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Kernel distribution estimation for grouped data
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Abstract

Interval-grouped data appear when the observations are not obtained in continuous time, but

monitored in periodical time instants. In this framework, a nonparametric kernel distribution esti-

mator is proposed and studied. The asymptotic bias, variance and mean integrated squared error

of the new approach are derived. From the asymptotic mean integrated squared error, a plug-in

bandwidth is proposed. Additionally, a bootstrap selector to be used in this context is designed.

Through a comprehensive simulation study, the behaviour of the estimator and the bandwidth se-

lectors considering different scenarios of data grouping is shown. The performance of the different

approaches is also illustrated with a real grouped emergence data set of Avena sterilis (wild oat).
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1 Motivation

In the experimental sciences, data usually come from measurements of continuous varia-

bles such as temperature, mass, weight, time, length, etc. However, for several reasons,

measurements are always obtained in finite precision; i.e., all observed data are rounded

or grouped to some extent.

A typical situation in which grouped data clearly appear (and the degree of grouping

can be considerable) is when researchers observe variables not continuously, but perio-

dically, thus obtaining time to event data distributed along a set of consecutive intervals.

Situations like this appear very frequently in areas such as engineering, economics, so-

cial sciences, epidemiology, medicine, agriculture and more (Coit and Dey, 1999, Guo,

2005, Minoiu and Reddy, 2009, Pipper and Ritz, 2007, Rizzi et al., 2016). Especially

in these cases, data uncertainty should be taken into account to avoid serious mistakes

when making inferences.
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One of these situations that partially motivated this work was a real problem from

weed science, where weed emergence is coded as a set of non-equally spaced grouped

data. In this framework, a key variable to study seedling emergence is the cumulative

hydrothermal time (CHTT), which is a mix of time of exposure to certain temperature

and humidity conditions. CHTT is typically available in k inspections and the num-

ber of emerged seedlings at each one is registered. In more restrictive situations, only

the cumulative proportion of emerged seedlings recorded at every monitoring date are

reported. Most of the statistical methods used in this context tackle the problem of mod-

eling weed emergence (the so-called emergence curve) from a regression point of view.

Parametric models such as Gompertz and logistic have been widely used to define the

relationship between the CHTT and weed emergence. However, due to the limitations

of this approach, in Cao et al. (2013), this problem has been dealt with through non-

parametric estimation of the distribution function of the CHTT at emergence. In that

paper, a simple kernel distribution estimator adapted to deal with grouped data, based

on a modification of the standard kernel estimator of the distribution function, was pro-

posed and applied to analyse a weed emergence data set. This nonparametric approach

has recently been proven to outperform the classical regression methods in terms of

prediction error (González-Andújar et al., 2016). However, a deeper statistical analysis

of this new nonparametric distribution estimator is required. In the present paper, we

study the asymptotic properties of this estimator. Additionally, a plug-in and a boot-

strap bandwidth selector are proposed and compared in different scenarios through a

comprehensive simulation study.

The organization of this paper is as follows. In Section 2 the notation used through-

out the paper and the kernel distribution estimator for grouped data are presented. In

Section 3, under some assumptions, the asymptotic bias, variance, and mean integrated

squared error (MISE) of this estimator are obtained. In Section 4, using the asymptotic

MISE expression, a plug-in bandwidth selector is proposed. Additionally, closed forms

for the MISE and its bootstrap version, MISE∗, are presented and a bootstrap band-

width selector is derived. In Section 5, a simulation study with different sample sizes

is presented to show the consistency of the estimator under different grouping scenar-

ios. In Section 6, the nonparametric estimator and both bandwidth selection methods

are applied to a grouped emergence data of Avena sterilis (wild oat). Finally, Section 7

summarizes the main conclusions. Proofs are included in Appendix A. Supplementary

materials completing the simulation study and with an additional empirical study based

on real data are available online.

2 Kernel distribution estimator for interval-grouped data

Let us introduce the notation for grouped data. Suppose that X is the random variable

of interest, with density function f and distribution function F , and let (X1,X2, . . . ,Xn)

be a random sample of X . Consider a set of intervals [y j−1,y j), j = 1,2, . . . ,k, where
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the j-th interval length is l j = y j − y j−1, its midpoint is t j =
1
2
(y j−1 + y j), and denote

the number of observations within each interval by (n1,n2, . . . ,nk). Sometimes, only the

sample proportions (w1,w2, . . . ,wk) are available, where w j = Fn(y j−)−Fn(y j−1−) is

the actual observed random quantity, and Fn(y−) is the left-hand limit of the empirical

distribution function Fn.

For example, using this notation and focusing on the weed emergence problem that

motivated this research, X would be the random variable measuring the CHTT at emer-

gence of a particular weed. Moreover, denoting by n the number of seedlings that have

emerged at the end of the monitoring process, since the inspections carried out to count

the number of emerged seedlings are performed at a limited number of k instants, the

values X1,X2, . . . ,Xn, measuring the CHTT at emergence of every single seedling, can-

not be observed. In this case, what is observed is the CHTTs at inspections (the limits of

the intervals, previously denoted by yi, i = 0,1, . . . ,k) and the total number of seedlings

that have emerged in the intervals between consecutive inspection times, n1,n2, . . . ,nk,

(or the corresponding sample proportions, w1,w2, . . . ,wk, with wi = ni/n).

It is worth mentioning that there exists a parallelism between grouped data and the

so called interval-censored data (see the book by Klein and Moeschberger, 1997, for an

introduction about interval-censored data in survival analysis). The main similarity is

that the exact value of the interest random variable data Xi is not observed and one is

only able to know the interval in which every datum of the interest population belongs.

There are two main differences between grouped data and interval-censored data. The

first one is that the intervals [y j−1,y j) are typically fixed (not random) for grouped data,

while the interval endpoints are random variables for interval-censored data. As a con-

sequence, for interval-censored data there are, in principle, as many different intervals as

the sample size, n, while for grouped data the number of different intervals, k, is known

beforehand and is smaller than the sample size (k < n). General estimation methods

applicable for interval-censored data, as Turnbull’s estimator (Turnbull, 1976), can also

be used for grouped data. In our grouped data setup, Turnbull’s estimator of the cumu-

lative distribution function just gives the empirical cumulative distribution function for

grouped data.

First, let us consider the ideal continuous case, where (X1,X2, . . . ,Xn) are supposed to

be observed. From the well-known Parzen-Rosenblatt kernel density estimator (Parzen,

1962, Rosenblatt, 1956), defined as

f̂h (x) = n−1

n
∑

i=1

Kh (x− xi) , (1)

where Kh (u) = h−1K (u/h), with K a kernel function (typically an auxiliary density

function) and h the bandwidth parameter, it is straightforward to obtain a kernel estima-

tor of the cumulative distribution function (cdf) as
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F̂h(x) =
∫ x

−∞

f̂h (t)dt =
1

n

n
∑

i=1

K

(

x− xi

h

)

, (2)

where K(t) =
∫ x
−∞

K (t)dt. Some theoretical properties of (2) can be found in Hill

(1985), Nadaraya (1964) and Reiss (1981). Although the choice of the kernel func-

tion is of secondary importance, the bandwidth h plays a crucial role in the shape of

estimator (2). Differently to the case of kernel density estimation, there are not many

contributions addressing the bandwidth selection problem in kernel distribution esti-

mation. Different cross-validation methods were studied in Bowman, Hall, and Prvan

(1998) and Sarda (1993); and plug-in selectors were considered in Altman and Leger

(1995) and Polanski and Baker (2000). The interested reader can find more theoretical

details and an extended discussion on the previous cross-validation and plug-in selectors

in Quintela-del-Rı́o and Estévez-Pérez (2012). More recently, a bootstrap bandwidth se-

lector for the estimator (2) has been developed in Dutta (2015).

When working with grouped data, the issue of density estimation has been widely

addressed employing different approaches. Using nonparametric methods, in Reyes,

Francisco-Fernandez, and Cao (2016) a simple modification of the estimator (1) was

proposed and studied, while in Reyes, Francisco-Fernández, and Cao (2017) two dif-

ferent bandwidth selectors for this estimator were analysed. Also in a nonparametric

context, Wang and Wertelecki (2013) proposed a bootstrap type kernel density estima-

tor for binned data, and Blower and Kelsall (2002) proposed a nonlinear binned kernel

estimator. In this setting, Rizzi et al. (2016) compared the performance of different non-

parametric density estimators for grouped data via a simulation study and also using

some empirical cancer data. Other approaches in this framework consist in converting

the density estimation problem to a regression problem using the root-unroot algorithm

(Brown et al., 2010) or using parametric methods (Wang and Wang, 2016). Parametric

methods can be useful for heavy grouping if the assumed model is correct, but if this is

not true, the results obtained can be wrong.

Studies on estimation methods for the distribution function for grouped data are

much scarcer and they are mainly based on the empirical distribution function (Turnbull,

1976). Although the distribution function is closely connected with the density function,

in some situations, the data are collected in an accumulated way, making the distribution

function the element of interest. This is the case, for example, in the weed emergence

problem previously described. Therefore, it is of special concern to develop and study

specific distribution function estimators for grouped observations.

Starting with the related density estimation problem, in Scott and Sheather (1985)

and Titterington (1983), the kernel density estimator (1) was redefined to be used with

binned data, assuming a constant binwidth, as

f̃h(x) = n−1

k
∑

i=1

niKh (x− ti) . (3)
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In Reyes et al. (2016), a modified version of (3) considering the general case of dif-

ferent interval lengths, given by

f̂
g
h (x) =

1

h

k
∑

i=1

wiK

(

x− ti

h

)

, (4)

was studied. Its asymptotic properties were obtained, and a plug-in bandwidth selector

was proposed and analysed.

From (4), it is straightforward to obtain a kernel distribution estimator for binned or

grouped data as

F̂
g

h (x) =
∫ x

−∞

f̂
g
h (u)du =

k
∑

i=1

wiK

(

x− ti

h

)

, (5)

where K(x) =
∫ x
−∞

K (z)dz. Note that (5) is a simple modification of (2) for the context

of interval-grouped data.

3 Theoretical results

In this section, a closed form for the MISE of the kernel distribution estimator for

grouped data (5) is obtained, and its asymptotic properties are derived. Using stan-

dard calculations and assuming that F(yk) = 1 and F(y0) = 0, it is easy to prove that the

expectation and the variance of F̂
g

h (x) are, respectively,

E
[

F̂
g
h (x)

]

=
k

∑

i=1

K

(

x− ti

h

)

pi (6)

and

V
[

F̂
g

h (x)
]

=
1

n

k
∑

i=1

K
2

(

x− ti

h

)

pi (1− pi)−
2

n

∑

i< j

K

(

x− ti

h

)

K

(

x− t j

h

)

pi p j, (7)

where pi = F (yi)−F (yi−1).
From (6) and (7), it is straightforward to obtain a closed expression for the MISE of

the estimator defined in (5):

MISE
(

F̂
g
h

)

= E

{

∫

[

F̂
g
h (x)−F (x)

]2
dx

}

= B+V, (8)

where,

B =

∫

{

E
[

F̂
g
h (x)

]

−F (x)
}2

dx (9)
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denotes the integrated squared bias and

V =
∫

V
[

F̂
g

h (x)
]

dx (10)

is the integrated variance.

The asymptotic bias and variance of (5) are stated in Theorem 3.1, whose proof is

included in Appendix A. The following assumptions are needed.

Assumption 3.1 The kernel K is a symmetric probability density function with support

in [−1,1], at least 3-times differentiable and such that K(3) is bounded.

Assumption 3.2 The distribution F has compact support [L ,U ], it is 4-times differen-

tiable and F (4) is continuous.

Assumption 3.3 The bandwidth h = hn is a non random sequence of positive numbers

such that limn→∞ h = 0 and limn→∞ nh = ∞.

Assumption 3.4 Given a set of k = kn intervals [y j−1,y j), j = 1,2, . . . ,k, y0 6 L and

yk > U , the average interval length is l̄ = l̄n =
1
k

∑k
i=1 li, where li is the abbreviated

notation for the i-th interval length li,n. It is assumed that limn→∞ l̄ = 0, limn→∞ nl̄ = ∞,

l̄ = o
(

h5/3
)

, and maxi

∣

∣li − l̄
∣

∣= max16i6k

∣

∣li − l̄
∣

∣= o
(

l̄
)

.

Assumptions 3.1 and 3.2 are just smoothness and differentiability conditions about

the kernel K and the distribution function F . Assumption 3.3 is the typical one used

in kernel estimation concerning the sample size n and the bandwidth h. However, As-

sumption 3.4 is of special importance and deserves some comments.

Condition limn→∞ l̄ = 0 simply states that, as the sample size increases, the average

interval length shrinks. This means that, taking into account the condition maxi

∣

∣li − l̄
∣

∣=

o
(

l̄
)

, all intervals are shrinking as well. However, limn→∞ nl̄ = ∞ states that n should

increase faster than l̄ decreases. This is an important condition from a theoretical point

of view, as if the intervals shrink faster than n increases, at some point there would be

more intervals than data points, and some of the intervals would be empty or there would

not be enough data points in each interval.

Condition l̄ = o
(

h5/3
)

states an intuitive idea: as the sample size n increases, the

average length l̄ must vanish faster than, at least, h (concretely, faster than h5/3). This

condition has a practical basis. Since the average distance between points is l̄, the band-

width must be greater than l̄ at all times to gather information from the surroundings. In

other words, as n increases, h must vanish, but always behind l̄.

Regarding the condition about maxi

∣

∣li − l̄
∣

∣, at first, this is necessary from the strictly

mathematical viewpoint, but in practice it is a way for controlling the variability of the

intervals. This assumption means that the lengths of the intervals are not very different.

In other words, in our assumptions we unquestionably accept different interval lengths
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in order to generalize the binned estimator, but within certain limits, and these limits of

maximum variability are controlled by l̄ via maxi

∣

∣li − l̄
∣

∣= o
(

l̄
)

.

Theorem 3.1 Under Assumptions 3.1 to 3.4,

MSE
[

F̂
g

h (x)
]

=
h4

4
µ2 (K)2

F ′′ (x)2 +
1

n
F (x) [1−F (x)]−

h

n
F ′ (x)C0 +o

(

h

n

)

+o
(

h4
)

and

MISE
(

F̂
g
h

)

= AMISE
(

F̂
g

h

)

+o

(

h

n

)

+o
(

h4
)

,

where

AMISE
(

F̂
g

h

)

=
h4

4
µ2 (K)2

A( f ′)+
1

n

∫

F (x) [1−F (x)]dx−
h

n
C0 (11)

with A( f ′) =
∫

f ′(x)2dx, and

C0 = 2

∫

zK (z)K(z)dz> 0.

Remark 3.1 Since the distribution function F has compact support (Assumption 3.2)

then the integral
∫

F(x)(1−F(x))dx is finite. This needs not be the case for a general

cdf F.

Remark 3.2 Taking care of higher order terms in the asymptotic expansions for the

MSE and the MISE, the resulting approximations show the impact of the average inter-

val length, l̄, in these error criteria:

MSE
[

F̂
g

h (x)
]

=

(

h2

2
µ2 (K)+

l̄2

12

)2

F ′′ (x)2 +
1

n
F (x) [1−F (x)]−

h

n
F ′ (x)C0

+
l̄2

24n
F ′′ (x)+o

(

h

n

)

+o
(

h4
)

+o
(

l̄4
)

+o
(

h2l̄2
)

+o

(

l̄2

n

)

MISE
(

F̂
g

h

)

=

(

h2

2
µ2 (K)+

l̄2

12

)2

A( f ′)+
1

n

∫

F (x) [1−F (x)]dx−
h

n
C0

+ o

(

h

n

)

+o
(

h4
)

+o
(

l̄4
)

+o
(

h2l̄2
)

+o

(

l̄2

n

)

.

Under Assumptions 3.1 - 3.4, these two expressions reduce to the asymptotic expressions

given in Theorem 3.1.



266 Kernel distribution estimation for grouped data

4 Bandwidth selectors

As pointed out in Section 1, the kernel distribution estimator (2) heavily depends on the

bandwidth h. Obviously, the same occurs for the estimator adapted for grouped data (5),

since too small bandwidths give estimates that are too close to the empirical cdf, and

too large selections tend to provide oversmoothed estimators. In this sense, it is very

important to have an automatic bandwidth selection method producing reliable estimates

for a real data set. In this section, two bandwidth selectors (plug-in and bootstrap) are

proposed for (5) in the context of interval-grouped data.

4.1 Plug-in bandwidth selector

From Eq. (11), it is immediate to get an asymptotically optimal global bandwidth. Ta-

king the first derivative of (11), equating to zero and solving for h, it follows that

hAMISE =

[

C0

nµ2 (K)2
A( f ′)

]
1
3

. (12)

Note that Eq. (12) is the same as that for continuous data (see, e.g., Azzalini, 1981,

Hill, 1985, Mack, 1984). However, it is important to keep in mind that (12) holds as an

asymptotic optimal bandwidth for grouped data only as long as Assumptions 3.1 to 3.4

hold. Otherwise, some other important terms of the asymptotic expansion of MISE
(

F̂
g
h

)

remain non-negligible, thus making (11) fall short as a MISE
(

F̂
g

h

)

approximation.

In Eq. (12), an estimate of A( f ′) is required to have a practical bandwidth. To

estimate A( f ′), we used the proposal of Polansky and Baker (2000) adapted for grouped

data. Other approaches could be used here, but we preferred the Polansky and Baker

method for computational reasons and because it gave stable results when using grouped

data. In the continuous data case, Polansky and Baker (2000) proposed to estimate A( f ′)
by −ψ̂η,2, where

ψ̂η,2 =
1

n2η3

n
∑

i=1

n
∑

j=1

L′′

(

Xi −X j

η

)

, (13)

L being a kernel function (possibly different from K) and η > 0 an auxiliary smooth-

ing parameter. The bandwidth η can be selected using a plug-in procedure. For this,

it would be necessary to obtain the asymptotic MSE of ψ̂η,2, that depends on ψ4 =
∫

f (4)(x) f (x)dx, and then estimate ψ4. Clearly, the problem still remains, since esti-

mating ψ4 will depend on an initial bandwidth, which in turn will depend on ψ6 =
∫

f (6)(x) f (x)dx, and so on. A common strategy is to estimate ψu with some quick and

simple rule, like the normal scale rule (Wand and Jones, 1995). Once ψ̂η,u is obtained, it

is possible to select a bandwidth for estimating ψu−2. Then, having estimated ψ̂η,u−2, a

bandwidth for estimating ψu−4 can be selected, and so forth. Polansky and Baker (2000)

suggest using the same iterative method.
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In the context of grouped data, we propose to estimate A( f ′) with ÂPBg = −ψ̂g
η,2,

where ψ̂g
η,2 is an appropriate version of (13), given by:

ψ̂g
η,2 =

1

η3

k
∑

i=1

k
∑

j=1

L′′

(

ti − t j

η

)

wiw j. (14)

Similar steps to those described previously for continuous data can be followed now to

select the bandwidth η. It should be noted that in this case, to obtain a plug-in band-

width for η it is necessary to derive the asymptotic MSE of ψ̂g
η,2 using grouped data. In

Reyes et al. (2017), both the asymptotic variance and bias of ψ̂g
η,u were derived for u> 0.

Based on those, a way of selecting the plug-in bandwidth for ψ̂g
η,u was proposed. Us-

ing that approximation with u = 2 and plugging ÂPBg into (12) gives a practical plug-in

bandwidth selector for F̂
g

h (x),

ĥPBg =

[

C0

nµ2 (K)2
ÂPBg

]
1
3

. (15)

Note that using similar arguments to those employed in Theorem 2 of Reyes et al.

(2017), the relative rate of convergence for the plug-in bandwidth ĥPBg can be derived.

4.2 Bootstrap bandwidth selector

The bootstrap method can be used to produce an estimator of the MISE. In the grouped

data setup, this has been already proposed by Reyes et al. (2017) for density estimation.

These authors have proved that there exists a closed expression for the bootstrap version

of the MISE in that context. This implies that Monte Carlo is not needed to obtain a

bootstrap approximation of the MISE in density estimation for grouped data. This will

be also the case for cdf estimation for grouped data.

To build a bootstrap version of the MISE, we consider a pilot bandwidth, ζ , and

construct the grouped-data smooth estimator of F as defined in (5), but replacing h by ζ .

The idea is to draw resamples from F̂
g

ζ , to group the data and to compute the estimator

F̂
g
h with those bootstrap samples. The bootstrap resampling plan proceeds as follows.

1. Fix some pilot bandwidth, ζ , and consider the grouped-data smooth cdf estimator,

F̂
g

ζ .

2. Draw (n∗1, . . . ,n
∗
k) from a multinomial distribution Mk(n; p̃

ζ
1, . . . , p̃

ζ
k ), with p̃

ζ
i =

F̂
g

ζ (yi)− F̂
g

ζ (yi−1), i = 1, . . . ,k, and define w∗
i = n∗i /n.
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3. Compute the grouped-data smooth cdf estimator based on this bootstrap resample:

F̂
g∗
h (x) =

k
∑

i=1

w∗
i K

(

x− ti

h

)

.

4. Define the bootstrap version of MISE:

MISE∗
(

F̂
g∗

h

)

= E
∗

{

∫

[

F̂
g∗

h (x)− F̂
g

ζ (x)
]2

dx

}

,

where, E∗ denotes the bootstrap expectation (with respect to F̂
g

ζ ).

Remark 4.1 Since, under Assumption 3.1, the support of F̂
g

ζ is [t1 − ζ, tk + ζ], it may

happen that this interval is not contained in [y0,yk]. This only happens if ζ≤ 1
2

min{l1, lk}.

So, in order to resample from a distribution with support contained in [y0,yk], we con-

sider the conditional distribution corresponding to F̂
g

ζ restricted to the interval [y0,yk].

The previous remark implies that it may happen that
∑k

i=1 p̃
ζ
i < 1. If this is the case,

we define

p̂
ζ
i =

p̃
ζ
i

∑k
j=1 p̃

ζ
j

, i = 1,2, . . . ,k, (16)

and we draw the bootstrap resamples in Step 2 from a multinomial distribution with

probabilities p̂
ζ
i .

Substituting pi by p̂
ζ
i in (6) and (7), the bootstrap version of the mean integrated

squared error admits the following closed expression:

MISE∗
(

F̂
g∗
h

)

= E
∗

{

∫

[

F̂
g∗
h (x)− F̂

g

ζ (x)
]2

dx

}

= B∗+V ∗,

where

B∗ =
∫

{

E
∗
[

F̂
g∗
h (x)

]

− F̂
g

ζ (x)
}2

dx

and

V ∗ =

∫

V
∗
[

F̂
g∗
h (x)

]

dx,

with

E
∗
[

F̂
g∗
h (x)

]

=
k

∑

i=1

K

(

x− ti

h

)

p̂
ζ
i

and

V
∗
[

F̂
g∗
h (x)

]

=
1

n

k
∑

i=1

K
2

(

x− ti

h

)

p̂
ζ
i

(

1− p̂
ζ
i

)

−
2

n

∑

i< j

K

(

x− ti

h

)

K

(

x− t j

h

)

p̂
ζ
i p̂

ζ
j .
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This approach is computationally efficient since there is no need to use Monte Carlo

to approximate the bootstrap resampling distribution. Finally, the bootstrap bandwidth

is defined as the minimizer of MISE∗
(

F̂
g∗

h

)

, in the smoothing parameter, h:

h∗MISE = arg min
h>0

MISE∗
(

F̂
g∗

h

)

. (17)

An important step in this bootstrap procedure is that of selecting the pilot bandwidth

ζ . After performing some empirical experiments, we have used a method inspired by

the idea of smoothing splines, based on selecting the pilot parameter that minimizes the

squared distance between the nonparametric cdf estimator and the empirical distribu-

tion function, plus a penalty term to avoid obtaining very small bandwidths. The idea

consists in finding the parameter, denoted by ζλemp, such that,

ζλemp = arg min
h>0

k
∑

i=0

[

Fn(yi)− F̂
g
h (yi)

]2
+λ

∫

f̂
g′
h (x)2

dx,

where λ ≥ 0 determines the penalty degree over the global slope of the nonparame-

tric density estimator, defined in (4). To select an “optimal” penalty degree, λopt , we

have used the rule of finding the penalty allowing to obtain a pilot bandwidth that best

approximates the overall slope of the population density, that is,

λopt = arg min
λ≥0

∣

∣

∣
A

(

f̂
g′

ζλemp

)

−A( f ′)
∣

∣

∣
.

In practice, λopt can be estimated by

λ̂opt = arg min
λ≥0

∣

∣

∣
A

(

f̂
g′

ζλemp

)

−A( f̂ ′θ)
∣

∣

∣
,

where f̂ ′θ represents a parametric estimator of the first derivative of the density function,

fitted with the grouped data sample and flexible enough to capture, at least partially, the

global slope of f . It was checked that fitting normal mixture models with a maximum

number of r = 5 components provided, in general, very good results. In practice, the Ex-

pectation Maximization (EM) method (Mclachlan and Peel, 2000) was used to estimate

the parameters of these models, using the BIC criterion to select the best fit.

Other simpler alternatives to select the pilot bandwidth, ζ , were also explored, pro-

ducing in general worse results than those obtained with the algorithm previously des-

cribed. For that reason (and for reason of space), only the results obtained when using

the previous approach to select the pilot bandwidth are shown in the paper. In the Sup-

plementary Materials, some simulations experiments comparing the performance of the

bootstrap bandwidth (17) when using as a pilot bandwidth ζλemp and when this auxiliary

parameter is derived using the plug-in technique, ĥPBg , are presented. A better per-
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formance of the bootstrap selector is clearly observed when using the pilot bandwidth

obtained by the method described above.

5 Simulations

To have an idea of the effectiveness of the estimator (5) when using (15) and (17) as

bandwidth selectors, some simulation studies were performed under different grouping

scenarios. For this, the free statistical software R and packages nor1mix and binnednp

were used (Barreiro et al., 2019, Mächler, 2017, R Core Team, 2019).

As the population density, we used a normal mixture f (x) =
∑4

i=1αiφµi,σi
, with

φµ,σ a N
(

µ,σ2
)

density, α = (0.70,0.22,0.06,0.02), µ= (207,237,277,427) and σ =

(25,20,35,50), where α, µ and σ are the mixture weights, means and standard devia-

tions, respectively. This normal mixture was used in weed science to model the relation-

ship between weed emergence of Bromus diandrus and hydrothermal time (Cao et al.,

2011). A total number of 1000 trials were considered throughout all simulations.

Trying to mimic the asymptotic conditions on l̄ in Assumption 3.4, in a first simula-

tion experiment, the behaviour of the MISE for grouped data, denoted by MISEg, was

studied depending on the bandwidth h, for sample sizes 60, 240, and 960. Two different

scenarios were considered based mainly on Assumption 3.4.

S1. n
5
9 l̄ → 0

S2. n
5
9 l̄ → ∞

In Scenario S1, condition l̄ = o
(

h5/3
)

is confirmed for h ∼ n−
1
3 (classical optimal

rate in the case of distribution estimation without grouping), for example, hAMISE or

ĥPBg; while in Scenario S2 occurs the opposite. It is important to note that in both

scenarios l̄ tends to zero as n increases.

Note that MISEg can be approximated by numerical integration in an interval [a,b]

using (8), (9) and (10), jointly with the expressions of the expectation and the variance

of F̂
g
h in (6) and (7). In practice, we considered a = 0, b = 509.25. With these values for

a and b, the area under the reference normal mixture in [a,b] is 0.999.

To simulate the set of intervals as n increases, the next steps were followed:

1. Consider l̄ = En−α and an = Fn−β , where E , α, F and β are positive constants.

2. Take initial interval lengths {li} for i = 1,2, . . . ,5: l1 = l̄ − 4an, l2 = l̄ + 0.5an,

l3 = l̄−1.5an, l4 = l̄ +3an, l5 = l̄ +2an.

3. For i > 5, li = l[(i−1) mod 5]+1, where [m mod ℓ] stands for m modulo ℓ. Then, the

initial set of intervals is repeated one after another, as many times as necessary.

Constants E and F are just selected considering the distribution support. To choose

the positive constants α and β, note that according to the initial set of intervals in Step

2, it follows that maxi

∣

∣li − l̄
∣

∣= 4an = 4Fn−β.
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Assumption 3.4 and Step 1 impose that 4Fn−β = o
(

l̄
)

= o(En−α) , which basically

is

n−β = o
(

n−α
)

. (18)

So, for (18) to hold, nα−β → 0, which only occurs when α−β < 0, i.e., when β > α.

Now, recall that in Scenario S1, l̄ = o
(

h5/3
)

= o
(

n−5/9
)

must hold. Thus, according

to Step 1, l̄ = En−α = o
(

n−
5
9

)

, which basically is

n−α = o
(

n−
5
9

)

. (19)

This only occurs when 5
9
−α< 0; i.e., when α> 5/9.

In brief, to simulate Scenario S1, (18) and (19) must hold, i.e., β > α> 5/9 must be

true. On the other hand, to simulate S2, (18) must hold but (19) must not. It is required

that n
5
9 l̄ → ∞, so both β > α and α< 5/9 must be true. Specifically, in our simulations,

we chose (E,α,F,β) = (800,4/5,150,1) for S1, and (E,α,F,β) = (37.1,1/20,150,1)
for S2.
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Figure 1: ln
(

MISEg

)

curves by scenario and sample size. Solid lines are for n = 60, dashed lines for

n = 240 and dotted lines for n = 960. Thick lines represent curves in S1, while thin lines represent curves

in S2 (note that curves for n = 60 are practically the same in both scenarios).

Firstly, for each sample size and each scenario, MISEg was approximated over a

grid of values of h. Figure 1 shows the MISEg curves, as a function of h, for the three
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different sample sizes in both scenarios. Note that a logarithmic scale was used in the

vertical axis in order to better appreciate minimal values. This is because very small

differences were found in the MISEg curves for small values of h, particularly for the

largest sample size. This suggests that even in the case of grouped data, small deviations

from the optimal bandwidth may still give quite good distribution estimates, making the

distribution estimation relatively resistant to grouping effects. On the other hand, it is

important to note in Figure 1 that MISEg decreases as the sample size increases, which

seems to confirm consistency of the estimator defined in (5). It is also clear that optimal

bandwidths for S2 are larger than for S1.

Next, a second simulation experiment was performed to analyse the behaviour of

the plug-in bandwidth (15) and the bootstrap selector (17). We compared the sampling

distribution of ĥPBg and h∗MISE with respect to the target values of the bandwidths min-

imizing MISEg, denoted by hMISEg , for each sample size and scenario. The process

performed was the following:

1. Simulate an n-size sample from the normal mixture reference density f .

2. Divide the data range into intervals [yi−1,yi) of length li (according to the previous

guidelines).

3. Considering the interval midpoints, estimate A( f ′) by means of ÂPBg and calculate

ĥPBg using (15).

4. Select ζ as described in Section 4.2 and approximate h∗MISE .

5. Compute ĥPBg/hMISEg and h∗MISE/hMISEg .

6. Repeat Steps 1 to 5 B = 1000 times.

Figure 2 shows the results as box-plots. Regarding ĥPBg (yellow left box-plots for

each sample size), it can be observed that starting from the same grouping conditions

and sample size, the sampling distribution gets more precise as the sample size increases

under both scenarios, S1 and S2. However, in both situations ĥPBg is far from the target

value. In S1, when the sample size increases, although the sampling distribution gets

more accurate, the plug-in bandwidths seem to be in general excessively large. In S2,

we observe the same pattern, but now the bandwidths become too small for large sample

sizes. This biased performance of ĥPBg may be due, mainly, to two factors. On the one

hand, the remaining terms of the bias of (5), depending on l̄, do not vanish as fast as

required for (15) to be a good bandwidth selector. On the other hand, the method used

here (see Reyes et al., 2017) to select the pilot bandwidth, η, requires estimating A( f ′).
This is done by canceling the sum of the two main bias terms of ψ̂g

η,2. This could be

not able to produce good pilot smoothing parameters because, opposite to the complete

data case, some second order terms depending on l̄ could have a significant impact on

the MSE of ψ̂g
η,2.
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Figure 2: Box-plots for ĥPBg
/hMISEg

(yellow left box-plots for each sample size) and box-plots for

h∗MISE/hMISEg
(green right box-plots for each sample size) for both scenarios. Red dotted lines are plotted

at values 0.9 and 1.1 for reference.

Regarding Figure 2, it can be observed that h∗MISE (green right box-plots for each

sample size) outperforms ĥPBg in approaching hMISEg . The bootstrap selector shows

more stability under any sample size and scenario. This means that it is preferable in

both cases of light or heavy grouping and for any sample size.

Figure 3 shows the effect on the distribution estimator (5) of the bandwidth selec-

tors (15) and (17), respectively, in both scenarios. Clearly, when using ĥPBg (yellow

left box-plots for each sample size), while in S1 the quality of F̂
g

h (x) gets better as the

sample size increases, in S2, poor distribution estimates for large n are obtained. The

impact of poor bandwidth selection is evident in the quality of the distribution estimator,

whose error increases by up to three times. However, it should be noted that it does not

impact so negatively in the corresponding estimates as in the case of density estima-

tion for grouped data (see Reyes et al., 2017). In opposition, when using the bootstrap

bandwidth (green right box-plots for each sample size), the quality of the distribution

estimates improves as the sample size increases in both scenarios, clearly outperforming

the plug-in bandwidth selector.

It is of interest to study situations in which it is ideally observed the sample size in-

creasing and the average length decreasing at different rates, but in practice that seldom

really occurs. For that reason, we also performed some simulations (not shown here

for reasons of space, but included in the Supplementary Materials) dealing with a more

factual situation in which there is a given sample size and a given set of fixed intervals.

In that simulation, a sample size of n = 240, a fixed set of average lengths, l̄, and a grid

of values for h were considered. Those experiments show that the bootstrap smoothing

parameter, h∗MISE , seems to be very stable, always centred somewhere around hMISEg
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and with decreasing variability when the average length l̄ increases. On the other hand,

the plug-in selectors are larger than the target value for small or moderate values of l̄,

and smaller than the optimal bandwidth for large values of l̄. However, as pointed out

previously, it was also observed that bandwidth selection is not so critical in distribu-

tion as in density estimation, since slightly different bandwidths produced very similar

distribution estimates.
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Figure 3: Box-plots for ln
[

MISEg

(

ĥPBg

)/

MISEg

(

hMISEg

)]

(yellow left box-plots for each sample size)

and ln
[

MISEg

(

h∗MISE

)/

MISEg

(

hMISEg

)]

(green right box-plots for each sample size) for both scenarios.

6 An empirical study from real data

In this section, a real data set of wild oat (Avena sterilis L.) emergence is considered to

illustrate the performance of the kernel distribution estimator for grouped data (5), when

using the plug-in (15) and bootstrap (17) bandwidth selectors. To do this, the binnednp

R package (Barreiro et al., 2019) is employed. This package, developed by the authors

of the present paper, jointly with a weed scientist and two computer engineers, contains

some functions implementing most of the nonparametric methods for grouped data (and

related problems), studied by the authors in this and in previous papers.

The data of Avena sterilis were taken from an experiment performed during Winter-

Spring 2006-2007 in Gibraleon (37o 22’N, 6o 54’W; altitude 26 m), located in the

province of Huelva (Andalucia, South of Spain). Four polyvinylchloride cylinders (250

mm diameter 50 mm height) placed 1 m apart were considered and, for each one of

them, 200 seeds of A. sterilis were mixed thoroughly with the soil and distributed over

the 0-100 mm depth. Numbers of emerged weed seedlings were recorded once or twice



Miguel Reyes, Mario Francisco-Fernández, Ricardo Cao and Daniel Barreiro-Ures 275

a week and then removed by cutting seedling stems at ground level with minimum dis-

turbance of the substrate. All the data for the cumulative numbers of seedling emergence

from the field were converted to a square meter basis. The CHTT at emergence in the

different inspection days, at three depths (10, 20 and 50 mm), were calculated, using the

same methodology as that described in Cao et al. (2011).

The observed emergence data are shown in Table 1. As it can be seen, the cumulative

hydrothermal time at emergence can not be observed for every individual seed, but just

in an aggregated way.

Table 1: Seedling emergence data of A. sterilis.

CHTT No Seedlings

Depth Cylinder

Date 10 mm 20 mm 50 mm 1 2 3 4 Pooled

27 November 2006 100 92 67 0 0 0 0 0

4 December 2006 160 146 105 0 0 0 0 0

12 December 2006 218 199 143 2 6 8 3 19

14 December 2006 218 217 155 1 0 0 1 2

19 December 2006 218 217 185 2 1 1 3 7

22 December 2006 218 217 199 2 1 1 0 4

26 December 2006 218 217 204 1 1 0 0 2

28 December 2006 218 217 204 0 0 0 0 0

2 January 2007 218 217 204 0 0 0 0 0

5 January 2007 218 217 204 0 2 0 0 2

9 January 2007 218 217 204 2 2 9 2 15

12 January 2007 218 217 204 3 7 18 11 39

18 January 2007 218 217 204 12 7 19 22 60

25 January 2007 218 217 204 6 5 8 13 32

1 February 2007 265 261 232 2 5 7 7 21

9 February 2007 352 340 287 13 12 5 8 38

15 February 2007 405 421 343 7 12 13 4 36

23 February 2007 459 505 421 0 0 1 0 1

5 March 2007 509 571 538 0 0 0 0 0

19 March 2007 509 571 538 0 0 0 0 0

No Emerged seedlings 53 61 90 74 n = 278

Before computing the kernel distribution estimator (5) to obtain approximations of

the corresponding weed emergence curves, some preliminary analyses were performed.

Firstly, the function anv.binned included in the binnednp package was employed to

test whether the “cylinder factor” does not have a significant effect on the emergence

curve. If so, we could considered the pooled sample of the four cylinders. In the func-

tion anv.binned, a bootstrap approach using a Cramér-von Mises type distance is im-

plemented to carry out this type of hypothesis testing. The experimentation conditions

seem to support the idea of having a “non-significant cylinder effect” and, after applying
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the function anv.binned, this hypothesis was corroborated for the three depths. Sec-

ondly, an interesting issue for the weed researchers is to find out what the best soil depth

is among the three possibilities available in this case, 10, 20 and 50 mm, to measure

the CHTT in order to have more prediction power. To address this problem, moment-

based indices and probability density-based indices were proposed in Cao et al. (2011).

Estimates of these indices are implemented in the function emergence.indices of the

binnednp package. After applying this function to the pooled sample of Avena sterilis,

it is concluded that the best soil depth to measure the CHTT is 10 mm. Therefore, in

what follows, only the CHTT measured at 10 mm and the pooled sample are considered

for the subsequent analyses.

After these previous analyses, the emergence curve of Avena sterilis, using the CHTT

measured at 10 mm and the pooled sample, is estimated computing the kernel distribu-

tion estimator (5). To do this, we used the functions bw.dist.binned and bw.dist.

binned.boot of the binnednp package, returning the plug-in (15) and bootstrap (17)

bandwidths, respectively. Arguments in these functions allow to control, among other

things, the pilot bandwidths needed in both selectors. For example, in the case of the

plug-in bandwidth, ĥPBg , in bw.dist.binned, different types of models can be used

in the last step of the iterative method explained in Section 4.1: assuming a normal

distribution, using a complete nonparametric approach or considering a normal mix-

ture model. In the case of the bootstrap bandwidth, h∗MISE , in bw.dist.binned.boot,

the user can employ as a pilot bandwidth that selected using the method inspired by

the idea of smoothing splines, described in Section 4.2, or the one derived using the

plug-in technique, ĥPBg . The default pilot bandwidths in these functions are those de-

scribed in Sections 4.1 and 4.2, respectively. Other parameters of bw.dist.binned and

bw.dist.binned.boot allow to plot the corresponding nonparametric distribution esti-

mators and to compute bootstrap confidence bands for the distribution function. It is im-

portant to highlight that the functions of this library have been efficiently programmed,

using integration of C++ in the R code, and applying parallel computing methods to

speed up the running time of the algorithms. This is especially important in those meth-

ods making use of bootstrapping to obtain numerical results in a very short time.

Using the default pilot bandwidths, the plug-in and bootstrap smoothing parameters

obtained are, respectively, 9.83 and 13.74. The corresponding kernel distribution esti-

mates of the emergence curves computed using (5) are shown in the left panel of Figure

4 (in green when using the plug-in bandwidth and in red when using the bootstrap band-

width). The empirical distribution of the grouped sample (black line) is also shown in

this plot. As indicated in the previous section, it can be seen that the effect of the band-

width on the estimator’s behaviour is not substantial, since slightly different bandwidths

produce very similar distribution estimates.

As pointed out in Section 1, parametric regression models have been widely used to

model the relationship between the CHTT and weed emergence. For the sake of com-

parison, the function bw.dist.binned also allows to fit Weibull and logistic parametric

regression functions to describe seedling emergence, with parameters estimated by ma-
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ximum likelihood. The corresponding fits using the Avena sterilis data set are shown

in the right panel of Figure 4, using a green line for the Weibull and a blue line for the

logistic estimators. The nonparametric distribution estimator (5) with bootstrap band-

width (red line) and the empirical distribution of the grouped sample data (black line)

are also included in this plot. It can be observed that none of both classical parametric

(distribution) models fits the data well, possibly leading to wrong emergence estima-

tions. On the other hand, the nonparametric approach does not assume any particular

distribution for the variable under consideration. As a consequence, it provides more

flexible estimators capable of capturing complex features in the HTT distribution and

producing more reliable results.
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Figure 4: Left panel: Kernel distribution estimates considering plug-in (green line) and bootstrap (red

line) bandwidths. Right panel: parametric regression fits, Weibull (green line) and logistic (blue line),

and nonparametric kernel distribution estimate using the bootstrap bandwidth (red line). The empirical

distribution of the grouped sample (black lines) is also shown.

7 Conclusions

In short, it has been shown that under realistic assumptions, the kernel distribution esti-

mator is an effective tool for modeling grouped data due to the good performance of the

bootstrap smoothing parameter selector proposed in this paper. This bandwidth selec-

tor, using an appropriate criterion to select the corresponding pilot bandwidth, presents

a stable and unbiased sampling distribution under any scenario or sample size in the

simulation studies performed. Regarding the Polansky and Baker plug-in bandwidth,

although theoretically it is a consistent estimator of the optimal bandwidth, in practice,

it only has an appropriate behaviour when there is a fixed sample size and a given set
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of intervals for certain degree of grouping. This can be due to the fact that this plug-in

bandwidth is focused on minimizing the AMISE and some neglected terms of less order,

depending on l̄, can have a substantial influence under certain grouping conditions (see

Remark 3.2). Something similar could occur in the process of selecting the pilot band-

width needed to estimate A( f ′). On the other hand, h∗MISE targets directly the MISE,

producing much better results.

In any case, the different simulations performed show that the kernel distribution

estimator is a somewhat robust procedure, in the sense that bandwidth selections slightly

different from the optimal bandwidth do not seem to heavily influence the distribution

estimation. From another viewpoint, it was shown that really high values of the ratio

between the average length l̄ and the data range have to be considered in order to actually

notice a severe impact of the grouping effect.

These findings leave some insights about kernel distribution estimation for grouped

data as well as some possible future work. Since distribution estimation seems to be

resistant to grouping effect, a possible future topic of research could be the design of a

plug-in bandwidth selector that could work well in different grouping scenarios. This

would imply to find out the real influence of second-order terms in the MISE of F̂
g

h (x)

and somehow incorporate these effects in the plug-in bandwidth expression. Moreover,

a deeper study about the pilot bandwidth selection problem to estimate A( f ′) would

also be necessary. These two issues would transform the usual simple plug-in band-

width selection method in a much more complicated problem. Fortunately, the bootstrap

bandwidth approach proposed in this paper provides a selector that covers any case of

grouping, thus controlling or reducing the increase of the error of the estimates. More-

over, it is important to note that this bootstrap procedure does not need Monte Carlo

and, therefore, it is also an efficient computing time approach. Facing applications, this

implies a substantial improvement in the estimation of data structure, allowing smart

inferences even when data are heavily grouped.

Appendix A. Proof of Theorem 3.1

Proof Applying the expectation operator to (5), it is easy to prove that

E
[

F̂
g

h (x)
]

=
k

∑

i=1

K

(

x− ti

h

)

E [wi] =
k

∑

i=1

K

(

x− ti

h

)

pi (A.1)

where pi = F (yi)−F (yi−1).

Using a Taylor expansion of pi around ti and substituting into (A.1), and the fact that

α ji =

(

li

2

) j

−

(

−
li

2

) j

=

{

0 for j even

2
(

li
2

) j

else
, (A.2)
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gives

E
[

F̂
g

h (x)
]

=
k

∑
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liH1 (ti)+
1

24

k
∑
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l3
i H2 (ti)+

1

4!

k
∑

i=1

K

(

x− ti

h

)

δ, (A.3)

where δ=F (4) (ξi)
(

li
2

)4

−F(4) (ξi−1)
(

− li
2

)4

, with ξi ∈ [ti,yi] and ξi−1 ∈ [yi−1, ti], H1 (t)=

F ′ (t)K
(

x−t
h

)

and H2 (t) = F ′′′ (t)K
(

x−t
h

)

. As long as F(4) is Lipschitz, δ can be easily

bounded leading to

∣

∣

∣

∑k
i=1K

(

x−ti
h

)

δ
∣

∣

∣
= O

(

l̄4
)

, so that (A.3) becomes

E
[

F̂
g

h (x)
]

=
k

∑

i=1

liH1 (ti)+
1

24

k
∑

i=1

l3
i H2 (ti)+O

(

l̄4
)

. (A.4)

Considering the first term on the right hand side of (A.4), taking the integral over the

i-th interval, using a Taylor expansion with s = t − ti, by (A.2) and summing over all k

intervals gives

k
∑

i=1

liH1 (ti) =
∫

H1 (t)dt −
1

24

k
∑

i=1

l3
i H ′′

1 (ti)−
1

4!

k
∑

i=1

∫ yi

yi−1

H
(4)
1 (ξi)(t − ti)

4
dt. (A.5)

Bounding the third term on the right hand side of (A.5) gives

∣

∣

∣

∣

∣

1

4!

k
∑

i=1

∫ yi

yi−1

H
(4)
1 (ξi)(t − ti)

4
dt

∣

∣

∣

∣

∣

= O

(

l̄4

h4

)

. (A.6)

Now, working on the second term on the right hand side of (A.5), it can be expressed

as
k

∑

i=1

l3
i H ′′

1 (ti) =
k

∑

i=1

(

l2
i − l2

)

liH
′′
1 (ti)+ l2

k
∑

i=1

liH
′′
1 (ti) . (A.7)

The second term on the right hand side of (A.7) can be expressed as

l2

k
∑

i=1

liH
′′
1 (ti) =

l2

∫

H ′′
1 (t)dt −

l2

24

k
∑

i=1

l3
i H

(4)
1 (ti)−

l2

4!

k
∑

i=1

∫ yi

yi−1

H
(6)
1 (ξi)(t − ti)

4
dt. (A.8)

Bounding the third and second terms on the right hand side of (A.8) gives

∣

∣

∣

∣

∣

l2

4!

k
∑

i=1

∫ yi

yi−1

H
(6)
1 (ξi)(t − ti)

4
dt

∣

∣

∣

∣

∣

= O

(

l̄6

h6

)
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and

∣

∣

∣

∑k
i=1 l3

i H
(4)
1 (ti)

∣

∣

∣
6 O

(

l̄4

h4

)

. In turn, bounding l2
∫

H ′′
1 (t)dt results in

∣

∣

∣

∣

l2

∫

H ′′
1 (t)dt

∣

∣

∣

∣

6 O
(

l̄2
)

∫

∣

∣H ′′
1 (t)

∣

∣dt. (A.9)

By Assumption 3.1, it is easy to check that H ′′
1 (t) =0 when x−t

h
<−1, and H ′′

1 (t) =
F ′′′ (t) when x−t

h
<−1. As a consequence,

∫

∞

−∞

∣

∣H ′′
1 (t)

∣

∣dt =
∫ x−h

−∞

∣

∣F ′′′ (t)
∣

∣dt +
∫ x+h

x−h

∣

∣

∣

∣

K

(

x− t

h

)

F ′′′ (t)

−
1

h
2F ′′ (t)K

(

x− t

h

)

+
1

h2
F ′ (t)K′

(

x− t

h

)
∣

∣

∣

∣

dt. (A.10)

Hence, solving and bounding the right hand side of (A.10) gives

∫

∞

−∞

∣

∣H ′′
1 (t)

∣

∣dt = O

(

1

h

)

,

which implies that
∣

∣

∣

∣

l2

∫

H ′′
1 (t)dt

∣

∣

∣

∣

= O

(

l̄2

h

)

.

Updating (A.7), gives

k
∑

i=1

l3
i H ′′

1 (ti) =
k

∑

i=1

(

l2
i − l2

)

liH
′′
1 (ti)+O

(

l̄2

h

)

. (A.11)

For bounding the first term on the right hand side of (A.11), realize that by previous

elaborations,

k
∑

i=1

(

l2
i − l2

)

liH
′′
1 (ti) =

k
∑

i=1

(

l2
i − l2

)

∫ yi

yi−1

H ′′
1 (t)dt−

1

4!

k
∑

i=1

(

l2
i − l2

)

l3
i H

(4)
1 (ti)−

1

4!

k
∑

i=1

(

l2
i − l2

)

∫ yi

yi−1

H
(6)
1 (ξi)(t − ti)

4
dt. (A.12)

Under Assumption 3.4, the last two terms can be bounded as

∣

∣

∣

∣

∣

k
∑

i=1

(

l2
i − l2

)

l3
i H

(4)
1 (ti)

∣

∣

∣

∣

∣

6 max
i

∣

∣

∣
l2
i − l2

∣

∣

∣
kl3

max

∥

∥

∥
H

(4)
1

∥

∥

∥

∞

= o

(

l̄4

h4

)

(A.13)
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and
∣

∣

∣

∣

∣

1

4!

k
∑

i=1

(

l2
i − l2

)

∫ yi

yi−1

H
(6)
1 (ξi)(t − ti)

4
dt

∣

∣

∣

∣

∣

6

1

4!80
max

i

∣

∣

∣
l2
i − l2

∣

∣

∣
kl5

max

∥

∥

∥
H

(6)
1

∥

∥

∥

∞

= o

(

l̄6

h6

)

, (A.14)

and
∑k

i=1

(

l2
i − l2

)

∫ yi
yi−1

H ′′
1 (t)dt as

∣

∣

∣

∣

∣

k
∑

i=1

(

l2
i − l2

)

∫ yi

yi−1

H ′′
1 (t)dt

∣

∣

∣

∣

∣

6 max
i

∣

∣

∣
l2
i − l2

∣

∣

∣

k
∑

i=1

∣

∣

∣

∣

∫ yi

yi−1

H ′′
1 (t)dt

∣

∣

∣

∣

6 o
(

l̄2
)

∫

∣

∣H ′′
1 (t)

∣

∣dt. (A.15)

Using the same arguments as above,

∣

∣

∣

∣

∣

k
∑

i=1

(

l2
i − l2

)

∫ yi

yi−1

H ′′
1 (t)dt

∣

∣

∣

∣

∣

= o

(

l̄2

h

)

. (A.16)

Considering (A.12), (A.13), (A.14), (A.15) and (A.16),

k
∑

i=1

l3
i H ′′

1 (t) = O

(

l̄2

h

)

, (A.17)

thus leading to
k

∑

i=1

liH1 (ti) =

∫

H1 (t)dt +O

(

l̄2

h

)

. (A.18)

Integrating by parts, a change of variable, using a Taylor expansion on F and by

kernel properties, lead to

k
∑

i=1

liH1 (ti) = F (x)+
h2

2
F ′′ (x)µ2 (K)+O

(

h4
)

+O

(

l̄2

h

)

. (A.19)

Regarding the second term on the right hand side of (A.4),

k
∑

i=1

l3
i H2 (ti) =

k
∑

i=1

(

l2
i − l2

)

liH2 (ti)+ l2

k
∑

i=1

liH2 (ti) . (A.20)
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Proceeding as above,

∣

∣

∣

∣

∣

k
∑

i=1

(

l2
i − l2

)

liH2 (ti)

∣

∣

∣

∣

∣

= o
(

l̄2
)

. (A.21)

As to the second term, note that by Ostrowski’s inequality (Anastasiou, Kechriniotis,

and Kotsos, 2006; Ostrowski, 1938)

∣

∣

∣

∣

liH2 (ti)−

∫ yi

yi−1

H2 (t)dt

∣

∣

∣

∣

6
1

4
LH2

l2
i ,

where LH2
is the H2 Lipschitz constant. Summing up over all k intervals and considering

Assumption (3.4) lead to

k
∑

i=1

∣

∣

∣

∣

liH2 (ti)−
∫ yi

yi−1

H2 (t)dt

∣

∣

∣

∣

= O

(

l̄

h

)

which in turn implies that

l2

k
∑

i=1

liH2 (ti) = l̄2

∫

H2 (t)dt +o
(

l̄2
)

.

Integrating by parts, a change of variable, by a Taylor expansion on F ′′ and simpli-

fying due to the kernel K properties lead to

∫

H2 (t)dt = F ′′ (x)+
h2

2
F(4) (x)µ2 (K)+O

(

h3
)

,

so that

l2

k
∑

i=1

liH2 (ti) = l̄2

[

F ′′ (x)+
h2

2
F(4) (x)µ2 (K)+O

(

h3
)

]

+o
(

l̄2
)

. (A.22)

Using (A.22) and (A.21), Eq. (A.20) becomes

k
∑

i=1

l3
i H2 (ti) = l̄2

[

F ′′ (x)+
h2

2
F(4) (x)µ2 (K)+O

(

h3
)

]

+o
(

l̄2
)

. (A.23)

So, joining (A.23) and (A.19) into (A.3), and by Assumption 3.4,

E
[

F̂
g

h (x)
]

= F (x)+
h2

2
F ′′ (x)µ2 (K)+o

(

h2
)

,



Miguel Reyes, Mario Francisco-Fernández, Ricardo Cao and Daniel Barreiro-Ures 283

from which, the bias is

B
[

F̂
g

h (x)
]

=
1

2
h2F ′′ (x)µ2 (K)+o

(

h2
)

. (A.24)

Regarding the variance, considering that (n1,n2, . . . ,nk) is a multinomial random

vector and wi = ni/n, applying this operator to (5), it gives

V
[

F̂
g

h (x)
]

=
1

n

k
∑

i=1

K
2

(

x− ti

h

)

pi (1− pi)−
2

n

∑

i< j

K

(

x− ti

h

)

K

(

x− t j

h

)

pi p j.

(A.25)

Since pi = F (yi)−F (yi−1), using Taylor expansions around ti and by (A.2), the first

term on the right hand side of (A.25) (except a factor 1/n) can be written as

k
∑

i=1

K
2

(

x− ti

h

)

pi (1− pi) =

k
∑

i=1

liH3 (ti)+O
(

l̄
)

, (A.26)

where H3 (t) = K
2
(

x−t
h

)

F ′ (t). Integrating H3 over the i-th interval, by a Taylor ex-

pansion, using s = t − ti, by parity conditions (A.2), summing over all k intervals and

reordering gives

k
∑

i=1

liH3 (ti) =
∫

H3 (t)dt −
1

24

k
∑

i=1

l3
i H ′′

3 (ti)−
1

4!

k
∑

i=1

∫ yi

yi−1

H
(4)
3 (ξi)(t − ti)

4
dt. (A.27)

As done for (A.5), it is easy to check that

∣

∣

∣

∣

∣

1

4!

k
∑

i=1

∫ yi

yi−1

H
(4)
3 (ξi)(t − ti)

4
dt

∣

∣

∣

∣

∣

= O

(

l̄4

h4

)

(A.28)

and
k

∑

i=1

l3
i H ′′

3 (ti) = O

(

l̄2

h

)

. (A.29)

Considering (A.29), (A.28) and (A.27), Eq. (A.26) transforms into

k
∑

i=1

K
2

(

x− ti

h

)

pi (1− pi) =
∫

H3 (t)dt +O
(

l̄
)

. (A.30)

As above, using integration by parts, the change of variable u = (x− t)/h and a

Taylor expansion give

∫

H3 (t)dt = F (x)−hF ′ (x)C0 +O
(

h2
)

,
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where C0 = 2
∫

K(u)K (u)udu. Substituting the last expression into (A.30) and by As-

sumption 3.4 it gives

k
∑

i=1

K
2

(

x− ti

h

)

pi (1− pi) = F (x)−hF ′ (x)C0 +O
(

h2
)

. (A.31)

Let us turn back to eq. (A.25). Because pi = F (yi)−F (yi−1), using Taylor expan-

sions around ti, by (A.2), the second term on the right hand side of (A.25) (except a

factor −2/n) can be written as

∑

i< j

K

(

x− ti

h

)

K

(

x− t j

h

)

pi p j =
∑

i< j

H4 (ti, t j) lil j +O
(

l̄2
)

, (A.32)

where H4 (z1,z2) =K
(

x−z1
h

)

K
(

x−z2
h

)

F ′ (z1)F ′ (z2).
Considering the second order Taylor expansion around (ti, t j) and by parity condi-

tions (A.2),

∫ yi

yi−1

∫ y j

y j−1

H4 (z1,z2)dz2dz1 = H4 (ti, t j) lil j +
T0

2
, (A.33)

where

T0 =

∫ yi

yi−1

∫ y j

y j−1

[

∂ 2H4

∂ z2
1

(ξ1,ξ2)(z1 − ti)
2 +2

∂ 2H4

∂ z1∂ z2

(ξ1,ξ2)(z1 − ti)(z2 − t j)

+
∂ 2H4

∂ z2
2

(ξ1,ξ2)(z2 − t j)
2

]

dz2dz1.

Summing over all k (k−1)/2 terms of the form (A.33) and reordering,

∑

i< j

lil jH4 (ti, t j) =
∑

i< j

∫ yi

yi−1

∫ y j

y j−1

H4 (z1,z2)dz2dz1 −
1

2

∑

i< j

T0. (A.34)

The second term on the right hand side of (A.34) can be easily bounded by Assump-

tion 3.4, since

∣

∣

∣

1
2

∑

i< j T0

∣

∣

∣
= O

(

l̄2

h2

)

.

As a consequence,

∑

i< j

lil jH4 (ti, t j) =
∑

i< j

∫ yi

yi−1

∫ y j

y j−1

H4 (z1,z2)dz2dz1 +O

(

l̄2

h2

)

. (A.35)

On the other hand, it is straightforward to prove that

∑

i< j

∫ yi

yi−1

∫ y j

y j−1

H4 (z1,z2)dz2dz1 =
1

2

∫ ∫

H4 (z1,z2)dz2dz1 +O
(

l̄
)

. (A.36)
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Now, using (A.36) and (A.35),

∑

i< j

lil jH4 (ti, t j) =
1

2

∫ ∫

H4 (z1,z2)dz2dz1 +O
(

l̄
)

+O

(

l̄2

h2

)

. (A.37)

Integration by parts, two changes of variable [u1 = (x− z1)/h, u2 = (x− z2)/h] and

a Taylor expansion around x give

1

2

∫ ∫

H4 (z1,z2)dz2dz1 =
1

2

[

F2 (x)+O
(

h2
)]

(A.38)

so that, considering (A.38), (A.37) and Assumption 3.4, Eq. (A.32) becomes

∑

i< j

K

(

x− ti

h

)

K

(

x− t j

h

)

pi p j =
1

2
F2 (x)+O

(

h2
)

. (A.39)

Now, putting back (A.39) and (A.31) in (A.25) and simplifying,

V
[

F̂
g
h (x)

]

=
1

n
F (x) [1−F (x)]−

h

n
F ′ (x)C0 +O

(

h2

n

)

. (A.40)

Collecting (A.40) and (A.24), one obtains

MSE
[

F̂
g
h (x)

]

=
1

4
h4F ′′ (x)2µ2 (K)2 +

1

n
F (x) [1−F (x)]−

h

n
F ′ (x)C0

+O

(

h2

n

)

+o
(

h4
)

. (A.41)

Finally, dealing with the integrated versions of the terms coming up in the proof of

(A.41), one can obtain the following asymptotic expression for AMISE,

AMISE
[

F̂
g

h

]

=
1

4
h4µ2 (K)2

A( f ′)+
1

n

∫

F (x) [1−F (x)]dx−
h

n
C0,

which corresponds with just integrating the leading terms in (A.41).
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