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Abstract

The purpose of this paper is to develop a transverse notion of Lusternik-Schnirelmann category in the
field of foliations. Our transverse category, denoted by cat, (M, %), is an invariant of the foliated homotopy
type which is finite on compact manifolds. It coincides with the classical notion when the foliation is by
points. We prove that for any foliated manifold cat M < cat L cat, (M, F), where L is a leaf of maximal
category, thus generalizing a result of Varadarajan for fibrations. Also we prove that cat,(M, #) is bounded
below by the index of k*H, (M), the latter being the image in H,z(M) of the algebra of basic cohomology in
positive degrees. In the second part of the paper we prove that cat. (M, F) is a lower bound for the number of
critical leaves of any basic function provided that F is a foliation satisfying certain conditions of
Palais-Smale type. As a consequence, we prove that the result is true for compact Hausdorff foliations and
for foliations of codimension one. This generalizes the classical result of Lusternik and Schnirelmann about
the number of critical points of a smooth function. £ 2000 Elsevier Science Ltd. All rights reserved.

MSC: 5TR30

Keywords: Lusternik-Schnirelmann category: Foliation: Basic cohomology; Critical point

The Lusternik-Schnirelmann category, in further LS category, of a space X is the least integer
k such that X may be covered by k open subsets which are contractible in X [7,9-11]. This concept
was introduced in the context of the calculus of variations in order to give a lower bound for the
number of critical points of a smooth function.
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In this paper we introduce the notion of transverse category cat,(M,.Z) of a foliated manifold.
We consider foliated homotopies which are compatible with the foliation and we replace the
contractibility in the space by requiring that the inclusion of an open set factors through a leaf up to
the foliated homotopy. In this way we obtain that transverse category is an invariant of the foliated
homotopy type which is finite on compact manifolds.

We generalize to any foliation Varadarajan’s theorem [19] about the relationship between the
category of the total space, the base space and the fiber of a fibration, by proving that
cat M < cat Lcat,(M,.7), where L is a leaf of maximal category.

Basic cohomology has been widely studied since its definition by Reinhart (see [16]). In Section 2
we consider the complex of relative basic forms as a natural generalization of the mapping cone.
Then we prove that cat, (M, 7) > nil k*H, (M), the latter being the index of the image in Hpg(M)
of the basic cohomology algebra in positive degrees.

Among other examples, we discuss for smooth actions the relationship of transverse category
with the equivariant category introduced by Fadell [6].

In the second part of the paper we state our version of Lusternik-Schnirelmann’s main result.
Namely, if f: M — R is a basic function. we show that. under certain conditions of Palais-Smale
type, the transverse category gives a lower bound for the number of critical leaves of f. Then we
prove that these conditions are verified by compact-Hausdorff foliations on a compact manifold.
by considering the gradient of the basic function as a foliated vector field. Finally, we prove that the
bound below remains true for any foliation .7 of codimension one, by showing that when the
number of critical leaves is finite then .7 is a compact Hausdorff foliation.

1. Transverse category

Our setting will be {Hausdorff paracompact) C “-manifolds endowed with C”-foliations. Let
(M,.7),(M', 7') be two foliated manifolds. A C“-homotopy H: M x R — M is said to be foliated if
for all re R the map H, sends each leaf L of .7 into another leaf L' of .#" (notation: ~ ;).

We describe an open subset U < M as transversely categorical if there is a foliated homotopy
H:U xR — M such that H,: U - M is an inclusion and the image of H, : U — M is contained in
a single leaf of #. Here U is regarded as a foliated manifold with the foliation induced by .7 . In
other words. the open subset U of M is transversely categorical if the inclusion (U..7 [ )(M, 7))
factors through a leaf up to foliated homotopy.

Definition 1. The transverse LS category (or. briefly, transverse category) of a foliated manifold
(M, 7 ) is the least number cat,. (M,.7 ) of transversely categorical open sets required to cover M. If
no such covering exists, let cat-(M..7) = = .

If M is a compact manifold. then cat- (M..#) is finite since foliated open sets — that is. the
domains of small adapted charts — are transversely categorical. When .7 is the foliation by points.

an open subset is transversely categorical iff it is categorical. and we have cat. (M..7) = cat M.

Proposition 2. Transverse category is an invariant of foliated homotopy type.
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Proof. Let f:(M,#)—(M',%') be a foliated homotopy equivalence with foliated homotopic
inverse g. If U = M is a h-categorical open subset then there is a foliated homotopy between f|y
and a map which has image in a single leaf. Thus g~ Y(U) = M’ is open and h-categorical because
fand g are foliated maps and fg ~ id. 0

Varadarajan’s theorem [19] about category and fibrations can be generalized to any foliation as
follows:

Theorem 3. Let L be a leaf of maximal category in the foliated manifold (M, #). Then cat M < cat
Lcat, (M, Z).

Proof. Let {U,,...,U,} be a -categorical open covering of (M,#). For each U = U; let
H:U xR — M be a foliated homotopy such that Hy, = iy and H;(U) = L' where L’ is a leaf. We
consider on L' the leaf topology. Since L’ is a weakly imbedded submanifold of M, the map
H,:U — L' is continuous. Let {V,,...,V,}, k = k(L') be a categorical open covering of L. For
each V =V, let G:V xR — L’ be a contraction to =.

Consider W = H; (V) = U which is open in M. To prove that W is categorical (if not void) we
consider F: W xR — M given by

F _{H(x,zt) if t <
U GH(x),2t— 1) if >

Clearly F is well defined and it is continuous from the continuity of H,ly:W — V. Also
Fo = Holw = iw and F,; = G, H|y = *. Remark that for a Hausdorff paracompact manifold the
classical definition of LS category does not change if one only considers smooth maps instead of
continuous maps because any C° map is homotopic to a C* map.

Thus each U; can be covered by k = k(i) categorical open sets. We have

S
catM < ) catLy,
i=1

where L; is the leaf into which U, is deformed. Hence cat M < scat L where L is a leaf of maximal
category. [

2. Category and basic cohomology

The cohomology ring structure of a space classically serves to estimate its category. To obtain
lower bounds for transverse category we consider basic cohomology [16].
Recall that a smooth form w on M is said to be basic if it satisfies

iyw=0 and iydw =0




422 H. Colman, E. Macias-Virgos | Topology 40 (2001) 419-430

for all vector fields Y tangent to %. We denote by Qj(M) the space of basic r-forms,
0<r<n=codim#, and H,(M) = @ H,(M) the basic cohomology algebra, endowed with the
exterior product.

Let U = M an open set. In order to define a relative basic cohomology we consider the complex [3]

QM U) = (M@~ (V)

with differential d(w, ) = (dw, w|y — dO). In this way we have a long exact sequence in basic
cohomology associated to the pair (M, U).

Recall that a ring A is said to be nilpotent if A¥ = 0 for some positive integer k. The least such
integer k is called the index or degree of nilpotence of A, and written nil A.

Proposition 4. cat,(M,.#) = nilk*H, (M), where k* is the morphism induced by the inclusion
k: QM) < Q(M).
Proof. Consider the rh-categorical open subset U of M. We have the following commutative
diagram, where r > O:
HMU) —2» HMU)
a [

r

r K
HM™) — HMM)

;

H,(U)

The homomorphism i* is trivial since it factors through H,(L) = Hpg(*) = 0 for some leaf L. Hence
a is onto by exactness. Let {U,,.... U} be a r-categorical open covering of M and x,...,x,
elements of k*H, (M). For each x; there exists y; € H,(M) such that k*(y;) = x; and z; € Hj(M, U})
such that a(z;) = y;. Thus x; = k*a(z;) = ¢b(z;) and the product

.‘(] ..._\‘S = ('(b(fl). .b(:\))

vanishes since b(z,)* ---*b(z,) e H(M., M) = 0.
Here we are considering the product of relative differential forms [1,3]

QUM U)x Q4M, V) - QP (M, UuV)

which induces the usual cup product in relative singular cohomology [18]. O

3. Saturated transverse category

Sometimes it is interesting to consider open sets which are saturated, that is a union of leaves.

Definition 5. The saturated transverse category cat® M of a foliated manifold (M, .7) is defined to
be the least number of transversely categorical saturated open sets required to cover M. If no such
covering exists, let cat M = .
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Obviously, the transverse category cannot exceed the saturated transverse category: cat, < cats.
On the other hand, a linear foliation %, on the torus T? with o¢ Q shows that transverse category
can be finite even when saturated transverse category is infinite.

Let n: M — M/ be the projection onto the space of leaves. If V' is a transversely categorical
open saturated subset of M, then its image n(V') is a categorical open subset of M/%. It follows at
once that cat}, M is bounded below by the category of the leaf space. The equality holds for locally
trivial bundles.

Example 6. Locally trivial bundles.
If n:M - M/ is a locally trivial C*-bundle then cati M = cat M/ .

We begin with an open covering {Vy, ..., ¥} of M/ by categorical subsets and then show that
{Uy,..., Uy}, where U; = n~(V;), is a transversely categorical open saturated covering of M. In
fact, let H,:V; —» M/# be a homotopy joining the inclusion with a contraction H; of V; onto
a point XoeM/#. Consider H = H < (n|y, x id). Note that the inclusion of U; into M gives
a foliated lifting of H,. By the homotopy lifting property, there exists a lifting H,:U, > M of H,.
Since H,(U) Lo, = n~'(X,) we have that H is a foliated homotopy.

Example 7. Equivariant category of actions.
Let M be a manifold foliated by the orbits of a locally free action of a compact Lie group G. Then
cati M < catd M.

The equivariant category of a manifold where a compact Lie group G acts has been introduced
by Fadell [6] and studied by many authors [12]. We consider here a smooth version catd M of it,
assuming that the action and the involved homotopies are smooth.

Example 8. Suspensions.
Let G =n.(M,xq) be a finite group, and let (E,,.%) be the suspension of a homomorphism
h:m (M, xy) — Diff(F). Then

cat(E,/#) < cat (E,) < cat§ F.

Here M and F are connected manifolds. Call M the universal cover of M and let ¢ be the
action of G on M x F given by ¢(g,(x, y)) = (gx, h(g)(y)). We denote the set of orbits of this action
by E, = M x,F. Then the map p:E, — M induced by the first projection M x F - M is a
locally trivial smooth bundle, while the map =n:E, — F/G induced by the second projec-
tion M x F — F determines a foliation .# on E, which is called the suspension of the homomor-
phism A.

Let U be a G-categorical open subset of F and let H,:U — F be a G- homotopy joining the
inclusion with a map H, sending U onto an orbit Gx < F. Define a homotopy H,: M x U - M x F
by the formula H,(x, y) = (x, H,(y)). Then the image of M x U by the canonical projection onto the
orbit space E, is transversely categorical and saturated by an obvious argument.
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4. Compact-Hausdorff foliations

A foliation .# on a manifold M is called a compact-Hausdorff foliation if every leaf is compact
and the space of leaves is Hausdorff.

The structure of compact-Hausdorff foliations was studied by Epstein [5], Edwards et al. [4]
among others: for any leaf L there exists a finite subgroup G of the orthogonal group O(n),
n = codim.#; a homomorphism 4 : 7, (L) — G; and a leaf preserving diffetomorphism of a neighbor-
hood of L onto L x ¢ D, where D is an open ball in R" and L is the covering space associated to the
kernel of h.

This local model implies that M/7 is a Satake manifold [17]. The open sets U « M/#
diffeomorphic to D/G such that n~ {(U) = L x gD will be called .7 -trivial open sets.

In order to obtain an upper bound for saturated transverse category we need to have some form
of foliated homotopy lifting property.

Lemma9. Let H,:D — D be an equivariant homotopy and let f: L x D — L x D be an equivariant map
such that prp - f= Hgy = prp. Denote f, H the induced maps in the quotient spaces. Then there exists
a foliated homotopy

H{(Lx¢;D)xR—-LxsD
such that m- H = H (nxidg) and Hy = f(we are identifving m with L x ;D — D/G).
Proof. Let [1.d] denote the image of (I.d)e L x D in the quotient space L x ;D. Define H by the
formula
H({l.d].t) = [pri - fil.d). H(d.1)]
which is well defined because H and f are equivariant maps. Then
nH([L.d].t) = pH(d.t) = H(p x id\d.t) = H(p(d).1)
= H(zn[l.d].t) = H(z x id)[1.d].1).
Also observe that H is a foliated homotopy. Finally.
Ho([L.d]) = [pri fU.d).H(d0)] = [prc fULd). H(prp(l.d),0)]
= [prp fUd).prpfil.d)] = [f(L.d)]
=f[Ld]. O

Proposition 10. /f U = M/ is an 7 -trivial open set. then 1~ '(U) is a transversely categorical open
saturated set.

Proof. Let U be diffeomorphic to D'G and n~1(U) = Lx¢D. Let H:D xR — D be an equivariant
contraction to the origin. Then the existence of H:(Lxz;D)xR > LxsD follows from
Lemma 9 because prp = Hoprp. If Lo =n~ Yp(0)) then H[lLd]eL, for all [Ld]eL x;D
because nH,[L.d] = p0). O



H. Colman, E. Macias-Virgos | Topology 40 (2001) 419-430 425

The above statement shows that any leaf of a compact-Hausdorff foliation has a transversely
categorical open saturated neighborhood.

Corollary 11. If M/ can be covered by k F -trivial open sets, then
cat M/#F < cati M < k.

1. For example, let us consider the compact-Hausdorff foliation on S* with projection n: S — §*
given by the following # -trivialization. If {U, V'} is the covering of S? with U = S* — {ps} and
V =S% — {pn}, and (a,b) is a coprime pair of integers, we take

(rexpit, expis)—rexpi(tp + sq),

where (p,q) = ( — a,b)in U and (p, q) = (b, — a) in V. Then the category of the leaf space is 2 and
k = 2 too, so cats, S3 = 2 for this foliation.

2. However, the following example shows that in general cat M/# # cati, M. Let K be the Klein
bottle and % the compact-Hausdorff foliation by circles on K with projection n: K — I, where
I = R is a compact interval. Then the leaf space is contractible whereas cat} K = k = 2.

5. Critical leaves

In this section we show how transverse category is useful in the study of the number of critical
leaves of basic functions, by generalizing the classical result of Lusternik-Schnirelmann.

5.1. The transverse Lusternik-Schnirelmann method

Let /- M — R denote a basic function, that is a smooth function which is constant along the
leaves. Let K be the critical set of f. It is saturated. Any leaf L = K is called critical. For ceR we
write M, =f (= o,c] and K, = Knf~!(c).

Our aim is to determine the number of critical leaves. Certain assumptions on M and f are
required.

Definition 12. If A and B are saturated subsets of M, we say that 4 is h-deformable into B if there
exists a foliated homotopy H: M x R — M such that Hy|, is the inclusion and H,(A4) < B.

Consider the following transverse conditions:

C1. Every leaf of # has a saturated neighborhood which is transversely categorical.

C2. For any regular value ¢ of f there is an ¢ > 0 such that M, is h-deformable into M_,.

C3. For any critical value ¢ of f and any neighborhood U of K, there is an ¢ > 0 such that
M,.. — U is m-deformable into M. _,.

Theorem 13. Let f: M — R be a basic function on a compact manifold M endowed with a foliation
F satisfying the transverse conditions above. Then f has at least cat’ M critical leaves.
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Proof. All arguments in the proof of the classical version [11,13] can be adapted to the foliated
case by defining

cm(f) = inf{ceR|cati M, > m}

for every positive integer m < cati M. [

In the next section we shall show that any compact-Hausdorff foliation # on a compact
manifold M verifies the transverse conditions above.

5.2. Compact-Hausdorff foliations

Let f: M — R be a basic function. It is known [3] that compact-Hausdorff foliations admit
bundle-like metrics [15]. Let g be a bundle-like metric and || || the norm defined by g. Then the
gradient Vf of fis a foliated vector field, that is for all Y € y(#) the Lie bracket [V, Y] also belongs
to 7(#). Hence ||Vf]|? is a basic function too.

We denote M* = M — K the set of regular points of f.

Lemma 14. Let Y be the vector field in M* defined by Y = Vf}\|Vf||*. Then:

(i) IfU,V < M* are saturated open sets such that V < U, there is a foliated vector field X on M such
that X =Y onVand X =0on M — U.

(ii) Let ¢ be the flow defined by X. Then the function fo,(t) is monotone non-decreasing in t for all
pe M. Moreover, if ¢,[s.0] = V then fo,(t) = f(p) + t for all te[s,0].

Proof. (i) We assume as known the existence of basic partitions of the unity subordinated to
saturated open coverings [3]. Since V < U, there exists a basic function h > 0 on M such that h = 1
onVandh=0o0onM — U.Since Y is a foliated vector field on M*, we can define the foliated vector
field X on M by X = hY.

(11) We have

d . .
al:(./“/)p(f)) = Xy, 0f
= <Xt/), 0 ~Vf(-/>p(r)>
= Cho ()Y 4,0 Vo, w02

/ Vf
=h 2l Vf. >
Pl <IIV/’¢,(..II o

= he,(t)

and the first statement follows. Moreover. if ¢,(t)eV for all te[s.0] we have
d/dt(f,(1) = h(,(t)) = 1. which completes our proof. [J

Theorem 15. Let M be a compact manifold endowed with a compact-Hausdorff foliation. Then any
basic function 2 M — R verifies the transverse conditions C1, C2 and C3 of Section 5.1.
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Proof. C1. It follows at once from Proposition 10.

C2. Let ¢ be a regular value. There exists ¢ < % such that all points of [¢ — 4e, ¢ + 4¢] are regular
values too. Therefore, U = f~!(c — 3¢,c + 3¢) and V = f~'(c — 2¢,¢ + 2¢) consist only of regular
points. Also U and V are saturated open subsets of M* such that ¥ < U. Then, by Lemma 14.1,
there is a foliated vector field X on M such that X =f/||Vf]|> on ¥ and X = 0 on M — U. Define
H:M xR — M by

H(p,t) = ¢ -.(p)

where ¢ is the flow defined by X. Since X is a foliated vector field, H, is a foliated map. Since by
Lemma 14 fi, is monotone non-decreasing in ¢t we have

fH(p) = fo-1(p) < foolp) < f(p),

hence H{(M._.) = M._,. And if pef~'(c — & c + ¢] suppose H,(p) were not in M,._,, then
fo_1(p)>c —e It follows that ¢,[ —1.,0]=f ¢ —ec+¢] =V and by the same Lemma.
fo,(t)=f(p)+t Vre[ —1,0]. In particular fp,( — 1) = f(p) — 1. hence

c—e<flp)—1<c+e— 1

whereas ¢ < 3. This contradiction proves H(M...) = M. _..
C3. For each positive integer k, define

, 1
Vi = {peMlllVf(p)II“ < E}’

so V, is a saturated open neighborhood of K and V., = V. Then W = M — V., is an open set
containing the closed set C = M — V/,, and since M is a normal space there exists an open set
A such that CcAc A< W. Hence A, =satA is a saturated open set such that
CcAyc Ay W.

By Lemma 14. there is a foliated vector field X, on M such that X, = Y on 4, and X, =0 on
V... Let ¢ be a critical value. Now define

U, = {pe M if(p) =] <% and @,(t)e V', for some re|:— %OB
We will prove that each neighborhood U of K, includes some L. Suppose that this assertion is
false. Then for each k we can choose p, € U, such that p, ¢ U and there exists a subsequence [ p, | of
{p.| convergent to some ¢ € M. Then f(¢) = lim f(p,) = ¢. Since ¢, (t,)e V', for some t, e [ — 1;1n.0]. we
have lim ||Vf(¢,. (t,)]|* = 0 and it follows that Vf(g) = 0. Hence ¢€ K. = U. which is a contradiction
because {p,; @M — U implies qe M — U.

Then we choose &k > 0 such that U, = U and ¢ > 0 such that ¢ < 1 (2k). Define H: M xR — M
by

Hip.t) = o" ,(p).

where * is the flow defined by X,. Since X, is a foliated vector field. H, is a foliated map. By
Lemma 14 we have

FH, (p) = fo* ip) < fo'\ «(p)
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hence H,(p)e M._, when peM._,. If pe M., — U and f(p) > ¢ — ¢ then |f(p) — c| < ¢ so, by
definition of Uy, ¢,(t)¢ V, for all te[ — 1/k,0]. Then by the same Lemma fo( — 1/k) = f(p) — 1/k
and fH (p) <c—e O

Theorem 16. Let f: M — R be a basic function on a compact manifold M endowed with a compact-
Hausdorff foliation. Then f has at least caty, M critical leaves.

When we consider the foliation by points we obtain the classical Lusternik-Schnirelmann
theorem stating that the category of the manifold is a lower bound for the number of critical points
of any smooth function.

5.3. Codimension one foliations

The goal of this section is to show that every basic function on a compact manifold M endowed
with a foliation .# of codimension one has at least cat}, M critical leaves.

Throughout this section M will be a compact manifold and # a codimension one foliation on M.
We know that when all leaves are compact, # is a compact-Hausdorff foliation [5,7,14] so the
result in this case follows from the preceding section.

Proposition 17. If # has a nonclosed leaf, then any basic function has an infinite number of critical
leaves.

In order to prove this proposition, we first review some results about minimal sets of foliations
[2.8]. A subset i of M is called minimal if it is a minimal nonempty saturated closed subset of M.
For example, every closed leaf is a minimal set. For any leaf L of .7 the closure L of L in the
compact manifold M contains a minimal set. In particular, every foliation of a compact manifold

has a minimal set.
Any minimal set u of M is of one and only one of the following types:

(i) it is a compact leaf.
(i) u = M.
(iii) ¢ is a union of exceptional leaves. In this case we say that u is an exceptional minimal set.

Now, we will prove the following lemma. Let f: M — R be a basic function and K the set of critical
points as before. For every minimal set y, define

A, ={Le#|L o pand L is not closed}.

Note that since we are supposing the existence of some nonclosed leaf then there exists a minimal
set 1 such that 4, # 0.

Lemma 18. Let N = J[L|Le A,} where i is a minimal set such thar A, # 0. Then there exists
a saturated open set W of M such that W = N. Moreover, N < K.
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Proof. The minimal set 11 is of one of the three types above. The first assertion follows inmediately
when u = M and it is proved in [8, part B, p. 94] in case 3. Thus we only prove the assertion for
a minimal set u which is a compact leaf L.

Let L be a leaf in N and T a transversal passing through the point xe L. Since the holonomy
group of L, cannot be finite, there exists a diffeomorphism geHol(L,) such that limg"(x) = z
where = = TnLy. If g'(x) < x < ¢/(x), i,j€ Z, we consider the segment J = (g'(x),g/(x)) = T. We
have

J"g(x) < g"(v) < ¢"¢(x) for all yeJ, neZ
hence
limyg"(y) ==z Vyeld.

Moreover, J © N because if ve L’ then ¢"(y)eL’ for all neZ and L' = L,, hence yeN. We set
W =satJ. Clearly, W is a saturated open subset of M and since N is saturated, W < N.

It only remains to prove that N < K. Since fis a basic function. f is constant on the saturated
open subset W. Thus W < K.

If 1t is a compact leaf, then for every leaf L = N there is a saturated open neighborhood W < N.
Hence Lc W c K forall L « N.

If £t =M then W =M and N < K.

Finally, if i is an exceptional minimal set, 4 < K since W is a neighborhood of x. Moreover, if
@< Lforallleaf L « N then LUK # 0 which implies that L = K then L= Kforall L= N. O

The statement of Proposition 17 follows from Lemma 18. Thus either all leaves are compact in
which case Theorem 13 implies that fhas at least cat® M critical leaves. or else fhas infinitely many
critical leaves. In any case we have

Theorem 19. Let F be u codimension one foliation on M. Then anyv basic function has at least cat’ M
critical leaves.
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