — W)

(13)

At X ~ _ ~

+ 29AL (Pi—1/2si*1/2 + Pz’+1/2si+1/2)
At [~ ~

+ Az (Ci—1/2 + Ci+1/2)7

with . .

Firip=35 (Flop, W) +F(o, 1, W) — 3 «41'+1/2‘ (Wit — Wi, (14)
where At is the time step, Ax = ;41 — 2,4 = 1,..., M is the size of the cells, W} is the approximation
of W(z;,nAt), given by the numerical scheme, .ATZ-H/Q = X(W?H/Q), with Wn e = W,
being

0 1
Al W) J(o1, Wh) =B (W) ] o W)
o, = R g, Wj)= Q2 Q ’
— By (W J(o2, W- —— A 222
2( 2) (0-2’ 2) A2 + A]
~ 0 By (W"
Bit12 = wn : Z+1/2) )
B2(Wi+1/2) 0
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3 G Son Ti+x;
Sit1/2 =8(@iy1/2, Wik )a),  Tiyij2 = %a
Py = Kiyio (Id £sgn(Ag ) Ky, (15)
where
Sgn(/\i+1/2,1) 0
Sgn(Ai+1/2) = ;
0 sgn()\i+1/274)
being A\i11/2,, I = 1,...,4 the eigenvalues of ﬂi+1/2 and K/, the matrix whose columns are the

eigenvectors corresponding to these eigenvalues. Source terms due to channel geometry are treated as in
[31, [24].

N 0
Finally, (N],»H s Oi+6/ 21| where
Cit1/2,2
2 2 A
Civifog = g (% - %) - g%(&ﬂj —4ij) 1=12, (16)
with
Aiprjo = 7&“’];- Aig 1 Oig1/2,j = 70#1’];— Thdj=1,2.

Remark 1 Note that the term V (o, W) does not appear explicitly in the numerical scheme. However, new
terms ((Nll-il /2) appear as consequence of the treatment of the spatial dependence of fluxes. The expression
(16) is derived by imposing the numerical scheme to solve exactly the trivial steady state solution (Q); =
()> = 0). The same expression could be derived if the property of “conservation across discontinuities” is
imposed (see [21]). See [6] for further details. M

In order to prevent the numerical viscosity of the Q-schemes from vanishing when any of the eigenvalues
of the matrices |A;;1/»| are zero, we apply Harten regularisation, [11]. In the deduction of the schemes
C F L-like requirements have to be imposed (see [17]). In practice, we propose the following condition:

A
Ry Svmax{l 1< 1S4 1<i < MY,
where 0 < v < 1.

Finally, another numerical difficulties could appear in oceanographical applications:

¢ Kelvin-Helmholiz instabilities: These instabilities appear when the internal eigenvalues become com-
plex. In this case the matrix |A; 11 /5| in (14) has been redefined such that, the resulting numerical
scheme guarantee the mass conservation (see [6] for more details).

e Treatment of cases when the thickness of a layer vanishes: These situations take place in lock-
exchange computations or when the deeper Mediterranean waters are upwelled to surface. The ex-
tension of the techniques developed for the treatment of wet-dry situations for a single layer has been
made (see [6] for more details).
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4. Numerical results

4.1. Two-layer exchange flow through a contraction with local rectangular
cross-sections

In this section the numerical results obtained by the finite volume model are compared with the approximate
analytical solutions found by [1] and [2] (A&F hereafter) for steady flows through contractions. We have
computed the transient from two of the stationary solutions given by A&F that are characterised by a
constant value representing the difference of energy between the two layers of fluid. A periodic barotropic
forcing to the two layer exchange flow through the contraction, as in [12], also has been imposed, obtaining
periodical solutions.

Figure 1. Sketch showing contraction plan view.

The strait geometry considered is sketched in Figure 1, that represents a symmetric contraction with no
depth variations and with the origin located at the narrows,

o(r) =2 —exp(—2?), z € [-3,3]; b(z) =0, z € [-3,3].

The time dependent solutions that are obtained by the model change quantitatively, but not qualitatively,
as the strait geometry is modified as is to be expected from Armi and Farmer hydraulic theory. Armi and
Farmer model is based on the Bernoulli equations under the assumption of rigid lid. They parametrise the
flows in terms of the internal Froude numbers for each layer, F; = u;/+/(g'h;), and possible solutions to
the steady two-layer exchange problem are shown as curves in the Froude-number plane (F2, ). This
parametrisation is done by the deduction of a dimensionless Bernoulli equation expressed in terms of F2
and FZ:

AH/:F2_§(1+%F22)_%QTF1 (17)

where ¢, = ¢1/q2 is the ratio of flow rates at each layer. The term AH' is the dimensionless energy
difference between the two layers. In the absence of friction, mixing or any other losses of energy, this
quantity is conserved. Therefore, the curves verifying (17) with constant A H' represent the solutions of the
model (where dissipative processes are not considered). These solutions haven been plotted in detail by [1],
here, in Figure 2, we show an example for ¢, = 1 and ¢, = 0.5, where only physically feasible solutions
are drawn.

To obtain the details of the solution corresponding to one of these curves, these authors make use of the
Froude-number continuity equation:

(NN

2 2 _2 I\
GF 3+ F ¢ = (q—2,> . (18)

a
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(b) ¢r = 0.5.

Figure 2. Solutions to the Bernoulli equations in the Froude-number plane for ¢, = 1 and ¢, = 0.5. Each
solution curve is labelled with its non-dimensional energy difference between the two layers.

Intersections between (17) and (18) serve to obtain the values of :17—’2, for every (F, F3)-couple. The prime
variables representing the non-dimensional quantities. Besides, when we are located at the narrows the
critical condition, G = F? + F3 = 1, is achieved and ¢’ = 1. Observe that G = F}? + F3 is an
approximation of the composite Froude number

G*=F}+F; - (1-rF'F;=1

for r = 1. This allows us to determine ¢ for the corresponding steady solution and consequently ¢}, as ¢,
is fixed. Then, the dimensionless layer thickness are recovered from the expression:

2
B = <q_> Tpt (19)
i ] i )
a

In Figure 2(a) the (dashed) line F'2 + F = 1 represents critical points and separates supercritical from
subcritical flows. The AH' = 0.5 curve represents the maximal two-layer exchange solution (in the sense
that is the solution -physically feasible- permitting a maximal exchange flow). This curve separates stable
(that are the sole solutions shown in Figure 2) from instable flows. It can be observed that the maximal
solution is the sole solution for which the flow is supercritical everywhere along the contraction. The rest of
solutions are called submaximal and are subcritical to one side of the control, that is located at the narrows,
and supercritical to the other side. In Figure 2(b) for ¢,, = 0.5, it can be observed that the maximal solution
(for AH' = 0.667) presents two control points, one located at the narrows and the second one, the so-called
“virtual” control, located to its right (for the flow configuration chosen here with the upper layer flowing
from left to right and the lower layer moving in opposite direction, being the denser basin to the right and
the lighter one to the left). The zone located between the two controls being called “control region”.

The first experiment performed consisted in taking as initial conditions A&F’s steady solution for g, = 1
and AH = 0.54. As boundary conditions the input flow at the right end of the contraction for the lower
layer and the input flow at the left side for the upper layer were imposed, being ¢;(—3,t) = ¢2(3,t) for
all time ¢, and a density ratio r = 0.98 was chosen. Then, the flux is increased up to reach the value
corresponding to the AH = 0.52 A&F stationary solution at t = 2000 s. Once the flux remains unchanged,
the steady solution is rapidly reached. Figure 3(a) shows the evolution of the interface along the channel
from AH = 0.54 A&F solution, corresponding to the ¢ = 0 (solid) line, to the AH = 0.52 solution. The
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(a) Interface at t=0, t=1000 and the stationary state. (b) Stationary state and A&F solution.

Figure 3. Transition from AH = 0.54 to AH = 0.52 energy level stationary states and comparison with the
solution found by A&F for AH = 0.52.

two constant energy solutions considered represent submaximal flows, whose composite Froude numbers,
G? = F? + F2, along the channel are qualitatively as in Figure 5(a), reaching the value G = 1 at the
narrows. The eigenvalues associated to these solutions are also analogous to those in Figure 5(b).

Figure 3(b) shows the final stationary state reached in the experiment performed here compared with the
stationary approximate solution obtained by A&F and corresponding to the constant AH = (.52 energy
level. Note that the solutions given by A&F are asymptotic approximations when r — 0 and that they are
deduced under the assumption of rigid lid, whilst the model used here is a free surface model with two
layers of different densities.

4.1.1. Periodic barotropic forcing

In [12] a model is presented for the study of time-dependent two-layer hydraulic flows through straits. The
model is used to simulate flows forced by a periodic barotropic (tidal) flow. This author must add some
dissipation to his model to control the appearance of unphysical instabilities. In the experiment presented
here we try to reproduce the experiment presented in [12] for a contraction.

As initial conditions we consider the steady state corresponding to AH' = 0.54. At the boundaries,
only ¢; and ¢, are imposed on the left border. The barotropic transport considered is periodic with zero time
mean and given by g, (t) = gy, sin (27t/T) , where gy, = 9- 1073 is the barotropic transport amplitude and
T = 800 is the period. For these parameters the forcing is relatively weak and similar to that given for the
experiment shown in Figure 4 of [12].

Figure 4(a) depicts the interface along the contraction at four points through the forcing period. The
interface moves back-downwards and forth-upwards, with the barotropic flow but still similar in shape to
the steady solutions. The periodic solution is obtained from the initial state without any prior adjustment
period.

In Figure 4(b) we show the same four transient solutions in the Froude number space (FZ, FZ). The
intersection between curves indicates that the four transients do not correspond to a succession of constant
AH' steady solutions with ¢,. = 1, as proposes the quasi-steady theory. This approximation supposes time-
dependent problems as a succession of steady states. Such hypothesis is supposed to be valid provided that
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(a) Interface at four points through the forcing period.  (b) Transient solutions in the Froude number diagram
(F, F3).

Figure 4. Exchange flow forced by a periodic barotropic flow.

the tidal (periodic forcing) effect is slow relative to the time taken for interfacial adjustment (the time taken
by long waves to propagate through the channel must be short compared with the tidal period). Although
this may be the case in many natural straits, it seems that time dependence modifies the dynamics so that the
steady model fails. We must remark that, in the time-dependent problem, the flow is not exactly constant
along the channel for time fixed.

Figure 5(a) shows the composite Froude number G2 along the channel at time ¢ = 400 for the ex-
periment with barotropic forcing. This Figure shows that the flow is subcritical to the left of the narrows,
critical at the narrows and supercritical to the right, being the exchange submaximal. This situation re-
mains so along all the forcing period. Figure 5(b) shows the four eigenvalues for the transient solution with
barotropic forcing at ¢ = 400. The internal eigenvalues are represented by the lines closer to the x-axis. It
can be observed how one of these eigenvalues becomes zero at the narrows, being two eigenvalues positives
and two negatives in the subcritical region, and three positive and one negative in the supercritical region.

4.1.2. Maximal exchange solution

In order to reproduce a maximal exchange solution, we solve the classical lock exchange problem. This
problem consists in taking as initial state the two fluids separated by a vertical “artificial barrier” in this
case located at the narrowest channel section (see Figure 6(a)) . This barrier is dropped out at time ¢ = 0
and fluids are let evolve until a stationary state is reached (see Figure 6(b)). In the numerical experiment
presented here, the same channel geometry as in former section is considered. As boundary conditions
only the ratio between fluxes is imposed and it is set to 1, i.e., )1 = —(Q- at each channel end. The
ratio between densities r = p; /p2 has been taken equal to 0.98. Figure 6(b) shows the final steady state
reached and compares it against the corresponding maximal A&F solution. The exchange flux predicted
by the model is Q; = —Q» = 1.11110~! m3/s while F&A model gives Q; = —Q» = 1.107 107" m3/s
(transforming adimensional quantities provided by F&A into dimensional variables).

Figure 7(a) shows the internal eigenvalues along the channel for the computed stationary solution. As
formerly observed, the maximal solution is, in this case, supercritical everywhere (only a small control
region appears located at x=0 as consequence of Harten’s regularisation). The representation of the maximal
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(a) Composite Froude numbers along the channel. (b) Eigenvalues along the channel.
Figure 5. Exchange flow forced by a periodic barotropic flow at t=400.
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Figure 6. Maximal exchange flow through a rectangular channel with a contraction. Initial condition and
comparison with A&F stationary solution
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solution in the Froude-number plane is shown in Figure 7(b). As this maximal solution is also characterised
as been the curve that separates stable from instable flows, this implies that the two internal eigenvalues
must coincide along the channel (see Figure 7(a)).
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«+ Firstinternal eigenvalue
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(a) Internal eigenvalues (b) Maximal solution in the Froude-number plane

Figure 7. Internal eigenvalues of the maximal exchange flow for ¢, = 1.0 and its representation in the
Froude-number plane

4.2. Two-layer exchange flow through a combination of offset sill and nar-
rows with local rectangular cross-sections

In this section we perform a comparison between the numerical results obtained by using the numerical
scheme proposed in section 3 for a two-layer exchange flow through a channel with a combination of offset
sill and narrows. As in the previous section three different simulations have been performed. In the first
one, an approximate stationary solution is computed and compared with the approximate “generalized A&F
solutions” (GA&F hereafter) deduced in [15] for more general geometry channels. The second experiment
consists in imposing a periodic barotropic forcing to the two layer exchange through this new geometry
analogously as in [12], where periodic solutions are obtained. Finally a maximal exchange solution is
computed.
In all cases, the same channel geometry, given by the functions (see Figure (8)).

1
=———— z€[-1,2],
@) cosh?(3.752) vel )
. 0.637ifz < 1
o(x)=05+1.5(1—e @D 2e[-1,2],a=
1.273if 2 > 1.

has been considered. These functions determine a channel with a sill placed at = 0 and a contraction
located at x = 1.

4.2.1. Generalized Armi and Farmer steady solutions

As we have presented in the previous sections, Armi and Farmer obtained approximate stationary solutions
of two-layer exchange flows through contractions (in [1] and [2]) and over sills (in [1] and [8]). In [8],
they also study the case of a combination of sill and contraction, but without determining the details of
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(a) Depth of the channel. (b) Breadth of the channel.

Figure 8. Channel geometry: depth and breadth.

the solutions as they did for single sills and contractions. More recently, Macias in [15] has extended their
works to general geometries (among them combinations of sills and contractions). The price to be paid is
that is necessary to know the geometry defining the channel. As in Armi and Farmer, the model is based
on the Bernoulli equations under the assumption of rigid lid and the flow is parametrized in terms of the
internal Froude numbers for each layer F;, being the steady state solutions determined as curves in the
Froude-number plane (FZ, F3).

The experiment performed consists in taking
h1(0,z) = 1.3 — b(x),
h2(0,2) = 0.7,

q1 (0,1’) = Q2(Oafﬂ) = 05
as initial conditions and
q1 (t7 2) = quv
qQ(tv _1) = QQLv q2(t72) = qgv

as boundary conditions, where ¢, ¢& and ¢ft are the values corresponding to a given stationary GA&F
solution at channel boundaries.

Figures (9(a)) and (9(b)) show respectively the initial and the final stationary states reached in the exper-
iment performed. In Figure (9(b)), the final state is compared with the corresponding GA&F approximate
solution.

4.2.2. Periodic barotropic forcing

As in the previous section, we present here a numerical experiment similar to one of the experiments
presented in [12]. As initial condition the steady state solution obtained in the experiment presented in
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Figure 9. Stationary solution and generalized A&F solution.

the previous section has been taken. At the boundaries, ¢; and ¢» are imposed only on the right end of
the channel. The barotropic transport considered is periodic with zero time mean and given by ¢(t) =
@y, Sin (27t /T') , where g, = 5 - 1073 is the barotropic transport amplitude and 7' = 800 is the period.

Figure (10) depicts the interface along the channel at four different times through the forcing period.
The behaviour of the obtained solution is similar to that described in Figure 10 of [12]: the interface moves
back-downwards and forth-upwards, with the barotropic flow but still similar in shape to the steady solution
computed in the previous experiment. The periodic solution is obtained from the initial state without any
prior adjustment period.

4.2.3. Maximal exchange solution

As in the previous example, in order to reproduce a maximal exchange solution, we solve a lock exchange
problem now in this channel. In this case, the artificial barrier separating the two fluids is located at the
top of the sill (see Figure 11(a)). The barrier is dropped out at time ¢ = 0 and fluids are let evolve until a
stationary state is reached (see Figure 11(b)).

As in the previous example, as boundary conditions only the ratio between fluxes is imposed and it is
set to 1. The ratio between densities r = p; /pa has also been taken equal to 0.98. Figure 11(b) shows the
final steady state reached. The exchange flux predicted by the model is Q; = —Q2 = 6.126 1072 m3/s.

Figure 12 shows the internal eigenvalues along the channel for the computed stationary solution. Three
different regions separated by two control points (null internal eigenvalues), located at the points of minimal
depth and breadth, respectively, can be observed. In the middle one, the flow is subcritical and it is named
“control region”. In the other two located at the two ends of the channel, the flow is supercritical.

4.3. Strait of Gibraltar

Now we present some numerical results obtained for the application of the model to a channel playing
the role of the Strait of Gibraltar. To obtain a suitable one-dimensional representation of this narrows
an “equivalent” symmetric channel that preserves cross-section areas is first constructed. This is done as
follows: From realistic bathymetric and coast line data, an axis defining the Strait orientation is settled.

W
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Figure 10. Exchange flow forced by a periodic barotropic flow.
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Along this axis we consider M = 150 transversal cross-sections, S;, ¢ = 1,..., M, whose areas are
numerically computed. The bottom topography, at each of these sections, is taken as the maximal depth, b;,
found in the bathymetric data. Finally, channel breadth is defined as a continuous piecewise linear function
so that the cross-section areas are preserved. We would like to remark that cross-sections are defined by
polygonal lines, that means that we are working with more general cross-sections that rectangular (as in
the first numerical example presented here or as in Armi & Farmer model) or more general than simply
triangular cross-sections. In Figure 13(a) the bottom topography obtained with the bathymetric data used
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Figure 14. Interface and free surface of a maximal exchange flow through the Strait of Gibraltar
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Figure 15. Eigenvalues along the Strait for the computed maximal solution

is shown. The two key locations corresponding to the shallowest and narrowest sections along the Strait of
Gibraltar are also marked in the figure. They correspond to Camarinal Sill and Tarifa Narrows, respectively.
Figure 13(b) depicts the breadth at water surface of the equivalent symmetric channel.
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4.3.1. Maximal solution
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Figure 16. Evolution of the interface and free surface during a tidal forcing period.

Figure 14(a) shows the bottom together with the initial condition where the Atlantic waters on the left
are separated by an artificial barrier from the Mediterranean denser waters on the right. The ratio of densities
is taken equals to 0.99805.

Figure 14(b) depicts the interface and free surface of the stationary state reached when, as boundary
condition, we impose the ratio between fluxes at both ends of the Strait. This ratio is taken as unity. The
simulated exchange flow is )1 = —@Q2 = 0.855 Sv, magnitude that agrees with the experimental data (see,
for example, [4])

Figure 15(a) shows all the four eigenvalues for the stationary maximal solution reached in the numerical
experiment presented here. In Figure 15(b) a zoom on the two internal eigenvalues is shown. It can be
observed the appearance of two control points (null internal eigenvalues) essentially located at Camarinal
Sill (minimal depth) and at Tarifa Narrows (minimal breadth). These two controls separate a region where
the flow is subcritical called “control region” from the supercritical flow found at the two ends of the
channel.
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4.3.2. Tidal forcing

Oscillations of the surface level due to tides are more important in the Atlantic and produce strong tidal
currents. These tidally induced currents interact with the prominent underwater bottom features, in partic-
ular with the Camarinal Sill, generating strong internal tides and eastward propagating internal waves. The
surface currents associated with internal waves disturbances cause distinctive surface roughness patterns
that has been detected by radars and observed in aerial photographs and satellite images.

The purpose of the experiment presented here was to simulate the evolution of the interface through a
tidal period in the Strait of Gibraltar and to study the eventual generation and propagation of internal waves.
The model was run for 10 semidiurnal tidal cycles, which has a period of T = 12.4 hours, to achieve a
stable time-periodic solution, using as initial condition the previous maximal flux exchange solution. After
establishing this periodic solution, model integration was continued for a 7-day period. Tidal forcing was
imposed by means of the boundary conditions by giving the elevation of the free surface at the two ends of
the channel by the time-dependent functions

N N
d(t) = Afcos(Oht—ok),  or(t) =y Afcos(Ot—of),

n=1 n=1

where AL and oL (AR and o® L, respectively) are the prescribed surface elevation amplitude and phase
of the n-th tidal constituent at the left (right respectively) end of the channel; 8% (O2 respectively) is its
frequency and N is the number of tidal constituents. In this simulation the M», S,, Ky and O; surface tidal
elevation are used to set the tidal forcing, being the values for the amplitudes and phases taken from [14].
These values are given at some coast points. Here we use the mean value of the values at the two locations
determining the corresponding limiting section.

In Figure 16 the free surface (dotted) and the interface (continuous line) is depicted for six different
phases of the tidal cycle. The evolution of the internal eigenvalues for the same tidal phases is shown
in Figure 17. During strong westward flow, interfacial depressions are presented west of Camarinal Sill
(Figure 16a). In this case the barotropic forcing is the same direction as the steady outflow at depth and
the interface upstream of the Camarinal Sill is pushed toward shallower depths. Nearly always two control
regions with subcritical flow are found, one bounded by Spartel Sill and some point west of Camarinal
Sill, the second between Camarinal Sill and Tarifa Narrows. Bounding these two control regions the flow is
supercritical (see Figure 17). Observe how the tidal forcing change the location of the critical and subcritical
regions from the base state (the maximal exchange solution) generating a new and permanent critical point
at Spartel Sill not found in the maximal solution (compare Figure 17 with 15(b)). When the westward
tidal flow slackens (see Figure 16¢) some interfacial waves are released from Camarinal Sill and propagate
eastward. With the reversal of the tidal flow an internal bore is produced that is advected eastward (Figure
16d). During this phase the flow is basically subcritical everywhere from Spartel Sill to Tarifa Narrows
(see Figures 17c and 17d). The asymmetry in the strength of internal hydraulic jumps at the Camarinal Sill
during strong westward and eastward tidal flow, which is due to the mean flow in the lower layer, leads to
an east-west asymmetry in the internal wave field; westward propagating internal waves are much weaker
than eastward propagating ones.

5. Final remarks

In this work the computation of maximal two-layer exchange solutions through channels with irregular
geometry is undertaken. We have been able to properly reproduce this type of solutions by solving the
classical lock exchange problem without adding any artificial viscosity in the mathematical model as it is
common practice when discretizing by finite differences. Model performance has been assessed by compar-
ing the numerical results against the analytical approximate solutions provided by Armi & Farmer. Finally,
the model is used to simulate the maximal exchange flow through the Strait of Gibraltar by considering
a suitable one-dimensional representation of its realistic geometry. The numerical fluxes obtained agree
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with the observational data currently available. The model is also used to perform tidal simulations. Future
lines of research focused on the validation of such numerical results for tidally induce flows in the Strait of
Gibraltar. Currently we are working on a two-dimensional two-layer model based on the same numerical
techniques than the ones used in the model presented here. Similar studies to the ones developed for the
one-dimensional model are also foreseeable.
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1168-C02-01). Thanks are given to Alfredo Izquierdo for providing us the bathymetric data.
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