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Application of the optimal control theory to the wastewater
elimination problem
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Abstract. The main goal of this paper is to show some applications of the optimal control theory to the
wastewater elimination problem. Firstly, we deal with the numerical simulation of a given situation. We
present a suitable mathematical model, propose a method to solve it and show the numerical results for a
realistic situation in the ria of Arousa (Spain). Secondly, in the same framework of wastewater elimination
problem, we pose two economic-environmental problems which can be formulated as constrained optimal
control problems. For each of them, we give a theoretical analysis, introduce numerical methods and show
results for real situations.

Aplicaciones de la teoria de control 6ptimo al problema de la eliminacion de
aguas residuales

Resumen. El principal objetivo de este trabajo es mostrar algunas de las aplicaciones de la teoria
de control éptimo a problemas relacionados con la eliminacién de aguas residuales. Como primer
paso se aborda el problema de la simulacién numérica de una situacién dada, presentando un modelo
matemadtico adecuado, sefalando como resolverlo numéricamente y mostrando los resultados obtenidos
en una situacion realista planteada en la ria de Arousa (Espafia). A continuacion, en el marco de la pro-
blemitica de eliminacién de aguas residuales, se plantean dos problemas econdmico-ecoldgicos que se
formulan, a partir del modelo anterior, como problemas de control éptimo con restricciones. Se analizan
tedricamente, se indica como pueden resolverse numéricamente y se muestran los resultados obtenidos
en una situacion realista.

1. Introduction

The wastewater elimination problem arise from the growing industrialization and population explosion
around urban areas. Wastewater, just like any other waste, has increased at cities in last years and it has
became a very important problem that has not been completely solved yet. In coastal areas, a widespread
solution is to discharge wastewater into the sea. In order to do it, a treatment system must be constructed.
It consists of some purifying plants: each of them collects the sewage from different urban areas, treats it
with chemical or biological methods and, finally, discharges it into the sea by means of a submarine outfall
(see fig. 1).
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Figure 1. A wastewater treatment system.

The construction of this system is very expensive and, moreover, the environmental consequences could
be very dangerous if the discharges are not carried out carefully. Thus a study of the environmental impact
must be done in a previous stage. In this study, mathematical modelling can be very useful and so a first
mathematical problem arises: the numerical simulation of a hypothetical situation. We have to compute
the pollutant concentration in the domain where we are going to discharge wastewater through submarine
outfalls.

A more interesting problem than simulating a given situation is designing an optimal one. This is the
case, for example, of determining the optimal location of submarine outfalls or the pollution reduction
to be done in each purifying plant in order to minimize the depuration cost of the whole system while
guaranteeing the water quality in certain sensible areas as beaches, fish nurseries, etc.

The main goal of this paper is to show some results obtained by the authors along the last years. The
outline of the paper is as follows. The next section is devoted to simulate a hypothetical situation: we present
a mathematical model governing the pollutant concentration in a shallow water domain where wastewater
are discharged through submarine outfalls. Then we propose a numerical method to solve it and show
numerical results obtained for a hypothetical situation posed in the ria of Arousa (Spain). Next, sections 3
and 4 are devoted to study the two above mentioned problems related to the design of optimal situations. For
each of them, we introduce a mathematical formulation, give theoretical analysis, and propose numerical
methods. Finally, some results obtained in a realistic situation are shown.

2. Wastewater discharges. Numerical simulation

We consider a domain €2, with boundary I', occupied by shallow water. It can be a ria, an estuary or a
lake. Polluting wastewater are discharged through Ng submarine outfalls located at points b; €  and
connected to their respective purifying plants located at points a; € I" (see fig. 2). Moreover, we assume
that there exist several areas A; C 2, i = 1,..., Ny in the domain representing fisheries, beaches or
marine recreation where it is necessary to guarantee the water quality with pollution levels lower than some
allowed threshold levels.

Firstly, in order to simulate the water quality in €2, we have to choose some indicators of pollution levels.
Two of the most important (especially in the case of domestic discharges) are the Dissolved Oxygen (DO)
and the organic matter, which can be measured in terms of the need of oxygen to decompose it, the so-
called Biochemical Oxygen Demand (BOD). If the pollution level is not too high the BOD can be satisfied
by the DO. However, if the organic matter increases beyond a maximum value the DO is not enough for its
decomposition, leading to important modifications (anaerobic processes) in the ecosystem. To avoid them
a threshold value of BOD may not be exceeded and a minimum level of DO must be guaranteed.
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Figure 2. Domain (2.

2.1. Mathematical model

The evolution of the BOD and the DO in the domain Q C R? is governed by a system of partial differential
equations (cf. [5]). Let us denote by p1 (x,t) and pa(x, t) the concentrations of BOD and DO at point 2z € 2
and at time ¢ € [0, T, respectively. Then these concentrations are obtained as the solution of the following
two initial-boundary value problems:

Ng
op1 | . 1 .
v +4.Vp — f1Ap1 = —kip1 + 7 ]Z:;mjd(a: —b;) inQx(0,7)
% =0 onT x (0,7)
%1(33, 0) = p1o(z) in O (1
_ 1 .
L; + U.Vps — f2Aps = —k1p1 + Eﬁg(ds — p2) inQx (0,7
% =0 on T x (0.7)
p2(2.0) = pao() in Q2 )

where m;(t) is the mass flow rate of BOD discharged at point b, 6(2 — b;) denotes the Dirac measure
located at b; and parameters 3; > 0 and 3, > (horizontal viscosity coefficients), k1 > 0, k2 (kinetic coef-
ficients related to BOD elimination and oxygen transfer through the surface, respectively) and ds (oxygen
saturation density) can be obtained from experimental measurements. The functions h(x, t) and @(x, t) de-
note, respectively, the height and the mean horizontal velocity of the water; they may be previously obtained
by solving the Saint-Venant (shallow water) equations:

%+V.(hﬁ):0 nQx(0,7)
A(huy) = [ O(ujhu;) am  dpa 1 . .
— J - = FZ —N\Tw — 5 = 1’ 2 Q ,T
5 +; < Dz, +gh6xi + o2, + p(T Tr), 4 inQx (0,7) @
(ha)v = f onTy x (0,7T)
h=1+H onT; x (0,7)
h(z,0) = ho(z), @(z,0) = t(z) in )

where I'g denotes the coast or effluent boundary, I'; denotes the open sea boundary (I' = I'o UT'y), n =
h — H (H(z) is the depth with respect to a reference level), and the other terms represent the effects of
atmospheric pressure, wind stress and bottom friction (see for instance [9] for further details).

285



A. Bermiidez et al.

2.2. Numerical resolution

The numerical resolution of the previous model consists of two steps. First of all, we have to solve the
Saint-Venant equations (2) and then, when we know the velocity field, i(z,t), and the height of water,
h(z,t)), we obtain the BOD and DO concentrations, p; (x,t) and ps(z, t), by solving the system (1).

In the present paper, the Saint-Venant equations are solved by using an implicit in time numerical scheme
and Raviart-Thomas finite elements for the space discretization (see [9]). For the system (1) we use a
method which combines characteristics for time discretization with finite elements for space discretization.
Further details can be found in [1] or [2] where numerical convergence is proved.

2.3. Numerical results

The model (1)-(2) has been used to simulate the velocity field and the BOD-DO concentrations in several
rias of Galicia (Spain). In this section we present the numerical results obtained in the 7ia of Arousa during
a complete tidal cycle for two different wind conditions. We assume wind velocity is 22 m/s and consider
two opposite directions: SW and NE. The sensibility of the model can be assessed from the figures 3, 4
and 5. They show, respectively, velocity field, BOD concentration and DO concentration at middle-hight
tide for the two different wind directions. We observe that the NE direction reduces the tidal velocity of the
water at this moment (specially in the shallow zones). This implies that the mouth of the r7a is less polluted
with NE wind than with SW wind which is rather intuitive.

SWwind ¥

Figure 3. Velocity field at middle-hight tide (ria of Arousa).
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Figure 4. BOD concentration at middle-hight tide (ria of Arousa).
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3. Problem 1: Optimal management of a wastewater treatment
system

In this section we are going to study an optimal control problem related to the management of a wastewater
treatment system. We recall that we have a domain occupied by shallow water where polluting wastewater
are discharged through Ng submarine outfalls (at this moment we suppose that these outfalls are already
located at points b; € §2). Moreover, there exist several sensible areas, A; € (Q, in the domain, where it is
necessary to guarantee the water quality with pollution levels lower than an allowed threshold. We suppose
that wastewater arrive to the purifying plants with a certain BOD concentration. Before discharging them
into the sea, its BOD concentration can be reduced in the plants by different biological or biochemical
treatments. From the ecological point of view the depuration in each plant must be as high as possible but,
from the economical point of view, there is a cost proportional to the realized depuration. Then, the optimal
management problem is to determine the depuration at each plant along the time, in such a way that the
global depuration cost is minimized and the above constraints on the water quality are satisfied.

3.1. Mathematical formulation

In order to formulate this problem we need to take into account some issues. Firstly, if m; denotes the BOD
of wastewater arriving to the j — th plant and m; is the BOD corresponding to the maximum depuration at
that plant, then determining the depuration at the j — th plant is equivalent to finding the mass flow rate of
BOD, m;(t), discharged through the corresponding outfall. We assume they satisfy the constraints
m; <m(t) <im; j=1,2....,Np. 3)

Secondly, if we take BOD and DO as indicators of the water quality, then the environmental constraints on
it can be written as follows (see section 2):

pria; Soi i=1,.... Ny @

P24, 2 G 1=1,...,Nz.

Finally, we suppose that the cost of the depuration process at the 7 — th plant is known and it is a strictly
convex C2-function of the BOD discharged through the corresponding outfall. Hence, if f; denotes the cost
function at j — th plant, the cost of the whole depuration is given by,

NEg T
Jy(m) :Z /0 fi (m(t)) dt. 5)

According to this, the optimal management problem (P, ) consists of finding the functions m;(t), j =
1,..., Ng, minimizing the cost function (5) in such a way that the corresponding state of the system given
by (1) satisfies the constraints (3) and (4).

This is an optimal control problem with pointwise state constraints and with pointwise control. From
the theoretical point of view the main difficulties are first the fact that the source term of the state system
includes Radon measures and second the presence of pointwise state constraints. Numerically, difficulties
arise from the high dimension of the discrete control space and the high number of discrete constraints
related to time and space discretization.

3.2. Theoretical Analysis

First of all, we state the existence and uniqueness of solution for the state system.
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2 2
Definition 1 Given r, s € [1,2), Sts > 3, we say that p = (p1,p2) € [L"(0,T; Wh5(Q)]?, is a
solution of the system (1) if forall ® = (®1,®5) € [L2(0,T; H*(Q))NH (0, T; L2(Q))>N[C (2 x [0, TT)?

such that ®(.,T) = 0, the following equality holds:

o
/ /{_8—751 p1— pz + 1V ®1.Vp1 + oV®5. Vs + 11V,
1
+<I>21T.Vp2 + Iil(blpl + Iﬂ?1@2p1 + mh@@gpg)} dx dt

—Z/h &, (P, t)m;(t) dt

+/0 /Qm;@2ds¢2(x7t)dxdt+/Q‘I’Q(%O)PQO(fv)d”

Let A be the operator defined by
(Alwr ), (z1,52)) = [ (~Fidwns — sz,
Q

. R 1
4. Vw21 + U.Vwazo + Kiwy 21 + k1w 29 + Engwgzg) dx,

for (wy,ws), (21, #2) such that the previous expression makes sense. Then we have the following:

Theorem 1 There exists a unique pair
p = (p1,p2) € [L7(0,T; WH=(Q))]> N [L*(0, T L*(2))]?,
with
dp

Op1 Op2 , P 12
a5t = Cor ) LG T (W (Q))]

ot ot

2 2
forallr, s € [1,2), — + — > 3, such that p is solution of (6) and verifies
ros
T
0P
/0 (=55 + A (@), p)dt = Z/ &, (P;, t)ym;(t) dt

T
+ ———KodsPo (2, t dxdt+/<§ z,0 x)dx,
/ /Qh(m) 2 (1) [ (0,000 (a)
forall® = (91, Py) € B, where

B={®= (2, %) € [L*(0,T; H*(Q)) N H'(0,T; L*())]”
o® 0®

——— 4+ A*(®) € [L*(0,T; L*(Q))]?,
5 (@) € [L7( ()] ae (rior)

=0, ®(,T)=0)}.

Furthermore, there exist constants Cy,, k = 1,...,6, depending only on data, such that

Ng

ol mwrs @2 < C Z lmill Lo 0,7) + C2llp20llc(@) + C3 ds
=1

and

NEg
lIolliz20, 222 < Co > lImill o,y + Csllp2ollo@) + Cods. O

i=1

(6)

O

@®)

)
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The proof of this theorem can be seen in [11], as well as the following regularity and continuity results.

Lemma 1 Functions py and py are continuous in A; x [0,T], Vi=1,...,Nz. O

Lemma 2 There exist constants C‘l , éQ, 6’3 such that

Ng

Hp”[C(Uf\’:ZlAiX[O,TD]? < CA’l Z ||mi||L°°(0,T) + 02 ||p20||C(Q) + CA(?’ ds. O
i=1

Concerning existence of solution to the optimal control problem (P ), we define
Maq ={m € (L>(0,T)N" : 0 <m; <mj;(t) <m; ae. in(0,7), j=1,...,Ng}.
We have the following result:

Theorem 2 [f there exists a feasible control h € M,q such that the corresponding state p satisfies the
constraints

Priaixor) < 0oi. i=1,...,Ng,
pNQ\Aix(O,T)ZCia i=1,...,Ngz,
then the optimal control problem (Py) has a unique solution. O

Finally, in order to write an optimality system, we define

Fy im e (L=(0,T)Ne — Fy(m) = P12 2o € C(UN7 4; x [0,T7),

Fy:m € (L0, 1) — Fa(m) = pay 52 1 0.m € COUYE A x [0.T)),

and state their Gateaux derivability.
Lemma 3 The mappings Fy y F> are Gateaux derivable. Moreover

DF] (m)(n) = wl\Uf’:ZlAiX[O,T}’

DFQ(m)(n) = wQ\UfV:Zl/LX[O,T}’

where wy and wo are the solution of the linearized system,

%+ﬁ.Vw1 — B1Aw :—mw1+%inj5(x—Pj) in Q2 x (0,7) \
% =0 onT x (0,7)
wi(x,0) =0 inQ (10)
% + U.Vws — frAws = —Kiw; — %1‘626@ in Q% (0,7)
% =0 onT x (0,7)

wa(x,0) =0 in Q
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From this Lemma one can obtain a first order optimality system satisfied by any solution of the optimal
control problem. In order to express the optimality conditions in a simpler way we introduce functions
1, p=2 solution (in the sense of Definition 2 below) of the following boundary value problem:

Op . )
—8—;—V( 1) = B1Ap1 + k1(p1 +p2) = mjaxery 2 x(0,T)
Bl%—kﬁ.ﬁpl: onT x (0,7)

n(@,T) = pjgxry
(1)
0 . 1 .
—% — V.(up2) = B2Ap2 + 7,f2P2 = 1219 (0,T) in % (0,7)
52 L aim =0 onTx (0.T)
on
p2(x,T) = pajg gy Q2 )

where jui1, 15 are regular Borel measures in Q x [0, T']. The weak solution of the system (11) can be defined
by transposition techniques (see [10]) in the following way:

A 2 2
Definition 2 Given r, s € [1,2), = + = > 3, we say that p = (p1,p2) € [L"(0,T;WH5(Q))]? is
roos _
a solution of the system (11) if for all z = (z1,29) € [L?(0,T; H*(Q)) N C(Q x [0,T])* such that
2(.,0) = 0, the following equality holds:

Oz
/ /{ 1p1 + p2 + p1V21.Vp1 4+ paV2a.Vps +i.V21py + 6.V zaps
1 )}ddt—//d(t)
h(x,t)@ZQm X at = ) QZ1 M1,
T
[ [ s+ [ s Ddur @)+ [ s i),
0 Q Q Q

Let us define the sets S; and S5 by

+K121p1 + K121p2 +

S1 ={y € C(UN4A; x [0,T)) : y(x,t) < o, Y(z,t) € A; x [0,T], j=1,...,Nz},
Sy ={w € C(UNA; x [0,T]) : w(z,t) > (. Y(a,t) € A; x [0,T), j=1,...,Nz}.

We have the following

Theorem 3 Letm € M,q be an optimal control. Then there exist two functions py, ps € L"(0,T; Wh5(Q))N
2 2

L?(0,T; L*(Q)), forallr, s € [1,2), =+ = > 3, which are solution of (1) and two functions py, ps €
ros

L™(0,T; W15(Q)) solution of (11), where yuy, po are two Borel measures with support in Ufizl A;x[0,T]
such that
Ni\Uf’:ZlAiX[O,T} € alsl(Fz(m))v i=1,2 (12)

and furthermore

Ng T T 1

> </0 i (m () (n(t) — my(t)) dt +/0 e (Pj,t)(n;(t) —m;(t)) dt) >0, Vn€ Mg
- (13)
PROOF. See[11] N
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3.3. Numerical solution

The numerical solution of the optimal control problem (P, ) requires a discretization in accordance with that
of the state system. Thus from the numerical approximation of the state variables at grid points and time
steps (p};(z) ~ pi(z;,t,)) we define the function g; which put together the discretized state constraints:

g] . ]:RNXNE s RNXNVZXIRNXNVZ

m —  gi(m) = (pr — 0, ( = pa), (14

where N € N is the number of time steps, m = {m, } is the vector of all discharges at all time steps, Ny
is the number of grid points in the protected areas and pj is the vector of values of p; at grid points included
in the protected areas and for all time steps.

Moreover, because of the particular shape of the functions f; the constraints m;(t) < m; can be sup-

pressed. Then, denoting m = {{m; N };VZEI, the function g, collects the discretized control constraints:

. NXNg NXNg
m —  ga(m) =m —m.
Finally, the cost function is approximated by using a quadrature formula:
Ji: RVXNe R

) T Ne N
m — Ji(m) = N Z Zanfj(mjn)a

j=1n=1

(16)

where m,, is the mass flow rate of BOD discharged at b; at time ¢,, and ();, are the weights of the
quadrature formula.
Then the optimal control problem (P, ) is approximated by the following discrete optimization problem:

mERNXNE

(P1p)
such that g;(m) <0 i=1,2.

Now this problem can be solved by different numerical methods (we refer to [12] for a numerical resolution
of (P, p) by using a succesive quadratic programming algorithm and an admissible points method).

3.4. Numerical results

In this section we present the numerical results obtained when solving the previous problem for a realistic
situation posed in the ria of Arousa during a complete tidal cycle (T'=12.4h). We have taken four submarine
outfalls and nine protected areas (see Fig. 6), and we have considered the same constraints on the nine zones.

The cost function is the same at every purifying plant and it is given in Figure 9. We assume that
pollutant concentration of wastewater arriving to the purifying plant is 150 kg/m? so the depuration cost
above this value is constant.

The values of the optimal discharges can be seen in Figure 8. For these discharges, Figures 6 and 7
show, respectively, the BOD and DO concentration at high tide, at the end of the tidal cycle that we have
simulated. The constraints are satisfied everywhere in the protected areas and the saturation takes place for
the BOD concentration at several points.
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Figure 6. BOD concentration at high tide corresponding to the optimal discharges (ria of Arousa).
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Figure 7. DO concentration at high tide corresponding to the optimal discharges (ria of Arousa).
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Figure 8. Optimal discharges. Figure 9. Cost function.

4. Problem 2: Optimal location of wastewater outfalls

The second problem is connected with the optimal design of a wastewater treatment system. Particulary, it
consists of finding the optimal location of the submarine outfalls.

We consider a similar situation to the previous one: a domain occupied by shallow water where we are
going to discharge polluting wastewater through submarine outfalls and where there exist several sensible
areas in which we have to guarantee the water quality in terms of BOD and DO. Moreover, we also suppose
that there are N purifying plants (located at points a; € I') but, unlike the previous problem, we now
assume that the depuration in every plant is fixed (the functions m(¢) are known beforehand) and our goal
is to determine the points b; where wastewater will be discharged. These points must be determined in
order to minimize the construction cost of the submarine outfalls while guaranteeing the water quality at
the sensible areas.

4.1. Mathematical formulation

The constraints on the water quality are given in (4). Moreover, taking into account technological limita-
tions, the j-th outfall must be placed in a suitable region U;, where U; C 2\ Ufizl Aj is a compact convex
polyhedral set representing all the admissible points where outfalls can be located. Thus, the optimal loca-
tions must verify b; € U;, Vj =1,..., Ng. If we define U,q = H;V:El U;, this constraint can be written
in the simpler way

b€ Ugg- )

Finally, we suppose that the construction cost of the j-outfall depends on the distance between the purifying
plant (located at point a; € I') and the point of discharge, b; € ). Hence we consider that the global cost
of the system is given by

Ta(b) = 5llbj — ajl*. (18)

Jj=1
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Then the problem of optimal design, denoted by (P), consists of finding the points b;, j = 1,...,Ng
minimizing the cost function (18) under the constraints (4) and (17).

This is a control problem with quadratic cost but with non-convex pointwise state constraints which
makes difficult its analysis and resolution. A related steady state problem has been previously studied in [8]

4.2. Theoretical Analysis

We consider the mapping

F:b€ Uy — F(b) =Pz
i=1

Z A,;%]0,T] € [C(UZZ\;ZlfL X [OaT])]Q

For the sake of simplicity we denote F (b) Then, as a

= Pz Ao W9 F2(0) = o2y o my
consequence of the regularity of the Green matrix G = (Gyn)1<i,n<2 of the state system, the following
regularity result can be obtained (see [3]):

Theorem 4 The mappings F\ and Fs are continuous and Gateaux differentiable. O

Now, by using minimizing sequences we have the following existence result:

Theorem 5 If there exists a feasible control b € U,q such that the corresponding state j satisfies the
constraints:

P14, x[0,1] < O Vi=1,...,Ngz

/)~2|A_1-><[0’T]2Ci, Vi=1,...,Ngz

then the optimal control problem has, at least, one solution. [

Finally, by using a mollifier sequence for the Dirac measure we obtain a first order optimality system
satisfied by the solutions of the optimal control problem. Indeed, by using the functions p;, p, solution of
the problem (11) we have the following result (see [3]):

Theorem 6 Letb € U,q be an optimal control. Then, there exist two functions py, pa € L7(0,T; W5(Q))N
2 2

L?(0,T; L?(2)), forallr, s € [1,2), =+ = > 3, solving (1), two Borel measures i1, i with support in
r s

Ufizl/_li x [0,T], two functions py, p2 € L™(0,T; W1:5(Q)) solving (11) and a non-negative constant \
such that

'ukluf\’:ZlA_;x[O,T] € 0Is, (Fr(b)), k=12, (19)
A+ lpall + M2l > 0, (20)
and the following relation holds:
Ng T 1
> AN (b —aj,¢; — b)) +/0 mj(t)W(m p1(bj,t)),¢cj —bj)dt} >0, Ve € Usa. O (21)
j=1 s

4.3. Numerical resolution

Now, in order to solve the problem (Ps), we introduce a discretization of the control problem in accordance
with the one made for the state system. Firstly, the function collecting the discretized state constraints is
denoted by g1,

gl . ]RQXNE — RNXNVZXRNXNVZ

b — ) = (-, C— ). 22)
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Secondly, we define a function go : R2*N® — R" collecting all the linear constraints on the control
which corresponds to the characterization of U4, i.e., §o is such that b € U,q < g2(b) < 0.
Then the optimal control problem (P,) is approximated by the following discrete optimization problem,

min  Jy(b)
beR2XNE

(P2p)
such that g;(b) <0 i=1,2.

This problem can be solved by the admissible points method used before for problem (P;p). How-
ever, in this case, the function collecting the state constraints, g, is not affine. Now, in order to compute
the matrix Vg; (b) we need to approximate each Dirac measure 6(z — b;) € M () by a suitable func-
tion &(.,b;) € L(f2) (see [1] for further details). Then we solve, for j = 1,...,Ng, k = 1,2, the
approximated problems with measure data,

9z ; : ; 195 )
il ﬁ.VziJ’k) - ,BlAzy’k) + &1,2;]"9) = ——mj—h(x,bj) inQx(0,7)
ot h 6l‘k
82(]7k)
Bln =0 onDx(0,7T)

MG 0)=0  inQ

—th + @V = BAZ 4w Sra =00 X (0.7)
82(]‘7]:)
6211 =0 onT x(0,7)
zéj’k) (x,0) =0 in Q )
and then we can show that
9g1(b) j k j k
= (o), =)

k
avk

evaluated at all vertices in the protected areas and at all times.

The difficulties obtaining the gradient (and Hessian) of g (b), the essentially geometric nature of the
original problem and the low dimension of the control invited us to use some other methods to solve the
problem (Pyp). In [4], three different algorithms are used to obtain the numerical solution of (P2 ) namely
an admissible points algorithm, the Nelder-Mead simplex method and a duality method. As we can see in
that paper, due to the geometric nature of the problem, the three algorithms present a good performance,
specially the Nelder-Mead method.

4.4. Numerical results

In this section we present the numerical results obtained when solving the problem (P;) for a realistic
situation posed in the ria of Vigo (Spain) during a complete tidal cycle. We have taken two purifying
plants, located near the coast at points a; = (0,11000) and as = (6630, 7200), and two protected areas
(see Fig. 10).

The state constraints for both protected areas corresponds to o; = 0.0002, o5 = 0.000135, (7 =
0.008067, {( = 0.0000805. The admissible set U,y and the optimal locations by = (69,10224) and
by = (5535,8278), given by the Nelder-Mead method can be seen in Figure 10. Moreover, this figure
shows the BOD concentration at high tide, at the end of the tidal cycle that we have simulated.
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MODULEF : carmen
DBO: PAS.T 121

03/05/01
mailvigo_c
coorvigo_c
vel.sdb

738 POINTS

738  NOEUDS
1241 ELEMENTS
1241 TRIANGLES

2.0237E-04 =D
0;=2.0000E-04 <D <2.0237E-04

1.8368E-04 <DB0<2.0000E-04=0,

1.6498E-04 <DB0<1.8368E-04

1.4629E-04 <D0 <1,6498E-04

G,=1.3500E-04 <DB0<1.4629E-04
1.2760E-04 <0 <1.3500E-04=0,

1.0890E-04 <R <1.2760E-04

9.0209E-05 <pp0 <1.0890E-04

7.1515E-05 <M <9.0209E-05

5.2822E-05 <DM <7.1515E-05
3.4129E-05 <R <5.2822E-05
1.5435E-05 <DB0 <3.4129E-05

13 ISOVALEURS

Figure 10. Optimal BOD concentration (hight tide, ria of Vigo).
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