Skip to main content
Log in

Further thoughts on the ring \({\mathcal {R}}_c (L)\) in frames

  • Published:
Algebra universalis Aims and scope Submit manuscript

Abstract

Let C(X) denote the ring of all real-valued continuous functions on a topological space X and \({\mathcal {R}} (L)\) be as the pointfree topology version of C(X), i.e., the ring of real-valued continuous functions on a frame L. The ring \({\mathcal {R}}_c (L)\) is introduced as a sub-f-ring of \({\mathcal {R}} ( L)\) as a pointfree analogue to the subring \(C_c(X)\) of C(X) consisting of elements with the countable image. In this paper, we will study the concept of pointfree countable image in a way which will enable us to study the ring \({\mathcal {R}}_c (L)\). In order to do so we introduce the set \(R_{\alpha } := \{ r \in {\mathbb {R}} : {{\,\mathrm{coz}\,}}(\alpha - \mathbf{r}) \not = \top \} \) for every \(\alpha \in {\mathcal {R}} (L)\). We prove that \(R_{\alpha } \) is a countable subset of \({\mathbb {R}}\) for every \(\alpha \in {\mathcal {R}}_c (L)\). Next, we show that if L is a compact frame, then \(R_{\alpha } \) is a finite subset of \({\mathbb {R}}\) for every \(\alpha \in {\mathcal {R}}_c (L)\). Also, we study the result which says that for any topological space X there is a zero-dimensional space Y which is a continuous image of X and \(C_c(X) \cong C_c(Y )\) in pointfree topology. Finally, we prove that, for some frame L, the ring \({\mathcal {R}}_c (L)\) may not be isomorphic to \({\mathcal {R}} (M)\), for any given frame M.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Azarpanah, F., Karamzadeh, O.A.S.: Algebraic characterization of some disconnected spaces. Ital. J. Pure Appl. Math. 12, 155–168 (2002)

    MathSciNet  MATH  Google Scholar 

  2. Azarpanah, F., Karamzadeh, O.A.S., Keshtkar, Z., Olfati, A.R.: On maximal ideals of \( C_c( X )\) and uniformity its localizations. Rocky Mt. J. Math. 48(2), 345–384 (2018)

    Article  Google Scholar 

  3. Azarpanah, F., Karamzadeh, O.A.S., Rahmati, S.: \(C(X)\) Vs. \( C(X) \) modulo its socle. Colloq. Math. 111(2), 315–336 (2008)

    Article  MathSciNet  Google Scholar 

  4. Ball, R.N., Hager, A.W.: On the localic yoshida representation of an archimedean lattice ordered group with weak order unit. J. Pure Appl. Algebra 70(1), 17–43 (1991)

    Article  MathSciNet  Google Scholar 

  5. Ball, R.N., Walters-Wayland, J.: \( C-\) and \( C^*-\) quotients on pointfree topology. Dissertations Mathematicae (Rozprawy Mat) 412, 1–62 (2002)

    Article  MathSciNet  Google Scholar 

  6. Banaschewski, B.: The real numbers in pointfree topology. Textos de Mathematica (Series B), University of Coimbra, Departmento de Mathematica. Coimbra 12, 1–94 (1997)

    Google Scholar 

  7. Banaschewski, B.: Pointfree Topology and the Spectra of \(f\)-Rings. Ordered Algebraic Structures, (Curacao 1995), vol. 19, pp. 123–148. Kluwer Academic Publishers, Dordrecht (1997)

    Book  Google Scholar 

  8. Banaschewski, B.: On the pointfree counterpart of the local definition of classical continuous maps. Categ. Gen. Algebr. Struct. Appl. 8(1), 1–8 (2018)

    MathSciNet  MATH  Google Scholar 

  9. Banaschewski, B., Gilmour, C.R.A.: Pseudocompactness and the cozero part of a frame. Comment. Math. Univ. Carolinae 37(3), 577–587 (1996)

    MathSciNet  MATH  Google Scholar 

  10. Bhattacharjee, P., Knox, M.L., McGovern, W.W.: The classical ring of quotients of \( C_c(X)\). Appl. Gen. Topol. 15(2), 147–154 (2014)

    Article  MathSciNet  Google Scholar 

  11. Dowker, C.H., Papert, D.: On Urysohn’s lemma. In: Proceedings of the Second Prague Topology Symposium, 1966, pp. 111–114. Academia Publishing House of the Czechoslovak Academy of Sciences, Praha (1967)

    Chapter  Google Scholar 

  12. Dube, T.: Concerning \(P\)-frames, essential \(P\)-frames, and strongly zero-dimensional frames. Algebra Univ. 61, 115–138 (2009)

    Article  MathSciNet  Google Scholar 

  13. Estaji, A.A., Abedi, M.: On injectivity of the ring of real-valued continuous functions on a frame. Bull. Belg. Math. Soc. Simon Stevin 25(3), 467–480 (2018)

    MathSciNet  MATH  Google Scholar 

  14. Estaji, A.A., Karamzadeh, O.A.S.: On \(C(X)\) modulo its socle. Commun. Algebra 31(4), 1561–1571 (2003)

    Article  MathSciNet  Google Scholar 

  15. Estaji, A.A., Karimi-Feizabadi, A., Emamverdi, B.: Representation of real Riesz maps on a strong \(f\)-ring by prime elements of a frame. Algebra Univ. 79, 1–14 (2018)

    Article  MathSciNet  Google Scholar 

  16. Estaji, A.A., Karimi-Feizabadi, A., Robat-Sarpoushi, M.: \(z_c\)-ideals and prime ideals in the ring \({\cal{R}}_c (L)\). Filomat 32(19), 6741–6752 (2018)

    Article  MathSciNet  Google Scholar 

  17. Estaji, A. A., Robat-Sarpoushi, M.: Pointfree version of image of continuous functions with finite image. In: 25th Iranian Algebra Seminar, pp. 89–92. Hakim Sabzevari University (2016)

  18. Estaji, A.A., Robat-Sarpoushi, M.: On \(CP\)-frames (submitted)

  19. Ghadermazi, M., Karamzadeh, O.A.S., Namdari, M.: On the functionally countable subalgebra of \(C(X)\). Rend. Sem. Mat. Univ. Padova 129, 47–69 (2013)

    Article  MathSciNet  Google Scholar 

  20. Ghadermazi, M., Karamzadeh, O.A.S., Namdari, M.: \( C(X) \) versus its functionally countable subalgebra. Bull. Iran. Math. Soc. (BIMS) 45, 173–187 (2019)

  21. Gillman, L., Jerison, M.: Rings of Continuous Functions. Springer, Berlin (1976)

    MATH  Google Scholar 

  22. Hager, A.: Some nearly fine uniform spaces. Proc. Lond. Math. Soc. 28, 517–546 (1974)

    Article  MathSciNet  Google Scholar 

  23. Johnstone, P.T.: Stone Spaces. Cambridge University Press, Cambridge (1982)

    MATH  Google Scholar 

  24. Karamzadeh, O.A.S., Keshtkar, Z.: On \(c\)-realcompact spaces. Quaest. Math. 41(8), 1135–1167 (2018)

    Article  MathSciNet  Google Scholar 

  25. Karamzadeh, O.A.S., Namdari, M., Soltanpour, S.: On the locally functionally countable subalgebra of \(C(X)\). Appl. Gen. Topol. 16(2), 183–207 (2015)

    Article  MathSciNet  Google Scholar 

  26. Karimi-Feizabadi, A., Estaji, A.A., Emamverdi, B.: \({\cal{R}}L\)-valued \(f\)-rings homomorphism and lattice-valued maps. Categ. Gen. Algebra. Struct. Appl. 7, 141–163 (2016)

    MathSciNet  MATH  Google Scholar 

  27. Karimi-Feizabadi, A., Estaji, A.A., Robat-Sarpoushi, M.: Pointfree version of image of real-valued continuous functions. Categ. Gen. Algebra. Struct. Appl. 9(1), 59–75 (2018)

    MathSciNet  MATH  Google Scholar 

  28. Mehri, R., Mohamadian, R.: On the locally countable subalgebra of \(C(X)\) whose local domain is cocountable. Hacet. J. Math. Stat. 46(6), 1053–1068 (2017)

    MathSciNet  MATH  Google Scholar 

  29. Namdari, M., Veisi, A.: Rings of quotients of the subalgebra of \(C(X)\) consisting of functions with countable image. Int. Math. Forum 7(12), 561–571 (2012)

    MathSciNet  MATH  Google Scholar 

  30. Picado, J., Pultr, A.: Frames and Locales: Topology Without Points. Frontiers in Mathematics. Birkhäuser/Springer, Basel AG, Basel (2012)

    Book  Google Scholar 

Download references

Acknowledgements

We appreciate the referee for his thorough comments and for taking the time and effort to review our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Akbar Estaji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Presented by W.Wm. McGovern.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Estaji, A.A., Robat Sarpoushi, M. & Elyasi, M. Further thoughts on the ring \({\mathcal {R}}_c (L)\) in frames. Algebra Univers. 80, 43 (2019). https://doi.org/10.1007/s00012-019-0619-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00012-019-0619-z

Keywords

Mathematics Subject Classification

Navigation