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Abstract Some conditions which guarantee that the Orlicz function spaces equipped with
the p-Amemiya norm (1 < p < ∞) and generated by N-functions are uniformly rotund in
every direction are given. Obtained result broaden the knowledge about this notion in Orlicz
function spaces with the p-Amemiya norm (1 ≤ p ≤ ∞).
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1 Introduction and preliminaries

Let us denote by N, R and R+ the sets of natural, real and nonnegative real numbers, respec-
tively. For a Banach space X , by S(X) and B(X) we will denote the unit sphere and the unit
ball of X , respectively.

A Banach space X = (X, ‖.‖) is called uniformly rotund in every direction (see [16,42])
if for each ε > 0 and nonzero z ∈ X there exists δ(z, ε) > 0 such that if x and y belong
to S(X), ‖x − y‖ ≥ ε and x − y = αz for some α ∈ R, then

∥
∥ x+y

2

∥
∥ ≤ 1 − δ(z, ε). We

will write then X ∈ (URED) for short. It is known (see [16]) that the URED property is
equivalent to the following one: For each nonzero z in X there is a positive number δ(z) such
that if x ∈ B(X) and ‖x + z‖ ≤ 1, then

∥
∥x + z

2

∥
∥ ≤ 1− δ(z). Equivalently, one can say that

X ∈ (URED) if and only if xn, z ∈ X , ‖xn‖ → 1, ‖xn + z‖ → 1 and ‖2xn + z‖ → 2 as
n → ∞ imply z = 0.

Another characterization of the uniform rotundity in every direction is also possible (see
[16]), namely, X ∈ (URED) if and only if the following condition holds: if there are
sequences (xn)∞n=1 and (yn)∞n=1 in X such that ‖xn‖ ≤ 1 and ‖yn‖ ≤ 1 for every n ∈ N,
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72 R. Kaczmarek

xn − yn → z and ‖xn + yn‖ → 2 as n → ∞, then z = 0. Note also that in case of
Köthe spaces, the following characterization of the URED property is known (see [32],
Prop. 3.3): The Köthe space E is uniformly rotund in every direction if and only if for any
ε ∈ (0, 2] and z ∈ E+\{0} (E+ is the positive cone of E) there exists δ(ε, z) ∈ (0, 1) such
that

∥
∥ x+y

2

∥
∥
E ≤ 1 − δ(ε, z) for any x, y ∈ B(E) with x − y = λz for some λ > 0 and

‖x − y‖E ≥ ε.
The notion of uniform rotundity in every direction was first used by Garkavi (see [18–

20]) to characterize normed linear spaces for which every bounded subset has at most one
Chebyshev center. Next, Zizler, Day, James and Swaminathan continued investigation of this
property [16,46] and the revealed results and applications encouraged other mathematicians
to consider this property in some particular Banach spaces such as Orlicz spaces, Musielak–
Orlicz spaces,Musielak–Orlicz spaces of Bochner type, Orlicz–Sobolev spaces or Calderón–
Lozanovskiı̆ spaces (see [2,4,5,8,27–29,32,41,43,44]).

A map Φ : R → [0,∞] is said to be an Orlicz function if Φ(0) = 0, Φ is not identically
equal to zero (i.e. limu→∞ Φ(u) = ∞),Φ is even and convex on the interval (−b(Φ), b(Φ))

and Φ is left-continuous at b(Φ), i.e. limu→b(Φ)− Φ(u) = Φ(b(Φ)). Let us notice that every
Orlicz function Φ is continuous on the interval (−b(Φ), b(Φ)). Recall also that an Orlicz
function Φ is called an N-function if it vanishes only at 0, takes only finite values and the
following two conditions are satisfied: limu→0

Φ(u)
u = 0 and limu→∞ Φ(u)

u = ∞.
Let us note that whenever some result will concernOrlicz spaces generated byN-functions

only, this fact will be announced in the assumptions.
For any Orlicz function Φ : R → [0,∞] let us define

a(Φ) := sup{u ≥ 0 : Φ(u) = 0}, b(Φ) := sup{u > 0 : Φ(u) < ∞}.
Notice that a(Φ) = 0 means that Φ vanishes only at zero while b(Φ) = ∞ means that Φ

takes only finite values.
An Orlicz function Φ : R → [0,∞) is called convex if

Φ

(
u + v

2

)

≤ Φ(u) + Φ(v)

2
(1.1)

for all u, v ∈ R. If the inequality in (1.1) is sharp for all u �= v, then Φ is called strictly
convex (on R). An Orlicz functionΦ : R → [0,∞) is said to be uniformly convex at infinity
(see also [1,34]) if for each a ∈ (0, 1) there exists δa ∈ (0, 1) such that

Φ

(
u + au

2

)

≤ 1

2
(1 − δa) (Φ(u) + Φ(au)) (1.2)

for all u ≥ u0, where u0 > 0. If condition (1.2) holds with u0 = 0, we say thatΦ is uniformly
convex on R+ (so on the whole R by the fact that Φ is even).

For any Orlicz function Φ, we define its complementary (in the sense of Young) function
Ψ by the formula

Ψ (v) = sup
u≥0

{u|v| − Φ(u)}.

We say that an Orlicz functionΦ satisfies conditionΔ2(R+) [resp.Δ2(∞)] if there exists
K > 0 such that for all u ≥ 0 [resp. if there exist K > 0 and u0 > 0 with Φ(u0) < ∞
such that for any u ≥ u0] inequality Φ(2u) ≤ KΦ(u) holds. In this case, we will write
Φ ∈ Δ2(R+) [resp. Φ ∈ Δ2(∞)].

Throughout the paper we will assume that (Ω,Σ,μ) is a measure space with a σ -finite
non-atomic and complete measure μ and L0(μ) is the space of all μ-equivalence classes of
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Uniform rotundity in every direction of Orlicz function spaces… 73

real andΣ-measurable functions defined onΩ . Let us note that Theorem 4will be formulated
for the Orlicz spaces equipped with the p-Amemiya norm, (1 ≤ p < ∞), built over a finite
non-atomic measure space. We shall say that an Orlicz function Φ satisfies the Δ2(μ)-
condition if Φ ∈ Δ2(∞) when the measure space is non-atomic finite and Φ ∈ Δ2(R+)

when the measure space is non-atomic infinite. Let us define the characteristic function χA

of a subset A from Ω as

χA =
{

1, for t ∈ A,

0, otherwise.

For a given Orlicz function Φ we define on L0(μ) a convex semimodular (see [3,30,34–
36,39]) by

IΦ(x) =
∫

Ω

Φ(x(t))dμ.

The Orlicz space LΦ generated by an Orlicz function Φ is a linear space of measurable
functions defined by the formula (see [38]):

LΦ = {x ∈ L0(μ) : IΦ(λx) < ∞ for some λ > 0}.
The Orlicz space is usually equipped with the Luxemburg norm (see [34])

‖x‖Φ = inf
{

λ > 0 : IΦ
( x

λ

)

≤ 1
}

or with the equivalent one (see [37,38])

‖x‖o = sup

{∫

Ω

|x(t)y(t)|dμ : y ∈ LΨ , IΨ (y) ≤ 1

}

,

which is called the Orlicz norm, where Ψ is the complementary function to Φ.
For any 1 ≤ p ≤ ∞ and u ≥ 0 let us define

sp(u) =
{

(1 + u p)
1
p for 1 ≤ p < ∞,

max{1, u} for p = ∞.
(1.3)

In order to simplify notations, define sΦ,p(x) = sp ◦ IΦ(x) for all 1 ≤ p ≤ ∞ and all
x ∈ L0(μ). Note that the functions sp and sΦ,p are convex. Moreover, the function sp is
increasing on R+ for 1 ≤ p < ∞, but the function s∞ is increasing on the interval [1,∞)

only.

Definition 1 Let p ∈ [1,∞]. By the p-Amemiya norm of a function x ∈ L0 we mean the
number defined by the formula (see [11,25])

‖x‖Φ,p = inf
k>0

1

k
sΦ,p(kx).

The Orlicz space equipped with the p-Amemiya norm (LΦ, ‖.‖Φ,p)will be denoted by LΦ,p.

It is known (see [11]) that the p-Amemiya norm ‖x‖Φ,p (1 ≤ p ≤ ∞) is equivalent to the

Luxemburg norm ‖x‖Φ , namely, ‖x‖Φ ≤ ‖x‖Φ,p ≤ 2
1
p ‖x‖Φ for any x ∈ LΦ,p. Recall also

here the earlier result of Hudzik and Maligranda from [25], which states that the 1-Amemiya
norm is equal to the Orlicz norm in general, i.e. when Φ is an arbitrary Orlicz function.

Recall that the notion of the p-Amemiya norm (1 ≤ p ≤ ∞) was introduced by Reisner
in 1988 in [40], where the Author defined these norms for the Calderón–Lozanovskii spaces.
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74 R. Kaczmarek

Next, in 2000, Hudzik and Maligranda [25] suggested investigating a family of p-Amemiya
norms (1 ≤ p ≤ ∞) in Orlicz spaces. After several years, the first paper constituting some
basic and crutial results allowing further research and containing the complete characteriza-
tion of rotundity and extreme points in Orlicz spaces equipped with the p-Amemiya norms,
1 ≤ p ≤ ∞, was written by Cui et al. (see [11]). Since that time, an intensive development of
research connected with Orlicz and Musielak–Orlicz spaces equipped with the p-Amemiya
norm has taken place, many important results broaden the knowledge about the geometry of
these spaces were obtained (see [6,7,9–15,17,23,24,26,33]) and some open questions were
put (see [45]).

Up to the end of this section, let p ∈ [1,∞]. Denoting by p+ the right-side derivative of
the function Φ on [0, b(Φ)) and putting p+(b(Φ)) = limu→b(Φ)− p+(u), let us define the
function αp : LΦ,p → [− 1,∞] by

αp(x) =

⎧

⎪⎨

⎪⎩

I p−1
Φ (x)IΨ (p+(|x |)) − 1, if 1 ≤ p < ∞,

− 1, if p = ∞ ∧ IΦ(x) ≤ 1,

IΨ (p+(|x |)), if p = ∞ ∧ IΦ(x) > 1,

and the functions k∗
p : LΦ,p → [0,∞), k∗∗

p : LΦ,p → (0,∞] by
k∗
p(x) = inf{k ≥ 0 : αp(kx) ≥ 0} (with inf ∅ = ∞),

k∗∗
p (x) = sup{k ≥ 0 : αp(kx) ≤ 0}.

It is obvious that k∗
p(x) ≤ k∗∗

p (x) for every 1 ≤ p ≤ ∞ and x ∈ LΦ,p.
Denote by Kp(x) the set of all k ∈ (0,∞) which are between k∗

p(x) and k∗∗
p (x), i.e.,

Kp(x) = {0 < k < ∞ : k∗
p(x) ≤ k ≤ k∗∗

p (x)}. Note that Kp(x) = ∅ if and only if
k∗
p(x) = k∗∗

p (x) = ∞. Moreover, the p-Amemiya norm ‖x‖Φ,p, x �= 0, is attained at every
point k ∈ [k∗

p(x), k
∗∗
p (x)) provided k∗

p(x) < ∞ and at every point k ∈ [k∗
p(x), k

∗∗
p (x)]

provided k∗∗
p (x) < ∞ (see [11]). Recall also that an Orlicz function Φ is said to be k∗

p-finite
(respectively k∗∗

p -finite) provided k∗
p(x) < ∞ (resp. k∗∗

p (x) < ∞) for every x ∈ LΦ,p . An
Orlicz functionΦ is said to be kp-unique, if 0 < k∗

p(x) = k∗∗
p (x) < ∞ for all x ∈ LΦ,p\{0}.

Evidently, Φ is kp-unique if and only if card Kp(x) = 1 for every x ∈ LΦ,p\{0}.

2 Auxiliary results

Let us first note that although the main theorem is formulated for the Orlicz spaces generated
by N-functions only, we will present some auxiliary results in they original and often wider
form, i.e. formulated for Orlicz spaces generated by an arbitrary Orlicz function.

Lemma 1 (See [3], Proposition 1.4) Let Φ be a strictly convex N-function. Then:

(1) Φ is uniformly convex on any bounded interval.
(2) For any K > 0, ε > 0 and [a, b] ⊂ (0, 1), there exists δ > 0 such that

Φ(αu + (1 − α)v) ≤ (1 − δ)[αΦ(u) + (1 − α)Φ(v))]
holds for all α ∈ [a, b] and u, v ∈ R satisfying |u|, |v| ≤ K and |u − v| ≥ ε.

Theorem 1 (Ergoroff’s theorem, see [22]) If fn and f are measurable and almost every-
where finite in Ω , μ(Ω) < ∞ and fn(t) → f (t) a.e. in Ω , then for every number ε > 0
there exists a set A ∈ Σ such that μ(A) < ε and fn(t) → f (t) uniformly in Ω\A.
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Uniform rotundity in every direction of Orlicz function spaces… 75

Theorem 2 (See [11], Theorem 6.2) The Orlicz space LΦ,p = (LΦ, ‖.‖Φ,p) is rotund if and
only if

1. Φ is kp-unique and
2. Φ is strictly convex on (−b(Φ), b(Φ)) and
3. (a) 1 ≤ p < ∞ or

(b) p = ∞ and Φ ∈ Δ2(μ).

Corollary 1 (See [11], Corollary 4.7) Every Orlicz function Φ that is strictly convex on
(−b(Φ), b(Φ)) is kp-unique for all 1 < p ≤ ∞. Moreover, if b(Φ) = ∞ and Φ does not
have an asymptote at ∞, then Φ is kp-unique for all 1 ≤ p ≤ ∞.

Lemma 2 (See [15], Lemma 2.7) Let 1 ≤ p ≤ ∞. Then IΦ(x) ≤ ‖x‖Φ,p for all x ∈ LΦ,p

with ‖x‖Φ,p ≤ 1.

Lemma 3 (See [15], Lemma 4.2) Let 1 ≤ p ≤ ∞ and let Φ be an Orlicz function. In
the case p = 1 assume, additionally, that Φ is k∗

1 -finite. If the sequence (‖xn‖Φ,p)
∞
n=1 is

bounded, kn ∈ Kp(xn) and kn → ∞, then xn
μ→ 0 on Ω .

Lemma 4 (See [44], Lemma 6 or [3], Lemma 2.35) Let Φ be an N-function. Then, for a
given σ ∈ (0, 1

2

)

, ε > 0 and γ > 0, there exists δ > 0 such that for any u > 0 and any
λ ∈ [σ, 1

2

]

satisfying

λΦ((1 + ε)u) + (1 − λ)Φ(u) ≤ (1 + δ)[Φ(λ(1 + ε)u + (1 − λ)u)],
there exists τ ∈ [(1 + λε)u, (1 + ε)u] such that

p+(τ ) ≤ (1 + γ )p+
(

1 + σε

1 + 2σε
τ

)

.

Recall that in 1984 Kamińska (see [27]) gave the characterization of the uniform rotundity
in every direction forMusielak–Orlicz spaces endowedwith the Luxemburg norm over a non-
atomicmeasure space, which was next generalized to theMusielak–Orlicz spaces of Bochner
type (see [28]). The theorem presented below can be easily deduced from the result contained
in [27]. Let us also note that another proof of the characterization of the URED property for
Orlicz spaces equipped with the Luxemburg norm was given by Hudzik in [8].

Theorem 3 (See [27] or [31], Chapter 12) Let (Ω,Σ,μ) be a non-atomic complete and
σ−finite measure space and Φ : R → R+ be an even, continuous, convex and vanishing
only at zero function. Then the Orlicz space (LΦ, ‖.‖Φ) equipped with the Luxemburg norm
is uniformly rotund in every direction if and only if Φ is strictly convex and Φ satisfies the
Δ2(μ)-condition.

3 Results

Denote �
p
2 = (R2, ‖.‖p), where the norm ‖.‖p is defined as ‖x‖p = (|x1|p + |x2|p)1/p for

any x = (x1, x2) ∈ R
2 and any p ∈ [1,∞), and ‖x‖∞ = max{|x1|, |x2|}, whenever p = ∞.

Then, the p-Amemiya norm (1 ≤ p < ∞) in the Orlicz space LΦ,p can be expressed by the
help of the norm ‖.‖p in the following way:

‖x‖Φ,p = inf
k>0

‖(1, IΦ(kx))‖p.

123



76 R. Kaczmarek

For u ∈ (LΦ, ‖.‖Φ,p) and v ∈ (LΨ , ‖.‖Ψ,q), where p, q ∈ [1,∞] are such that 1
p + 1

q = 1,

let 〈v, u〉 := ∫
Ω
u(t)v(t)dt .

Let us start from presenting some lemmas. The first one is formulated for the Orlicz spaces
generated by N -functions and endowed with the p-Amemiya norm but only for p ∈ (1,∞)

(for the case p = 1, we refer to [44] or [3]).

Lemma 5 Let Φ be an N-function, Ψ be its complementary in the sense of Young
function and let p ∈ (1,∞) and q ∈ (1,∞) be such numbers that 1

p + 1
q = 1. If xn, yn ∈

B(LΦ,p) and vn ∈ B(LΨ,q) satisfy 〈vn, xn + yn〉 → 2 as n → ∞, then for any Ωn ∈ Σ ,
kn ∈ Kp(xn) and hn ∈ Kp(yn), we have that limn→∞

∫

Ω
[knxn(t) − hn yn(t)]vn(t)dt =

limn→∞
[‖knxn‖Φ,p − ‖hn yn‖Φ,p

] = limn→∞
[
(

1 + I pΦ(knxn)
) 1
p − (1 + I pΦ(hn yn)

) 1
p

]

and

lim
n→∞

∫

Ωn

[knxn(t) − hn yn(t)]vn(t)dt ≤ lim
n→∞ |IΦ(knxnχΩn ) − IΦ(hn ynχΩn )| (3.1)

hold provided that the limits exist and {max{kn, hn}}n is bounded.

Proof Let p ∈ (1,∞). By the assumption, we get that 〈vn, xn〉 → 1 and 〈vn, yn〉 → 1 as
n → ∞, so by the Hölder inequality

1 ← 〈vn, xn〉 =
∫

Ω

vn(t)xn(t)dt ≤ ‖vn‖Ψ,q · ‖xn‖Φ,p ≤ ‖xn‖Φ,p

= 1

kn
(1 + I pΦ(knxn))

1
p ≤ 1,

whence
(

1 + I pΦ(knxn)
) 1
p −

∫

Ω

knxn(t)vn(t)dt → 0 (3.2)

as n → ∞. In a similar way we can prove that

(

1 + I pΦ(hn yn)
) 1
p −

∫

Ω

hn yn(t)vn(t)dt → 0 (3.3)

as n → ∞. Formulas (3.2) and (3.3) yield

lim
n→∞

∫

Ω

[knxn(t) − hn yn(t)]vn(t)dt = lim
n→∞

[
(

1 + I pΦ(knxn)
) 1
p − (1 + I pΦ(hn yn)

) 1
p

]

,

whence

lim
n→∞

∫

Ω

[knxn(t) − hn yn(t)]vn(t)dt = lim
n→∞

[‖knxn‖Φ,p − ‖hn yn‖Φ,p
]

≤ lim
n→∞

∣
∣‖(1, IΦ(knxn))‖p − ‖(1, IΦ(hn yn))‖p

∣
∣

≤ lim
n→∞ ‖(0, IΦ(knxn) − IΦ(hn yn))‖p

= lim
n→∞ |IΦ(knxn) − IΦ(hn yn)|,
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Uniform rotundity in every direction of Orlicz function spaces… 77

so for any Ωn ∈ Σ , we obtain

lim
n→∞

∫

Ωn

[knxn(t) − hn yn(t)]vn(t)dt ≤ lim
n→∞ |IΦ(knxnχΩn ) − IΦ(hn ynχΩn )|

and the proof is finished. ��
Let us now present the more general result rather then this presented in [44], Lemma 4 or

in [3], Lemma 2.26.

Lemma 6 Let Φ be a strictly convex N-function, let p ∈ [1,∞), xn, yn ∈ B(LΦ,p), ‖xn +
yn‖Φ,p → 2 as n → ∞, kn ∈ Kp(xn) and hn ∈ Kp(yn). Then b = sup

n
max{kn, hn} < ∞

implies knxn − hn yn → 0 in measure.

Proof Recall first that an Orlicz function Φ which vanishes only at zero and takes only finite
values has the following property:

Φ(|u| − |v|) ≤ |Φ(2u) − Φ(2v)| for all u, v ∈ R. (3.4)

Notice that for any p ∈ [1,∞), the function f (u) := sp(|u|)−1, u ∈ R, is anOrlicz function,
so by property (3.4) applied to the f , i.e. f ( 12 |u| − 1

2 |v|) ≤ | f (u) − f (v)| for all u, v ∈ R,
as well as by the convexity of the function sp(.), we get

0 ← 2 − ‖xn + yn‖Φ,p ≥ ‖xn‖Φ,p + ‖yn‖Φ,p − ‖xn + yn‖Φ,p

≥ 1
kn
sΦ,p (knxn) + 1

hn
sΦ,p (hn yn) − 1

knhn
kn+hn

sΦ,p

(
knhn
kn+hn

(xn + yn)
)

= kn+hn
knhn

{
hnsp(IΦ(kn xn))

kn+hn
+ knsp(IΦ(hn yn))

kn+hn
− sp

(

IΦ
(

knhn
kn+hn

(xn + yn)
))}

≥ kn+hn
knhn

{

sp
(
hn IΦ(kn xn)

kn+hn
+ kn IΦ(hn yn)

kn+hn

)

− sp
(

IΦ
(

knhn
kn+hn

(xn + yn)
))}

= kn+hn
knhn

{

sp
(
hn IΦ(kn xn)

kn+hn
+ kn IΦ(hn yn)

kn+hn

)

− 1 −
[

sp
(

IΦ
(

knhn
kn+hn

(xn + yn)
))

− 1
]}

≥ kn+hn
knhn

{

sp
[
1
2

(
hn IΦ(kn xn)

kn+hn
+ kn IΦ(hn yn)

kn+hn
− IΦ

(
knhn
kn+hn

(xn + yn)
))]

− 1
}

≥ 0,

so

sp

[
1

2

(
hn IΦ(knxn)

kn + hn
+ kn IΦ(hn yn)

kn + hn
− IΦ

(
knhn

kn + hn
(xn + yn)

))]

→ 1

as n → ∞. Since sp(un) → 1 if and only if un → 0 as n → ∞, we get that

hn IΦ(knxn)

kn + hn
+ kn IΦ(hn yn)

kn + hn
− IΦ

(
knhn

kn + hn
(xn + yn)

)

→ 0 (3.5)

as n → ∞.
If the sequence (knxn − hn yn)∞n=1 does not converge to zero in measure, then without

loss of generality, we may assume that μ(En) > ε for any n ∈ N, where En = {t ∈ Ω :
|knxn(t) − hn yn(t)| ≥ σ } and σ , ε are fixed and positive numbers.

Since the Orlicz space LΦ,p is a symmetric space, the norm ‖χF‖Φ,p does not depend on
the set F but only on its measure, so let us denote k = 1

‖χF‖Φ,p
, where F ∈ Σ andμ(F) = ε

4 .
Define the sets

An = {t ∈ Ω : |xn(t)| > k}, Bn = {t ∈ Ω : |yn(t)| > k}.
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78 R. Kaczmarek

Then 1 ≥ ‖xn‖Φ,p ≥ ‖xnχAn‖Φ,p > k‖χAn‖Φ,p, whence ‖χAn‖Φ,p < 1
k , which implies

μ(An) < ε
4 . In a similar way we get that μ(Bn) < ε

4 . By Lemma 1, there exists δ > 0 such
that

Φ(αu + (1 − α)v) ≤ (1 − δ)[αΦ(u) + (1 − α)Φ(v)]
holds for all α ∈ [ 1

1+b , b
1+b

] ∈ (0, 1) and any u, v ∈ R with |u| ≤ bk, |v| ≤ bk and

|u − v| ≥ σ . Since kn
kn+hn

, hn
kn+hn

∈ [ 1
1+b , b

1+b

]

for all t ∈ Fn := En\{An ∪ Bn}, we obtain
that

Φ

(
knhn (xn(t) + yn(t))

kn + hn

)

≤ (1 − δ)

[
hnΦ(knxn(t))

kn + hn
+ knΦ(hn yn(t))

kn + hn

]

. (3.6)

By the convexity of Φ and condition (3.5), we get that

0 ← hn IΦ(knxn)

kn + hn
+ kn IΦ(hn yn)

kn + hn
− IΦ

(
knhn

kn + hn
(xn + yn)

)

≥ hn IΦ(knxnχFn )

kn + hn
+ kn IΦ(hn ynχFn )

kn + hn
− IΦ

(
knhn

kn + hn
(xn + yn)χFn

)

≥ hn
kn + hn

IΦ(knxnχFn ) + kn
kn + hn

IΦ(hn ynχFn )

− (1 − δ)

[
hn

kn + hn
IΦ(knxnχFn ) + kn

kn + hn
IΦ(hn ynχFn )

]

by (3.6)

= δ

[
hn

kn + hn
IΦ(knxnχFn ) + kn

kn + hn
IΦ(hn ynχFn )

]

≥ δ

[
1

2b
IΦ(knxnχFn ) + 1

2b
IΦ(hn ynχFn )

]

= δ

(
1

2b
IΦ(knxnχFn ) + 1

2b
IΦ(−hn ynχFn )

)

= δ

b

(
IΦ(knxnχFn ) + IΦ(−hn ynχFn )

2

)

≥ δ

b
IΦ

(
(knxn − hn yn)χFn

2

)

≥ δ

b

∫

En\{An∪Bn}
Φ
(σ

2

)

dt

≥ δ

b
Φ
(σ

2

) ε

2
,

where σ, ε > 0 were fixed, a contradiction. ��
Lemma 7 Let (X, ‖.‖) be a Banach space. If xn, yn ∈ B(X) for any n ∈ N and

∥
∥ xn+yn

2

∥
∥→

1, then ‖αxn + (1 − α)yn‖ → 1 for any α ∈ (0, 1) as n → ∞.

Proof Assume that xn, yn ∈ B(X) for any n ∈ N and
∥
∥ xn+yn

2

∥
∥ → 1, but there exists

α ∈ (0, 1) such that ‖αxn + (1 − α)yn‖ � 1 as n → ∞. Then, we can assume that there
exists ε ∈ (0, 1) such that ‖αxn + (1 − α)yn‖ ≤ 1 − ε. Denote zn,α = αxn + (1 − α)yn .
Then, we can find:
case a) either β ∈ (0, 1) such that xn+yn

2 = βzn,α + (1 − β)yn or case b) β̃ ∈ (0, 1) such
that xn+yn

2 = β̃xn + (1− β̃)zn,α , where zn,α is generated either by some α ∈ ( 12 , 1
)

or some
α ∈ (0, 1

2

)

, respectively. Since the proof for case b) is similar, it is omitted. Consequently
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1 ←
∥
∥
∥
∥

xn + yn
2

∥
∥
∥
∥

≤ β‖zn,α‖ + (1 − β)‖yn‖ ≤ β(1 − ε) + 1 − β = 1 − βε,

a contradiction. ��
Let Φ be an N-function, Ψ be its complementary (in the sense of Young) function, let p+

be the right derivative of Φ and q+ be the right-inverse function of p+, that is,

q+(s) = sup{t : p+(t) ≤ s} = inf{t : p+(t) > s}.
Now, we will present the sufficient conditions for the uniform rotundity in every direction

in Orlicz spaces equipped with the p-Amemiya norm, where p ∈ [1,∞). Although Theorem
4 is formulated for Orlicz spaces endowed with the p-Amemiya norm, p ∈ [1,∞), generated
by N-functions and built over a non-atomic finite measure space, we will present its proof
only in case of the Orlicz spaces equipped with the p-Amemiya norm, p ∈ (1,∞), because
in case of the Orlicz spaces endowed with the Orlicz norm, the proof can be found in [44] or
[3].

Theorem 4 Let (Ω,Σ,μ) be a non-atomic finite and complete measure space and let p ∈
[1,∞). If

(a) Φ is a strictly convex N-function,
(b) for any u0 > 0, ε > 0 and ε̃ > 0 there exist γ > 0 and A > 0 such that for any u ≥ u0,

if p+((1 + ε)u) ≤ (1 + γ )p+(u), then p+(u) ≤ Ap+(̃εu),

then the Orlicz space (LΦ, ‖.‖Φ,p) equipped with the p-Amemiya norm and generated by an
N-function Φ is uniformly rotund in every direction.

Proof In the whole proof we will assume that p ∈ (1,∞).
Assume that LΦ,p satisfies conditions a) and b) but LΦ,p is not uniformly rotund in every

direction. Then (see [16]), there exist xn ∈ B(LΦ,p), z ∈ LΦ,p such that xn + z ∈ B(LΦ,p)

for any n ∈ N, ‖xn‖Φ,p → 1, ‖xn + z‖Φ,p → 1 and ‖2xn + z‖Φ,p → 2 as n → ∞
but z �= 0. Since Φ is a strictly convex N-function, by Corollary 1, Φ is kp-unique. Let
Kp(xn) = {kn}. Without loss of generality we can assume that the sequence (xn)∞n=1 does

not converge to 0 in measure. Indeed, if xn
μ→ 0, then we replace xn and z by x ′

n = xn + z
4

and z′ = z
2 , respectively. By virtue of Lemma 7 and by the definitions of x ′

n and z
′, we get that

‖x ′
n‖Φ,p → 1, ‖x ′

n + z′‖Φ,p = ‖xn + 3
4 z‖Φ,p → 1 and ‖2x ′

n + z′‖Φ,p = ‖2xn + z‖Φ,p → 2

as n → ∞ but z′ �= 0. Obviously x ′
n

μ
� 0. By Lemma 3, the sequence (kn)∞n=1 is bounded.

Passing to a subsequence, if necessary, wemay assume that kn → k (k ≥ 1) and 1 ≤ kn ≤ 2k
for all n ∈ N. Moreover, we can assume that 2k‖z‖Φ,p ≤ 1 and that (xn + z)∞n=1 does not
converge to zero in measure (otherwise, instead of z we take βz for some β > 0).

Let yn = xn + z and Kp(yn) = {hn}. We can also assume that hn → h as n → ∞
(h ≥ 1). Then, by Lemma 6, knxn − hn yn → 0 in measure and we conclude that k �= h;

otherwise we would have that knxn −hn yn = knxn −hnxn −hnz = (kn −hn)xn −hnz
μ→ 0,

so if k = h, then z
μ→ 0, a contradiction. In what follows, we will consider only the case

when k > h (the other case is similar). Without loss of generality, passing to a subsequence
if necessary, we may assume that kn > hn for any n ∈ N and knxn − hn yn → 0 μ-a.e. on
Ω . Set λn = hn

kn+hn
. Then λn → h

k+h as n → ∞, so σ ≤ λn ≤ 1
2 for some σ > 0.

Since z �= 0, there is c > 0 such that μ(E) = d > 0, where E = Ec := {t ∈ Ω : |z(t)| >

c}. Let ε > 0 be arbitrary. By the assumption b) there exist A > 0 and γ ∈ (0, 1) such that

whenever τ ≥ ε and p+(τ ) ≤ (1 + γ )p+
(

1+σε
1+2σε

τ
)

, then
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p+
(

1 + σε

1 + 2σε
τ

)

≤ Ap+
(

ε

2k
· 1 + σε

1 + 2σε
τ

)

≤ Ap+
( ε

2k
τ
)

. (3.7)

For such σ, ε, γ , by Lemma 4, it follows that there exists δ > 0 such that for any u > 0 and
λ ∈ [σ, 1

2

]

the inequality

λΦ((1 + ε)u) + (1 − λ)Φ(u) ≤ (1 + δ)[Φ(λ(1 + ε)u + (1 − λ)u)]
implies the existence of τ ∈ [u + λεu, u + εu] satisfying the inequality

p+(τ ) ≤ (1 + γ )p+
(

1 + σε

1 + 2σε
τ

)

.

Since ‖2kz‖Φ,p ≤ 1, by Lemma 2, we get that IΦ(2kz) ≤ 1 and 〈|z|, p+(|z|)〉 = IΦ(z)+
IΨ (p+(|z|)) ≤ 2. Therefore, by absolute continuity of the integral, there exists α̃ ∈ (0, d

2

)

such that if B ⊂ Ω and μ(B) ≤ α̃, then
∫

B
|z(t)|p+(|z(t)|)dt ≤ ε2

k A
and IΦ(2kzχB) < ε. (3.8)

Since knxn − hn yn → 0 μ-a.e. on Ω , by Theorem 1, passing to subsequence if necessary,
we can find F ∈ Σ such that μ(Ω\F) < α̃ and knxn − hn yn → 0 uniformly on F , and
|z| ≤ a1 on F for some a1 > 0. Notice that μ(E ∩ F) > d

2 . Indeed,

d = μ(E) = μ(E ∩ F) + μ(E\F) ≤ μ(E ∩ F) + μ(Ω\F) < μ(E ∩ F) + d

2
.

Hence μ(E ∩ F) > d
2 and we deduce that

IΦ

(
h

k − h
zχF

)

≥ IΦ

(
h

k − h
zχF∩E

)

≥ d

2
Φ

(
hc

k − h

)

. (3.9)

For every n ∈ N, let us divide Ω into the following sets:

An = {t ∈ Ω\F : xn(t)yn(t) < 0} ,

In = {t ∈ Ω\{F ∪ An} : max{|knxn(t)|, |hn yn(t)|} < ε} ,

Jn = {t ∈ Ω\{F ∪ An ∪ In} : |knxn(t) − hn yn(t)| ≤ εmax{|knxn(t)|, |hn yn(t)|}} ,

Hn =
{

t ∈ Ω\{F ∪ An ∪ In ∪ Jn} : (1 + δ)Φ

(
knhn

kn + hn
(xn(t) + yn(t))

)

<
hnΦ(knxn(t))

kn + hn
+ knΦ(hn yn(t))

kn + hn

}

,

Qn = {t ∈ Ω\{F ∪ An ∪ In ∪ Jn ∪ Hn} : |z(t)| < ε|xn(t)| or |xn(t)| < |yn(t)|} ,

Tn = Ω\{F ∪ An ∪ In ∪ Jn ∪ Hn ∪ Qn}.
Let us pick vn ∈ B(LΨ,q) (q ∈ (1,∞) and 1

p + 1
q = 1) such that vn(t)[xn(t) + yn(t)] ≥ 0

for all t ∈ Ω and 〈vn, xn + yn〉 → 2 as n → ∞. Then, by the linearity of the integral and by
the assumptions about xn and yn = xn + z, we obtain that 〈vn, xn〉 → 1 and 〈vn, yn〉 → 1
as n → ∞ and, consequently,

k − h = lim
n→∞(kn − hn) = lim

n→∞

∫

Ω

vn(t)[knxn(t) − hn yn(t)]dt.

Now, we will find the upper estimates of the integrals
∫

C
|[knxn(t) − hn yn(t)]vn(t)|dt ,

where C denotes one of the following sets: F , An , In , Jn , Hn , Qn and Tn , respectively.
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Since knxn − hn yn → 0 uniformly on F , for large n, we obtain that
∫

F

|[knxn(t) − hn yn(t)]vn(t)|dt < ε. (3.10)

Notice that if t ∈ An , then xn(t)yn(t) < 0, i.e. xn(t)[xn(t) + z(t)] < 0, yields that
xn(t)z(t) < 0 and |xn(t)| < |z(t)|. Therefore, for any A ∈ Σ contained in the set An , by
(3.8) we obtain that

∫

A

|Φ(knxn(t)) − Φ(hn yn(t))|dt =
∫

A

|Φ(knxn(t)) − Φ(hn(xn(t) + z(t)))|dt

≤
∫

A

[Φ(knz(t)) + Φ(hnz(t))]dt

≤ 2
∫

A

Φ(2kz(t))dt < 2ε.

Hence, as well as by virtue of Lemma 5, for n large enough, we get that
∫

An

|[knxn(t) − hn yn(t)]vn(t)|dt ≤ 2ε. (3.11)

Notice that the Hölder inequality give us that
∫

In

|[knxn(t) − hn yn(t)]vn(t)|dt ≤ ‖(knxn − hn yn)χIn‖Φ,p · ‖vn‖Ψ,q

≤ 2ε‖χΩ‖Φ,p ≤ ε21+
1
p ‖χΩ‖Φ. (3.12)

By the definition of the set Jn and by the conditions that 1 ← 〈vn, xn〉 ≤ 1 and 1 ←
〈vn, yn〉 ≤ 1, we get that

∫

Jn

|[knxn(t) − hn yn(t)]vn(t)|dt ≤ ε

∫

Jn

(|knxn(t)| + |hn yn(t)|) |vn(t)|dt

≤ ε(kn + hn). (3.13)

For each set H ∈ Σ , being a subset of Hn , using the method from the proof of Lemma 6,
by continuity of sp(.) and by the fact that knhn

kn+hn
≥ knhn

2kn
≥ 1

2 , we conclude that

0 ← hn IΦ(knxn)

kn + hn
+ kn IΦ(hn yn)

kn + hn
− IΦ

(
knhn

kn + hn
(xn + yn)

)

≥ hn IΦ(knxnχH )

kn + hn
+ kn IΦ(hn ynχH )

kn + hn
− IΦ

(
knhn

kn + hn
(xn + yn)χH

)

≥ 1

2

(
IΦ(knxnχH )

kn
+ IΦ(hn ynχH )

hn

)

−1

2

(

1 − δ

1 + δ

)∫

H

[
1

kn
Φ(knxn(t)) + 1

hn
Φ(hn yn(t))

]

dt

= δ

2(1 + δ)

∫

H

[
1

kn
Φ(knxn(t)) + 1

hn
Φ(hn yn(t))

]

dt,
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whence, for n large enough, we obtain that
∫

Hn

|(knxn(t) − hn yn(t))vn(t)|dt ≤ ε. (3.14)

By the facts that knxn − hn yn → 0 uniformly on F and yn = xn + z, we conclude that
xn → h

k−h z uniformly on the set F . Hence, and by inequality (3.9), we get that

1

kn
IΦ(knxnχF ) ≥ IΦ(xnχF ) → IΦ

(
h

k − h
zχF

)

≥ d

2
Φ

(
hc

k − h

)

. (3.15)

By the assumption ‖xn‖Φ,p → 1 as n → ∞ and the fact that kn ∈ Kp(xn), we obtain
that limn→∞ 1

k pn

(

1 + I pΦ(knxn)
) = 1. Consequently, 1 + limn→∞ I pΦ(knxn) = limn→∞ k pn ,

whence
limn→∞

(

k pn − I pΦ(knxn)
) = 1. (3.16)

But by the superadditivity of the function g(u) = u p , p > 1, and by (3.15), we get that

lim
n→∞ I pΦ(knxn) = lim

n→∞[IΦ(knxnχQn ) + IΦ(knxnχΩ\Qn )]p

≥ lim
n→∞[I pΦ(knxnχQn ) + I pΦ(knxnχΩ\Qn )]

≥ lim
n→∞[I pΦ(knxnχQn ) + I pΦ(knxnχF )]

≥ lim
n→∞

[

I pΦ(knxnχQn ) +
(

kn
d

2
Φ

(
hc

k − h

))p]

.

This and (3.16) yield that

1 = lim
n→∞ k pn

(

1 −
(

1

kn
IΦ(knxn)

)p)

≤ lim
n→∞ k pn

(

1 − 1

k pn
I pΦ(knxnχQn ) −

(
d

2
Φ

(
hc

k − h

))p)

< lim
n→∞ k pn

(

1 − 1

k pn
I pΦ(knxnχQn ) −

(
d

3
Φ

(
hc

k − h

))p)

,

whence

lim
n→∞

1

k pn

(

1 + I pΦ(knxnχQn )
)

< 1 −
(
d

3
Φ

(
hc

k − h

))p

.

Therefore, for n big enough,
∫

Qn

|xn(t)vn(t)|dt ≤ ‖xnχQn‖Φ,p ≤ 1

kn

(

1 + I pΦ(knxnχQn )
) 1
p (3.17)

<

(

1 −
(
d

3
Φ

(
hc

k − h

))p) 1
p

.

Since Qn ⊂ Ω\{F ∪ An}, we have that xn(t)yn(t) = x(t)(x(t) + z(t)) ≥ 0. Since
vn(t)[xn(t) + yn(t)] ≥ 0, then both xn(t)vn(t) ≥ 0 and yn(t)vn(t) ≥ 0 (so z(t)vn(t) ≥ 0).
Hence, if |xn(t)| < |yn(t)|, then xn(t)z(t) > 0 and, consequently,

vn(t)[knxn(t) − hn yn(t)] = (kn − hn)xn(t)vn(t) − hnz(t)vn(t)

< (kn − hn)xn(t)vn(t)
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and if |z(t)| < ε|xn(t)|, then
vn(t)[knxn(t) − hn yn(t)] ≤ (kn − hn)xn(t)vn(t) + εhnxn(t)vn(t).

Therefore, applying also (3.17) and Lemma 5, for n large enough, we obtain
∫

Qn

(knxn(t) − hn yn(t)) vn(t)dt ≤ (kn − hn + εhn)

∫

Qn

xn(t)vn(t)dt

< (kn − hn + εhn)

[

1 −
(
d

3
Φ

(
hc

k − h

))p] 1
p

. (3.18)

Noticing that t /∈ Qn ∪ Jn ∪ An whenever t ∈ Tn , we get that

εhn |yn(t)| ≤ εkn |xn(t)| ≤ kn |xn(t)| − hn |yn(t)|,
i.e. kn |xn(t)|

hn |yn(t)| ≥ 1 + ε. By virtue of Lemma 4 and by the fact that t /∈ Hn , i.e.

λnΦ(knxn(t)) + (1 − λn)Φ(hn yn(t))

Φ(λnknxn(t) + (1 − λn)hn yn(t))
≤ 1 + δ,

there exists
τn(t) ∈ [λnkn |xn(t)| + (1 − λn)hn |yn(t)|, kn |xn(t)|] (3.19)

such that

p+(τn(t)) ≤ (1 + γ )p+
(

1 + σε

1 + 2σε
τn(t)

)

. (3.20)

Noticing that t /∈ In ∪Qn implies τn(t) ≥ λnkn |xn(t)| ≥ σε, by (3.20) and (3.7), we have

p+(τn(t)) ≤ (1 + γ )p+
(

1 + σε

1 + 2σε
τn(t)

)

≤ Ap+
( ε

2k
τn(t)

)

. (3.21)

From t /∈ Hn ∪ Qn , by (3.19), (3.21) and the fact that kn ≤ 2k for any n ∈ N, we conclude
that

λnΦ(knxn(t)) + (1 − λn)Φ(hn yn(t)) ≤ (1 + δ)Φ(λnknxn(t) + (1 − λn)hn yn(t))

≤ (1 + δ)Φ(τn(t)) ≤ (1 + δ)τn(t)p+(τn(t))

≤ A(1 + δ)τn(t)p+
( ε

2k
τn(t)

)

≤ A(1 + δ)kn |xn(t)|p+
( ε

2k
kn |xn(t)|

)

≤ A(1 + δ)kn |xn(t)|p+ (ε|xn(t)|)
≤ 1

ε
Ak(1 + δ)|z(t)|p+(|z(t)|).

This and conditions (3.8) (recall that μ(Ω\F) < α̃ < d
2 ) imply

∫

Tn

[λnΦ(knxn(t)) + (1 − λn)Φ(hn yn(t))] dt ≤ 1

ε
Ak(1 + δ)

∫

Ω\F
|z(t)|p+(|z(t)|)dt

≤ (1 + δ)ε,

whence
1

kn + hn

∫

Tn

[Φ(knxn(t)) + Φ(hn yn(t))] dt ≤
∫

Tn

[λnΦ(knxn(t)) + (1 − λn)Φ(hn yn(t))]dt

≤ (1 + δ)ε,
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i.e.
∫

Tn

[Φ(knxn(t)) + Φ(hn yn(t))] dt ≤ (kn + hn)(1 + δ)ε.

Hence, by Lemma 5, for all large n, we obtain that
∫

Tn

|vn(t)(knxn(t) − hn yn(t))|dt ≤
∫

Tn

[Φ(knxn(t)) + Φ(hn yn(t))] dt

≤ (kn + hn)(1 + δ)ε. (3.22)

Denoting vn(t)(knxn(t) − hn yn(t)) shortly as wn(t), we get that

k − h = lim
n→∞(kn − hn) = lim

n→∞

∫

Ω

vn(t)(knxn(t) − hn yn(t))dt

= lim
n→∞

⎛

⎜
⎝

∫

F

wn(t)dt +
∫

An

wn(t)dt +
∫

In

wn(t)dt +
∫

Jn

wn(t)dt +
∫

Hn

wn(t)dt

+
∫

Qn

wn(t)dt +
∫

Tn

wn(t)dt

⎞

⎟
⎠ ,

whence, as well as by inequalities (3.10), (3.11), (3.12), (3.13), (3.14), (3.18) and (3.22) and
by the arbitrariness of ε > 0, we conclude that

k − h ≤ (k − h)

[

1 −
(
d

3
Φ

(
hc

k − h

))p] 1
p

,

a contradiction, which shows that z = 0 a.e. in Ω .
��

Corollary 2 If Φ is a strictly convex N-function satisfying the Δ2(∞)−condition, then the
Orlicz space (LΦ, ‖.‖Φ,p), p ∈ [1,∞) equipped with the p-Amemiya norm and built over a
non-atomic finite measure space is uniformly rotund in every direction.

Proof Assume that Φ ∈ Δ2(∞). Then for any a > 1 we can find K > a such that
Φ(2au) ≤ KΦ(u) for all u large enough, whence

ap+(au) ≤ Φ(2au)

u
≤ K

Φ(u)

u
≤ Kp+(u)

for all u large enough, so by strict convexity of N-functionΦ and by Theorem 4, we conclude
that Orlicz space with the p-Amemiya norm is uniformly rotund in every direction. ��

At the end, let us recall that the uniform rotundity in every direction plays an important
role in the fixed point theory. Namely, every uniformly rotund in every direction Banach
space (X, ‖.‖) has normal structure (see for example [8]). Consequently, it has the weak
fixed point property (we refer, for instance, to [8], [21] or [31] for the suitable definitions and
results). By this, and by Theorem 4, we get the following
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Corollary 3 Let (Ω,Σ,μ) be a non-atomic finite and complete measure space and let
p ∈ [1,∞). Then the Orlicz space (LΦ, ‖.‖Φ,p) equipped with the p-Amemiya norm and
generated by a strictly convex N-function Φ satisfying the Δ2(∞)-condition has the weak
fixed point property.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.
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29. Kamińska, A.: Uniform rotundity in every direction of sequence Orlicz spaces. Bull. Pol. Acad. Sci.Math.
32(9–10), 589–594 (1984)

30. Krasnoselskiı̆, M.A., Ya, B.: Rutickiı̆, Convex Functions and Orlicz Spaces, Groningen, Nordhoff, 1961
(English translation); Original Russian edition: Gos. Izd. Fiz. Mat. Lit., Moskva (1958)

31. Kirk,W.A., Sims, B. (eds.): Handbook ofMetric Fixed Point Theory. KluwerAcademic, Dordrecht (2001)
32. Kolwicz, P., Płuciennik, R.: On uniform rotundity in every direction in Calderón–Lozanovskiı̆ sequence

spaces. J. Convex Anal. 14(3), 621–645 (2007)
33. Li, J., Cui, Y., Hudzik, H., Wisła, M.: Strongly extreme points in Orlicz spaces equipped with the p-

Amemiya norm. Nonlinear Anal. 71(12), 6343–6364 (2009)
34. Luxemburg, W.A.J.: Banach Function Spaces. Thesis Delft (1955)
35. Maligranda, L.: Orlicz Spaces and Interpolation, (Seminárias de Mathemática: vol. 5), Campinas (Brazil)

Univ. Estadual de Campinas (1989)
36. Musielak, J.: Orlicz spaces and modular spaces. In: Lecture Notes Math, vol. 1034. Springer, Berlin

(1983)
37. Orlicz, W.: A note on modular spaces. Bull. Acad. Polon. Sci. Math. 9, 157–162 (1961)
38. Orlicz, W.: Über eine gewisse Klasse von Räumen vom Typus B. Bull. Int. Pol. Ser. A 8(9), 207–220

(1932)
39. Rao, M.M., Ren, Z.D.: Theory of Orlicz Spaces. Marcel Dekker Inc., New York (1991)
40. Reisner, S.: On two theorems of Lozanovskiı̆ concerning intermediate Banach lattices, in: geometric

aspects of functional analysis (Israel GAFA Seminar, 1986/87). In: Lecture Notes in Mathematics, vol.
1317, pp. 67–83. Springer, Berlin (1988)

41. Shi, S.J.,Chen, S.T.:Uniform rotundity in everydirectionofMusielak–Orlicz spaces L p(x)(Ω) (Chinese).
Nat. Sci. J. Harbin Normal Univ. 22(5), 1–3 (2006)

42. Smith, M.A., Turett, B.: Rotundity in Lebesgue–Bochner function spaces. Trans. Am. Math. Soc. 251(1),
105–118 (1980)

43. Wang, T.F., Shi, Z.R., Chen, G.H.: Orlicz sequence spaces endowed with Orlicz norm that are uniformly
rotund in every direction. Acta Sci. Math. (Szeged) 59(1–2), 195–208 (1994)

44. Wang, T.F., Shi, Z.R., Cui, Y.: Orlicz spaces that are uniformly rotund in every direction. Comment. Math.
(Prace Mat.) 35, 245–262 (1995)

45. Wisła, M.: Geometric properties of Orlicz spaces equipped with p-Amemiya norms-results and open
questions. Comment. Math. 55(2), 183–209 (2015)

46. Zizler,V.:On some rotundity and smoothness properties ofBanach spaces.DissertationesMath.Rozprawy
Mat., vol. 87 (1971). (errata insert)

123

https://doi.org/10.1002/mana.201700025

	Uniform rotundity in every direction of Orlicz function spaces equipped with the p-Amemiya norm
	Abstract
	1 Introduction and preliminaries
	2 Auxiliary results
	3 Results
	References




