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A dual data assimilation method for a layered
quasi-geostrophic ocean model

Didier Auroux and Jacques Blum

Abstract. In this paper, we introduce the equations of a layered quasi-geostrophic ocean model, and
the corresponding data assimilation problem. We first give the variational formulation. We then point out
the linear theory of duality. Finally, we apply duality to our nonlinear model by describing an algorithm
to solve the data assimilation problem, introducing a dual cost function and a simple way to compute its
gradient.

Un modelo oceanico quasigeostrofico y el problema asociado de
asimilaciones de dados

Resumen. En este trabajo, se consideran las ecuaciones de un modelo ocednico quasigeostréfico y
el problema asociado de asimilaciones de datos. En la primera parte, se considera la formulacién varia-
cional. En la segunda parte, se aplica la dualidad a nuestro modelo nolineal y se describe un algoritmo
para resolver el problema de asimilacién de datos.

1. Introduction

Data assimilation is the problem of finding a good estimation of the trajectory of a system, given discrete
(in space and time) observations. The best estimation can be given by the minimum of a least-square cost
function, using a variational approach of the problem. For that, it is necessary to introduce the adjoint state
and equations in order to be able to compute quickly the gradient of the cost function. The minimization
is then done using a gradient method. But this approach is only valid if we suppose the model perfect. It
is indeed not possible to take into account a model error in the minimization process without considerably
increasing the size of the control vector. A dual theory has been presented a few years ago ([1]-[3]) to
remove this difficulty.

We first present the model we are currently using for numerical experiments, a multi-layer quasi-geostrophic
ocean model. We also formulate the corresponding data assimilation problem in a classical variational
approach. We then review the theory of duality, which has been introduced in a linear case. Finally, we give
a corresponding dual algorithm to solve our problem for the quasi-geostrophic model.
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Direct model

Equations of the model

We consider here a layered quasi-geostrophic ocean model. This model arises from the primitive equations
(Navier-Stokes), assuming in particular that the rotational effect (Coriolis force) is much stronger than the
inertial effect, and that the size of the ocean is small compared to the size of Earth and the depth of the basin
is small compared to its width. The thermodynamic effects are neglected. We also assume that the forcing
is due to the wind at the surface of the ocean and that the dissipation is essentially due to bottom and lateral
friction. In the case of the Atlantic ocean, all these assumptions are not valid, but it has been shown that this
approximate model reproduces quite well the ocean circulations at intermediate latitudes, such as the jet
and the Gulf Stream. Most large-scale geophysical flows are based on the geostrophic equilibrium between
the rotational effect and the pressure gradient. The equations can be written as :

Dy (6,(%) + f)

— BA*T, = F 1
i BAY = Ry ()
at the surface layer (k = 1),
Dy, (0, (¥
D)+ 1) _ gaeg, — o @)
Dt
at intermediate layers (k = 2,...,n — 1), and
D, (6, (¥
Dn (6:(¥) + 1) "l()t)+f)+aA\I/n—,8A2\I/n:0 3)
at the bottom layer (k = n), where
e n is the number of layers,
e U, is the stream function at layer k, W is the vector (¥4, ..., \I/n)T,

2.2.

0y is the dynamic and thermal vorticity at layer k. 0, (¥) = AV, — (W), with (W), =

J Upp — 0 U, — Uy

Jop ( bt k_ 2k ol > . The matrix W can be diagonalized: W = P.D.P~!, P being
Hiyg \ pr+1 —pr pr— pr—

the transformation matrix.

f 1s the Coriolis force (fj is the Coriolis force at the reference latitude of the ocean), g represents the
gravity, pj, the fluid density at layer k (and p the fluid average density), and Hy, the depth of the layer
k,

D D

D—’; is the Lagrangian particular derivative : D—'; = % + J(Uy,.), where J is the Jacobian operator
9f dg Of dg

J(f’g) = a5 a. . A a.
Jdrdy Oy ox

AW, represents the bottom friction dissipation, A2¥}, represents the lateral friction dissipation,

and I is the forcing term, the wind stress applied to the ocean surface.

Cost function

We suppose that the data we want to assimilate come from satellite measurements of the sea-surface height,
which is directly related to the upper layer stream function ¥;. Thus, we assume that we have an obser-
vational stream function ¥$%%. By means of spatial interpolation and statistical considerations, we suppose
that \Ilfl’s is defined all over the ocean surface (that we will denote by (2). On the other hand, these obser-
vations are only available at times ¢;, 7 = 1... N, over the data assimilation period [0, T'].
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The control vector w (which has to be determined) is the initial state of the stream functions at all layers
(¥%(0)),_y _,,- Then, we can define a cost function

1 N
T =53 [ (Wt = 9 (0)" do+ Sl @)
i=1

where Wy (t;) are deduced from the initial conditions u and the evolution equations (1-3), and ||u|? is
a Tikhonov regularisation term. The inverse problem which consists of the minimization of 7 is ill-
posed, and thus a Tikhonov term is necessary. One can use the norm of the potential vorticity : |Jul|* =

Z Hy, / [0%(®)(t = 0)]? da. The choice of ¢ is difficult and depends on the error on observations. If & is
Q

k=1
chosen too small, the minimum of 7 will give an excessively noisy solution V. If ¢ is too large, the fields

obtained are on the contrary too smooth. ¢ is generally chosen using the cross validation method.

3. Adjoint model

3.1. Adjoint equations

The adjoint equations (see [4] for further details) are :

@ = AJ(T1, Ay) = (WTI(E,A)); — T (A1,61(0) + f) — BA®A; = By (5)
at the surface layer,
VD) A7 Aa) — (VT T8 ) — T (Ao 4(8) + ) — BA™AL = 0 ©)
at the intermediate layers, and
6L (A)

o~ AT (W, An) = (WEI(W, M) = T (An, 0n(®) + f) + @A, = BATA, =0 (D)

at the bottom layer, where
e Ay, ..., A, is the adjoint vector,
o 0L (A) = —AA, + (WTA), is the vorticity corresponding to the adjoint state,

e and F is the derivative of 7 with respect to Uy, :

N

Ey(t) =Y (Ta(t) — T3 (8)8(t — ).

i=1

3.2. Gradient computation

The gradient of the first part 7y of 7 is obtained by solving equations (5-7) with a final condition of nullity
of the adjoint state :
A1(0)
VJo=H(-A+W)H™! : ®)
An(0)

where H is the diagonal matrix with the layers’ depths Hj on the diagonal. The gradient of the second part
of J is obtained directly by deriving it with respect to w.
The numerical minimization of the cost function 7 can then be realized, using a quasi-Newton method.
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3.3. Model error

In previous sections, we have supposed that the model and the equations were perfect. This is obviously
not the case : for example, all parameters are not well known. This gives rises to a problem. How can we
incorporate the model error in the minimization process ? The only solution is to add corrective terms in
the model, to consider them as part of the control vector, and add a third term in the cost function 7. This
is not computationally realistic because the size of the control vector (nearly 107) would be multiplied by
the number of time steps (at least 80). Therefore, it is not possible to take into account in a straight forward
way the model error in this variational data assimilation method.

4. Dual formulation

4.1. General description

A new approach of data assimilation problems has been recently introduced by Bennett [2], Amodei [1]
and Courtier [3]. In a linear case, assuming that the model isn’t perfect, this new approach is strictly
equivalent to the classical approach, but the model error is taken into account in an inherent way in the dual
formulation.

Let us consider a linear model

dy

o TADy = f+o. y0) =y +u ©)
where A is linear, v the unknown model error and yo + u the unknown initial condition. Let us assume that
we have some observations z; of the system at different times ¢;. We can then define a cost function

N

1 o 1, Lt
T (u,v) = B Z<Ri (Hiy(ti) — 2:) , Hiy(ti) — i) + §<P0 u, u) + 5/0 (@ w(t),v(t))dt  (10)

i=1

where Py, () and R; are covariance matrices, and H; are (linear) observation operators in order to connect
observations and model solutions. We can then introduce the adjoint vector and equation, and we obtain the
optimality system

o
o HAWI = f+ Qb §(0) = yo + Pop(0),
dp N (11)
—r HAMT =Y IR (2 — Hig(t:)o(t —t:),  H(T) =0.
i=1

It is then possible to define an operator D on the observation space as follows :

mi
e Takem = : in the observation space (m; is an observation of the system at time %;),
mn
d N
e Solve the adjoint equation —% + At py = ZHZ-TmZ-(S(t — t;) with the initial condition
i=1
e Deduce y, (O) = Popm (O)’
. . dym _
e Solve the direct equation o + At)ym = Qpm,
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e Define Dm = Hy,,, which belongs to the observation space.

If we denote by ¢ the solution of (9) with © = 0 and v = 0 (the solution of the perfect model, with no error
on the initial condition), and d = z — Hy the innovation vector, we obtain the following :

Proposition 1 (D + R)i = d, where i = R~ (z — Hj).
See [1] for the proof. [
It is then possible to define a dual cost function as follows :

Tn(m) = %((’D+R)m7m)  (d,m). (12)

It can be proven that the optimal solution g of (11) is the sum of the perfect solution § and the solution
corresponding to 1, y,5. It can also be proven that the minimum of 7 is related to the minimum of Jp,
and the minima correspond to the same solution.

Therefore, we can see two main advantages in favour of the dual method :
o the inherent consideration of the model error,

e and the minimization of the dual cost function on the observation space, which is smaller than the
state space.

4.2. Dual algorithm for the quasi-geostrophic model

Let us see now a dual algorithm for the quasi-geostrophic model. It is no longer possible to use an incre-
mental approach § = § + y;; because of the highly nonlinear characteristics of the model. We have then to
construct a new dual algorithm for our model. This can be done as follows :

e Letm be an observation vector that can be directly related to ¥; (assume that m is a vector containing
an observation of the entire ocean surface at different times ¢;),

¢ Solve the adjoint equations (with a final condition equal to zero) :

% — AT(W1, Ay) = (WTT(®, M)y — T (Ay,60(9) + f) — BA2A, = By (m),
GGEEA) — AJ(Ty, Ag) — (WTT(E, A))g — J (A, 0u(8) + f) — BA2A, =0, 1<k<n, (I3)
% AT (T, An) — (WTT(T, A — T (A, 60(T) + ) + aAA, — BAZA, =0,
where
Ei(m)(t) = ﬁ;(m(t) — WP (1)d(t — t,)

e Solve the direct equations

W —,8A2\111 =F + (QA),

Dt
W—ﬂA%I’k:(QA)M 1<k<n (14
%‘f”ﬁ + AT, — BAT, = (QA),
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with the initial conditions ¥ (0) = ¥5(0) 4+ (PyA(0))s, where Q and F are statistical precondition-
ing matrices, and ¥4 (0) is an a priori estimation of ¥ (0).

N

Z Wy (t;)0(t — ti)-

i=1

e Define the operator D : (Dm)(t)

We can define the dual cost function as follows :

1
Jp(m) = (Dm,m) — (T, m). (15)
The gradient is obviously given by
VJp(m) = Dm — 9%, (16)

It is therefore easy to perform the minimization of Jp, given its gradient, simply by using a quasi-Newton
method such as a BFGS algorithm. We can notice that, as in the theoretical linear case, the minimization of
the dual cost function takes place over a smaller space than the minimization of the primary one. Moreover,
this method still takes into account the model error, which was numerically impossible in the classical
approach.

5. Conclusion

A duality between the classical variational approach and the dual “observation vectors” method has been
shown on a layered quasi-geostrophic ocean model. There are a priori many ways to extend the linear
duality theory to a nonlinear model, but the one presented in this paper seems quite reasonable. Numerical
experiments are under development and the first results show that, assuming the model is perfect, the dual
method gives faster results that are comparable to those of the primary method.
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