
Selecta Mathematica (2019) 25:39
https://doi.org/10.1007/s00029-019-0484-9

SelectaMathematica
New Series

A general mass transference principle

Demi Allen1,2 · Simon Baker3

Published online: 7 June 2019
© The Author(s) 2019

Abstract
The Mass Transference Principle proved by Beresnevich and Velani (Ann. Math. (2)
164(3):971–992, 2006) is a celebrated and highly influential result which allows us
to infer Hausdorff measure statements for lim sup sets of balls in R

n from a priori
weaker Lebesgue measure statements. The Mass Transference Principle and subse-
quent generalisations have had a profound impact on several areas of mathematics,
especially Diophantine Approximation. In the present paper, we prove a considerably
more general form of the Mass Transference Principle which extends known results
of this type in several distinct directions. In particular, we establish a Mass Transfer-
ence Principle for lim sup sets defined via neighbourhoods of sets satisfying a certain
local scaling property. Such sets include self-similar sets satisfying the open set con-
dition and smooth compact manifolds embedded in Rn . Furthermore, our main result
is applicable in locally compact metric spaces and allows one to transfer Hausdorff g-
measure statements to Hausdorff f -measure statements. We conclude the paper with
an application of our mass transference principle to a general class of random lim sup
sets.
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1 Introduction

1.1 Background

In Diophantine Approximation, Dynamical Systems, and Probability Theory, many
sets of interest can be characterised as lim sup sets. Recall that, given a countable
collection of sets (E j ) j∈N, we define the corresponding lim sup set to be

lim sup
j→∞

E j :=
∞⋂

j=1

∞⋃

n= j

E j

= {x : x ∈ E j for infinitely many j ∈ N
}
.

Often we are interested in determining the metric properties of lim sup j→∞ E j .When
the sequence (E j ) j∈N is a collection of balls, a powerful tool in determining the metric
properties of lim sup j→∞ E j is the Mass Transference Principle [5], which allows us
to infer Hausdorff measure statements from seemingly less general Lebesgue measure
statements.

Given a ball B := B(x, r) in R
n and a dimension function f : R

+ → R
+

(see Sect. 3 for definitions), define another corresponding ball B f := B(x, f (r)
1
n ).

Throughout, R+ := [0,∞). When f (r) = rs for some real number s > 0, we write
Bs in place of B f . In particular, Bn = B for n ∈ N. The following was established
by Beresnevich and Velani in [5].

Mass Transference Principle Let (B j ) j∈N be a sequence of balls inRn with r(B j ) → 0
as j → ∞. Let f be a dimension function such that x−n f (x) is monotonic and suppose
that, for any ball B in R

n,

Hn(B ∩ lim sup
j→∞

B f
j

) = Hn(B).

Then, for any ball B in R
n,

H f (B ∩ lim sup
j→∞

Bn
j

) = H f (B).

Here, H f (F) denotes the Hausdorff f -measure of a set F ⊂ R
n . More gener-

ally, we will also use the notation H f (F) to denote the Hausdorff f -measure of a
set F ⊂ X where X = (X , d) is a locally compact metric space. For s ≥ 0, Hs(F)

denotes the standard Hausdorff s-measure of F . These notions will be formally intro-
duced in Sect. 3. It is worth noting at this point though that if F is a Borel subset
of Rn , thenHn(F) is a constant multiple times the n-dimensional Lebesgue measure
of F (see [9] for further details). Thus, as discussed previously, the Mass Transfer-
ence Principle genuinely does enable us to transfer Lebesgue measure statements to
Hausdorff measure ones.

A generalisation of the Mass Transference Principle, which is applicable to lim sup
sets of balls in locally compact metric spaces and not restricted to lim sup sets in
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R
n , was also given by Beresnevich and Velani [5]. Furthermore, this generalisation

allows for the transference of Hausdorff g-measure (not just Lebesgue measure) state-
ments to Hausdorff f -measure statements, where g and f are dimension functions
subject to some mild conditions. Before stating this result formally, we require some
preliminaries.

We say that a function f : R+ → R
+ is doubling if there exists a constant λ > 1

such that
f (2x) < λ f (x) (1)

for all x > 0.
Let (X , d) be a locally compact metric space and let g be a doubling dimension

function. Moreover, suppose that there exist constants 0 < c1 < 1 < c2 < ∞ and
r0 > 0 such that

c1g(r) ≤ Hg(B(x, r)) ≤ c2g(r) (2)

for all x ∈ X and 0 < r < r0. Given another dimension function f and a ball
B := B(x, r) in X we define

B f ,g := B(x, g−1( f (r))).

The following theorem was established in [5].

TheoremMTP* Let (X , d) and g be as above and let (B j ) j∈N be a sequence of balls
in X with r(B j ) → 0 as j → ∞. Let f be a dimension function such that f /g is
monotonic and suppose that for any ball B in X we have

Hg(B ∩ lim sup
j→∞

B f ,g
j ) = Hg(B).

Then, for any ball B in X,

H f (B ∩ lim sup
j→∞

B j ) = H f (B).

Compared with the Mass Transference Principle, this general theorem applies to
lim sup sets of balls in more general metric spaces and deals with a larger class of
(Hausdorff) measures. As an example, Theorem MTP* is applicable when X is, say,
the middle-third Cantor set. In this case, Theorem MTP* has been utilised in [18] to
solve a problem posed by Mahler regarding the existence of very well approximable
points in the middle-third Cantor set.

The Mass Transference Principle was originally motivated by a desire to establish
a Hausdorff measure analogue of the famous Duffin–Schaeffer Conjecture in Metric
Number Theory. Since their initial announcement, the Mass Transference Principle
and Theorem MTP* have been shown to have applications in many distinct areas of
mathematics. In particular, the fields of Number Theory, Dynamical Systems, and
Fractal Geometry have all benefited significantly from these results. For further appli-
cations of the Mass Transference Principle and Theorem MTP* see [2,4,5,16,24].
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In the Euclidean setting, Beresnevich and Velani extended the Mass Transference
Principle in another direction to allow for the transference of Lebesgue measure state-
ments to Hausdorff measure statements for lim sup sets defined via neighbourhoods
of “approximating planes” [6]. The result they obtained in this case, [6, Theorem 4.1],
was subject to extra technical conditions arising from their particular proof strategy.
Recently, the first author and Beresnevich have removed these additional constraints
in [1], thus unlocking a number of previously inaccessible applications in Diophan-
tine Approximation. We include here a statement of [1, Theorem 1] to enable ease of
comparison of this mass transference principle for planes with the statement of the
main result of the present article, namely Theorem 1 below.

Let n, m ≥ 1 and l ≥ 0 be integers such that n = m + l. Let R := (R j ) j∈N be a
family of l-dimensional planes in R

n . For every j ∈ N and δ ≥ 0, define

�(R j , δ) := {x ∈ R
n : dist(x, R j ) < δ},

where dist(x, R j ) = inf{‖x − y‖ : y ∈ R j } and ‖ · ‖ is any fixed norm on R
n .

Let ϒ := (ϒ j ) j∈N be a sequence of non-negative reals such that ϒ j → 0 as
j → ∞. Consider

�(ϒ) := {x ∈ R
n : x ∈ �(R j , ϒ j ) for infinitely many j ∈ N}.

The following is shown in [1].

Theorem AB Let R and ϒ be as given above. Let f and g : r → g(r) := r−l f (r)

be dimension functions such that r−n f (r) is monotonic and let � be a ball in R
n.

Suppose that, for any ball B in �,

Hn
(

B ∩ �
(

g(ϒ)
1
m

))
= Hn(B).

Then, for any ball B in �,

H f (B ∩ �(ϒ)) = H f (B).

While we will be concerned here with generalising the aforementioned variations
of the Mass Transference Principle, we remark here, for completeness, that progress
has also been made towards mass transference principles in some other settings. For
example, progress towards proving a mass transference principle for rectangles in
the Euclidean setting has been made by Wang, Wu and Xu in [25] and an implicit
multifractal mass transference principle is given by Fan, Schmeling and Troubetzkoy
in [10].

In this paper, we extend the results of [1,5,6] by proving a general version of the
Mass Transference Principle which applies to lim sup sets in a locally compact metric
space which are defined in terms of neighbourhoods of sets satisfying a certain local
scaling property (see Sect. 1.2). Our main result, Theorem 1, extends the knownMass
Transference Principles of [1,5,6] in several manners. First of all, while it incorporates
mass transference principles for balls and planes, Theorem 1 is also applicable to
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more exotic sets. For example, we are able to consider lim sup sets generated by
sequences of neighbourhoods of smooth compact manifolds or self-similar fractals
satisfying the open set condition. Furthermore, unlike in previously known variants
of the Mass Transference Principle, as long as the local scaling property is satisfied,
the sets generating the lim sup sets in Theorem 1 need not all be of the same type
(e.g. all balls or all planes). Secondly, we deal with lim sup sets in a locally compact
metric space (X , d) and are not confined to the Euclidean setting. Finally, the result we
derive allows us to transfer Hausdorff g-measure statements to Hausdorff f -measure
statements, where f and g are dimension functions subject to some mild conditions.

Compared with its predecessors, the greater generality of Theorem 1 opens up a
number of new possible applications to explore. We include one such application in
Sect. 6whereweuseTheorem1 todeduceHausdorffmeasure anddimension results for
a family of random lim sup sets. Within Diophantine Approximation, it is reasonable
to expect that Theorem 1 will enable the establishment of further Hausdorff measure
statements relating to approximation onmanifolds (see [3,4] and the references therein
for more on this problem). Within Dynamical Systems, it is also reasonable to expect
that Theorem 1 will allow one to study a wider class of shrinking target problems, in
particular when our target is allowed to have a more exotic structure (see [21,23,24]
and the references therein for more on this problem). We hope to return to these topics
in a later work.

1.2 Themain result

Let (X , d) be a locally compact metric space and let g be a doubling dimension
function satisfying (2). Given F ⊂ X and δ ≥ 0, we define the δ-neighbourhood of
F to be

�(F, δ) := {x ∈ X : d(x, F) < δ},

where d(x, F) := min{d(x, y) : y ∈ F}.
The following local scaling property appears to be the key which enables us to

prove a “unifying” mass transference principle which incorporates and extends the
results presented in Sect. 1.1.

Local Scaling Property (LSP) Given a sequence of sets F := (Fj ) j∈N in X and
0 ≤ κ < 1, we say that F satisfies the local scaling property (LSP) with respect to κ

if there exist constants c3, c4, r1 > 0 such that, for any 0 < r < r1, δ < r , j ∈ N and
x ∈ Fj , we have

c3g(δ)1−κ · g(r)κ ≤ Hg(B(x, r) ∩ �(Fj , δ)) ≤ c4g(δ)1−κ · g(r)κ . (3)

If (3) is satisfied for one specific set F , say, we will also say that F satisfies the
local scaling property with respect to κ . It should be clear from context when we are
referring to an individual set and when we are referring to a sequence of sets.
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If we restrict ourselves to the case where X = R
n andHg = Hn (that is, essentially,

Lebesgue measure), then (3) takes the form

c3δ
n−κn · rκn ≤ Hn(B(x, r) ∩ �(Fj , δ)) ≤ c4δ

n−κn · rκn . (4)

Many familiar subsets of Euclidean space satisfy (4) for an appropriate choice of κ .
For example, in the next sectionwe show that any smooth compactmanifold embedded
in R

n satisfies (4). In addition, we show that self-similar sets satisfying the open set
condition also satisfy the LSP. In these examples we will see that κ is related to the box
counting dimension of the sets we are considering and we offer some discussion as to
why this should be the case. In the meantime, we present here two trivial examples of
sets satisfying the LSP.

Example 1 IfF were a sequence of points, then it follows from (2) thatF satisfies the
LSP with respect to κ = 0.

Example 2 Suppose F ⊂ R
n is a specific set satisfying (4). One can then define

a sequence F := (Fj ) j∈N by defining each Fj to be the image of F under some
isometry. Clearly F provides us with a sequence of sets satisfying the LSP.

Next, suppose ϒ := (ϒ j ) j ∈ N is a sequence of non-negative reals such that
ϒ j → 0 as j → ∞. Consider the lim sup set

�(ϒ) := {x ∈ X : x ∈ �(Fj , ϒ j ) for infinitely many j ∈ N}.

Our main result is the following theorem.

Theorem 1 Let (X , d) and g be as above. Let F := (Fj ) j∈N be a sequence of sets
satisfying the LSP with respect to some 0 ≤ κ < 1, and let ϒ := (ϒ j ) j∈N be a
sequence of non-negative reals such that ϒ j → 0 as j → ∞. Let f be a dimension
function such that f /g is monotonic and f /gκ is a dimension function. Suppose that
for any ball B in X we have

Hg

(
B ∩ �

(
g−1

((
f (ϒ)

g(ϒ)κ

) 1
1−κ

)))
= Hg(B). (5)

Then, for any ball B in X we have

H f (B ∩ �(ϒ)) = H f (B).

Although the sequence of neighbourhoods defining the lim sup set appearing on
the left hand side of (5) might at first seem arbitrary, it represents the correct scaling
of our initial lim sup set which is required to prove a mass transference principle in
this generalised setting. Furthermore, this particular choice of “scaled” lim sup set
naturally incorporates and extends the various mass transference principles discussed
in Sect. 1.1.
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Taking (Fj ) j∈N to be a sequence of points in X and κ = 0, as in Example 1,
Theorem 1 coincides with Theorem MTP* given above. If, further, we insist that
X = R

n and g(r) = rn , we recover the usual Mass Transference Principle. Theorem
AB can also be deduced as a special case of Theorem 1 by taking X = � to be a
suitable ball in Rn , (Fj ) j∈N to be a sequence of l-dimensional planes (R j ) j∈N in Rn ,
κ = l

n , and g(r) = rn .
Restricting our attention toEuclidean space and s-dimensionalHausdorffmeasures,

Theorem 1 takes the following simpler form.

Corollary 1 Let F := (Fj ) j∈N be a sequence of subsets of Rn satisfying the LSP with
respect to some 0 ≤ κ < 1 and let ϒ := (ϒ j ) j∈N be a sequence of non-negative reals
such that ϒ j → 0 as j → ∞. Let s > κn and suppose that for any ball B in R

n we
have

Hn(B ∩ �(ϒ
s−κn

(1−κ)n )) = Hn(B).

Then, for any ball B in R
n we have

Hs(B ∩ �(ϒ)) = Hs(B).

1.3 Structure of the paper

The rest of the paper is arranged as follows. Some examples of sets satisfying the LSP
are outlined in Sect. 2. In Sect. 3 we recall some useful preliminaries from geometric
measure theory. In Sect. 4 we prove some key technical lemmas which will be required
throughout the proof of Theorem 1, which is presented in full in Sect. 5. Finally, in
Sect. 6, we use Theorem 1 to deduce the Hausdorff dimension and measure of some
random lim sup sets.

2 Some sets satisfying the local scaling property

In this section we provide some discussion on connections between the LSP and
box counting dimension and Minkowski content. Thereafter, we briefly detail two
collections of sets that satisfy the LSP for appropriate choices of parameters.

2.1 Box counting dimension, Minkowski content and the LSP

In this section, we highlight the connection between (4) and theMinkowski/box count-
ing dimension of a set and why these quantities are likely to be related to κ for sets
satisfying the LSP.

Instead of the usual box counting definition of lower and upper box counting dimen-
sion (see, for example, [9]), there is the following equivalent notion that is defined
using the volume of a δ-neighbourhood of a set. Given a bounded set F ⊂ R

n , the
lower and upper box counting dimension of F are defined to be, respectively,
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dimB(F) := n − lim sup
δ→0

logHn(�(F, δ))

log δ

and

dimB(F) := n − lim inf
δ→0

logHn(�(F, δ))

log δ
.

When these limits coincide we call the common value the box counting dimension of
F and denote it by dimB(F). It follows from this definition that if F were a set whose
box counting dimension exists, and we were interested in whether (4) held for some
κ , then the natural candidate for κ would be dimB(F) · n−1.

Two other useful quantities that describe how the volume of a δ-neighbourhood of
a set F scales are the lower and upper Minkowski content. Given a bounded set F
contained in Rn whose box counting dimension exists, we define the lower and upper
Minkowski content to be, respectively,

M(F) := lim inf
δ→0

δn−dimB(F) · Ln(�(F, δ))

and

M(F) := lim sup
δ→0

δn−dimB(F) · Ln(�(F, δ)).

Here Ln is the n-dimensional Lebesgue measure. When M(F) = M(F) we call the
common value theMinkowski content and denote it by M(F).Determining conditions
under which a set F has both M(F) and M(F) positive and finite is a well studied
problem, see [17]. Equation (4) does not follow directly from the positivity and finite-
ness of both M(F) and M(F). However, if F were reasonably homogeneous in small
neighbourhoods, we would expect this property to be sufficient to deduce (4).

2.2 Smooth compact manifolds

Let M ⊂ R
n be a smooth compact manifold of dimension l. Let us start by remarking

that when M is a smooth compact manifold, the tangent space map sending x → Tx M
is a continuous map from M into the Grassmanian of l-dimensional subspaces of
R

n . Fixing x ∈ M , and applying a rotation if necessary, we can identify Tx M with
R

l × {0n−l}. Since the tangent space map is continuous we know that for any y
sufficiently close to x its tangent space Ty M is approximately R

l × {0n−l}. As such,
we can assert that there exists Rx > 0 such that the following two properties hold:

• For any y ∈ B(x, Rx ) ∩ M and r > 0 such that B(y, r) ⊂ B(x, Rx ), we have

Hl(πl(B(y, r) ∩ M)) 
 rl . (6)

Here πl is the projection map from R
n to Rl sending (x1, . . . , xn) to (x1, . . . , xl).
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• For any y ∈ B(x, Rx ) ∩ M and δ < Rx we have

Hn−l({z ∈ �(M, δ) : π(z) = π(y)}) 
 δn−l . (7)

The implied constants in (6) and (7) depend only upon M and x . Via an application
of (6), (7), and Fubini’s Theorem, it can be shown that for any y ∈ B(x, Rx/2),
r ≤ Rx/2, and δ ≤ r we have

Hn(B(y, r) ∩ �(M, δ)) 
 rlδn−l . (8)

Again, the implied constants in (8) depend only upon M and x . Since {B(x, Rx/2)}x∈M

covers M, it follows by a compactness argument that there exists R > 0 such that for
any y ∈ M, r ≤ R and δ ≤ r we have

Hn(B(y, r) ∩ �(M, δ)) 
 rlδn−l .

Thus, we conclude that M satisfies the LSP with respect to κ = l
n .

2.3 Self-similar sets satisfying the open set condition

Let 
 = {φ1, . . . , φl} be a collection of contracting similarities acting on R
n ; that is,


 is a collection of maps such that

|φi (x) − φi (y)| = ri |x − y| for all x, y ∈ R
n,

and 0 < ri < 1 for each 1 ≤ i ≤ l. It is well-known (see, for example, [9]) that there
exists a unique non-empty compact set K ⊂ R

n such that

K =
l⋃

i=1

φi (K ).

Since all of the maps in 
 are similarities, we refer to K as a self-similar set. We
say that 
 satisfies the open set condition if there exists an open set O ⊂ R

n such that
φi (O) ⊂ O for each 1 ≤ i ≤ l and φi (O) ∩ φ j (O) = ∅ whenever i �= j . In [12] it is
shown that if 
 satisfies the open set condition then there exist constants b1, b2 > 0
such that for all δ sufficiently small

b1δ
n−d ≤ Hn(�(K , δ)) ≤ b2δ

n−d , (9)

where d is the box counting dimension of K . In [12], (9) was proved for the n-
dimensional Lebesgue measure. The statement given above follows sinceHn is equal
to a scalar multiple of the n-dimensional Lebesgue measure.

We now prove that the local scaling property holds for K with κ = d
n . To this end,

fix x ∈ K and some small number r > 0. Then there exists a sequence (ai )i∈N ∈
{1, . . . , l}N such that
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∞⋂

m=1

(φa1 ◦ · · · ◦ φam )(K ) = x .

Next, note that there exists N ∈ N such that

(ra1 . . . raN−1) · DiamK ≥ r/2

and

(ra1 . . . raN ) · DiamK < r/2.

For this value of N and δ < r/2, we have

Hn(B(x, r) ∩ �(K , δ)) ≥ Hn(B(x, r) ∩ �((φa1 ◦ · · · ◦ φaN )(K ), δ))

≥ Hn(�((φa1 ◦ · · · ◦ φaN )(K ), δ))

= Hn((φa1 ◦ · · · ◦ φaN )(�(K , δ · (ra1 . . . raN )−1)))

= (ra1 . . . raN )nHn(�(K , δ · (ra1 . . . raN )−1))

(9)≥ b1 · (ra1 . . . raN )n ·
(

δ

ra1 . . . raN

)n−d

= b1 · (ra1 . . . raN )d · δn−d


 b1rdδn−d . (10)

The last line follows since ra1 . . . raN 
 r by our choice of N . Thus, we have proved
that the lower bound in the LSP holds in this case. It remains to prove the upper bound.

Given r > 0 let

Ir := {(a1, . . . , ak) ∈ ∞∪
j=0

{1, . . . , l} j : ra1 . . . rak ≤ r < ra1 . . . rak−1}.

Importantly, {(φa1 ◦ · · · ◦ φak )(K )}(a1,...,ak )∈Ir forms a cover of K . In [9] it is shown
that when the open set condition holds, for any x ∈ K and r > 0 we have

#{(a1, . . . , ak) ∈ Ir : B(x, r) ∩ (φa1 ◦ · · · ◦ φak )(K ) �= ∅} ≤ C (11)

for some C > 0 independent of r .
Fixing x ∈ K and r > 0 and using (9) and (11), for δ < r

2 we obtain

Hn(B(x, r) ∩ �(K , δ)) ≤
∑

(a1,...,ak )∈I2r
B(x,2r)∩(φa1◦···◦φak )(K ) �=∅

Hn(�((φa1 ◦ · · · ◦ φak )(K ), δ))

=
∑

(a1,...,ak )∈I2r
B(x,2r)∩(φa1◦···◦φak )(K ) �=∅

Hn((φa1 ◦ · · · ◦ φak )(�(K , δ · (ra1 . . . rak )
−1)))
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=
∑

(a1,...,ak )∈I2r
B(x,2r)∩(φa1◦···◦φak )(K ) �=∅

(ra1 . . . rak )
nHn(�(K , δ · (ra1 . . . rak )

−1))

(9)≤ b2
∑

(a1,...,ak )∈I2r
B(x,2r)∩(φa1◦···◦φak )(K ) �=∅

(ra1 . . . rak )
n
(

δ

ra1 . . . rak

)n−d

≤ b2
∑

(a1,...,ak )∈I2r
B(x,2r)∩(φa1◦···◦φak )(K ) �=∅

(2r)dδn−d

(11)≤ b2C2drdδn−d . (12)

Combining (10) and (12), we see that K satisfies (4) for δ < r/2. Equation (4) trivially
holds for δ ∈ [r/2, r) since, in that case, B(x, r) ∩ �(K , δ) contains a ball of radius
r/2 and is contained in a ball of radius r . Therefore (4) holds for all δ < r and K
satisfies the LSP with respect to κ = d

n as claimed.

3 Preliminaries

In this section we state some definitions and recall some well known facts from geo-
metric measure theory. Throughout this paper we will say that f : R+ → R

+ is a
dimension function if f is a continuous, non-decreasing function such that f (r) → 0
as r → 0 . Given a ball B := B(x, r) in X and a dimension function f , we define

V f (B) := f (r).

Recall that X = (X , d) is a locally compact metric space.
The Hausdorff f -measure with respect to the dimension function f is defined as

follows. Suppose F ⊂ X , let f be a dimension function and let ρ > 0. A ρ-cover for
F is any countable collection of balls {Bi }i∈N with r(Bi ) < ρ for every i ∈ N and
F ⊂⋃i∈N Bi . We define

H f
ρ (F) := inf

{
∑

i

V f (Bi ) : {Bi } is a ρ−cover for F

}
.

The Hausdorff f -measure of F with respect to the dimension function f is then
defined as

H f (F) := lim
ρ→0

H f
ρ (F).

A simple consequence of the definition of H f is the following useful fact (see, for
example, [9]).
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Lemma 1 Let (X , d) be as above. Suppose f and g are dimension functions such that
the ratio f (r)/g(r) → 0 as r → 0, then H f (F) = 0 whenever Hg(F) < ∞.

When f (r) = rs (s ≥ 0), the measureH f is the familiar s-dimensional Hausdorff
measure, which we denote by Hs . The Hausdorff dimension, dimH F , of a set F is
defined as

dimH(F) := inf
{
s ≥ 0 : Hs(F) = 0

}
.

When calculating the Hausdorff dimension of a set, a usual strategy is to obtain
upper and lower bounds separately. It is often the case that calculating an upper bound
is relatively straightforward while determining a lower bound is much more difficult.
Nevertheless, a standard tool which can frequently be employed in obtaining lower
bounds for Hausdorff dimension is the following Mass Distribution Principle.

Lemma 2 (Mass Distribution Principle) Let μ be a probability measure supported on
a subset F of X. Suppose there are positive constants c and r0 such that

μ(B) ≤ c V f (B)

for any ball B with radius r ≤ r0. If E is a subset of F with μ(E) = λ > 0 then
H f (E) ≥ λ/c.

For this precise statement of the Mass Distribution Principle, see [5, Section 2]. For
further general information regarding Hausdorff measures and dimension we refer the
reader to [9,19].

Let B := B(x, r) be a ball in X . For any α > 0, we denote by αB the ball B
scaled by a factor α; i.e. αB(x, r) := B(x, αr). A useful covering lemma which we
will use throughout is the following (see [13, Theorem 1.2] for the case of general
metric spaces or [19, Theorem 2.1] for a constructive proof when the metric space is
boundedly compact).

Lemma 3 (The 5r-Covering Lemma) Let (X , d) be a metric space. Every family F of
balls of uniformly bounded diameter in X contains a disjoint subfamily G such that

⋃

B∈F
B ⊂

⋃

B∈G
5B.

We will also make use of the following adaptation of [7, Lemma 4].

Lemma 4 Let B be a ball in a metric space X = (X , d) and let g be a doubling
dimension function such that (2) holds. Let (Si )i∈N be a sequence of subsets in B and
let (δi )i∈N be a sequence of positive real numbers such that δi → 0 as i → ∞. Let

�(Si , δi ) := {x ∈ X : d(Si , x) < δi }.
Then, for any real number C > 1,

Hg(lim sup
i→∞

�(Si , δi )) = Hg(lim sup
i→∞

�(Si , Cδi )).
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Note that [7, Lemma 4] is stated in the setting of Euclidean space. Going through
the steps in the proof of this lemma one can verify that the above analogue holds
in our setting. To prove this analogue we require a notion of the Lebesgue Density
Theorem that holds for our metric space (X , d) equipped with the measureHg . Such
an analogue is known to exist when g is a doubling dimension function and (2) holds.
See for example [22, Theorems 2.5 and 3.1].

In what follows we use the Vinogradov notation, writing A � B if A ≤ cB for
some positive constant c and A � B if A ≥ c′ B for some positive constant c′. If
A � B and A � B we write A 
 B and say that A and B are comparable.

4 The KG,B-Lemma

Before proving Theorem 1, we formulate suitable analogues of [1, Lemma 4] and [1,
Lemma 5] which will be required in the present setting. Let

ϒ̃ j := g−1

((
f (ϒ j )

g(ϒ j )κ

) 1
1−κ

)
.

Given a ball B in X and j ∈ N, we define


 j (B) := {B(x, ϒ̃ j ) ⊂ B : x ∈ Fj }.

The following is the analogue of [1, Lemma 4] or [5, Lemma 5], the so-called KG,B-
Lemma, we obtain in the setting currently under consideration.

Lemma 5 Let (X , d), F , ϒ , g and f be as given in Theorem 1 and assume that the
hypotheses of Theorem 1 hold. Then, for any ball B in X and any G ∈ N, there exists
a finite collection

KG,B ⊂ {(A; j) : j ≥ G, A ∈ 
 j (B)}

satisfying the following properties:

(i) if (A; j) ∈ KG,B then 3A ⊂ B;
(ii) if (A; j), (A′, j ′) ∈ KG,B are distinct then 3A ∩ 3A′ = ∅; and
(iii) there exists a constant c5 ≥ 0 independent of our choice of ball B such that

Hg

⎛

⎝
⋃

(A; j)∈KG,B

A

⎞

⎠ ≥ c5Hg(B).

Similarly to [1, Lemma 4], the collection KG,B here is a collection of balls drawn
from the families 
 j (B). These balls correspond to the lim sup set �(ϒ̃). From each
of these balls what we are actually interested in is extracting a suitable collection of
balls corresponding to the lim sup set �(ϒ). We adopt the notation from [1] and write
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(A; j) for a generic ball from KG,B to “remember” the index j of the family 
 j (B)

that the ball A comes from, but just write A if we are referring only to the ball A
(as opposed to the pair (A; j)). Making such a distinction is necessary for us to be
able to choose the “right” collection of balls within A that at the same time lie in an
ϒ j -neighbourhood of the relevant Fj . Indeed, for j �= j ′ we could have A = A′ for
some A ∈ 
 j (B) and A′ ∈ 
 j ′(B).

Proof of Lemma 5 For j ∈ N and a fixed ball B in X , consider the set of balls


3
j (B) := {B(x, 3ϒ̃ j ) ⊂ B : x ∈ Fj }.

It follows from our assumption (5) that for any G ≥ 1 we have

Hg

⎛

⎝
⋃

j≥G

(�(Fj , 3ϒ̃ j ) ∩ B)

⎞

⎠ = Hg(B).

Observe that ϒ̃ j → 0 as j → ∞ because g and f /gκ are dimension functions.
Therefore for j ∈ N sufficiently large,

⋃

L∈
3
j (B)

L ⊃ �(Fj , 3ϒ̃ j ) ∩ 1

2
B.

Therefore for any sufficiently large G ∈ N, we have

Hg

⎛

⎜⎝
⋃

j≥G

⋃

L∈
3
j (B)

L

⎞

⎟⎠ ≥ Hg

⎛

⎝
⋃

j≥G

(
�(Fj , 3ϒ̃ j ) ∩ 1

2
B

)⎞

⎠ = Hg
(
1

2
B

)
.

Suppose G ′ ∈ N is large enough that the above inequality holds for any G ≥ G ′.
Clearly for any G < G ′ we also have

⋃

j≥G

⋃

L∈
3
j (B)

L ⊃
⋃

j≥G ′

⋃

L∈
3
j (B)

L.

Therefore for any G ∈ N it follows that

Hg

⎛

⎜⎝
⋃

j≥G

⋃

L∈
3
j (B)

L

⎞

⎟⎠ ≥ Hg
(
1

2
B

)
. (13)
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Next, by the 5r -Covering Lemma (Lemma 3), there exists a disjoint subcollection
G ⊂ {(L; j) : j ≥ G, L ∈ 
3

j (B)} satisfying

◦⋃

(L; j)∈G
L ⊂
⋃

j≥G

⋃

L∈
3
j (B)

L ⊂
⋃

(L; j)∈G
5L.

Let G′ := {( 13 L; j) : (L; j) ∈ G} be the balls from the collection G all scaled by a
factor of 1/3. Note that the balls in G′ are still disjoint when scaled by 3. By the above,
we have that

◦⋃

(A; j)∈G′
A ⊂

⋃

j≥G

⋃

L∈
3
j (B)

L ⊂
⋃

(A; j)∈G′
15A. (14)

It follows from (1), (2), and the disjointness of the balls in G′ that

Hg

⎛

⎝
⋃

(A; j)∈G′
A

⎞

⎠ =
∑

(A; j)∈G′
Hg(A)

(2)

∑

(A; j)∈G′
g(r(A))

(1)�
∑

(A; j)∈G′
g(r(15A))

(2)

∑

(A; j)∈G′
Hg(15A)

≥ Hg

⎛

⎝
⋃

(A; j)∈G′
15A

⎞

⎠ .

Now also using (13) and (14), we see that

Hg

⎛

⎝
⋃

(A; j)∈G′
A

⎞

⎠ (14)� Hg

⎛

⎜⎝
⋃

j≥G

⋃

L∈
3
j (B)

L

⎞

⎟⎠

(13)≥ Hg
(
1

2
B

)

(2)
 g(r(
1

2
B))

(1)
 g(r(B))

(2)
 Hg(B).
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Thus, there exists a constant c′ > 0 such that

c′ · Hg(B) ≤ Hg

⎛

⎝
⋃

(A; j)∈G′
A

⎞

⎠ .

Since the balls in G′ are disjoint and contained in B, it follows that

Hg

⎛

⎜⎜⎝
⋃

(A; j)∈G′
j≥N

A

⎞

⎟⎟⎠→ 0 as N → ∞.

Consequently, there must exist N0 ∈ N such that

Hg

⎛

⎜⎜⎝
⋃

(A; j)∈G′
j≥N0

A

⎞

⎟⎟⎠ <
c′

2
Hg(B).

We define KG,B to be the subcollection of (A; j) ∈ G′ with G ≤ j < N0. By the
above we see that KG,B is a finite collection of balls while still satisfying the required
properties (i)–(iii) with c5 = c′

2 . ��
As mentioned previously, from each of the balls in KG,B we wish to extract a

collection of balls corresponding to�(ϒ). The desired properties and existence of such
collections are summarised in the following lemma, which constitutes the required
analogue of [1, Lemma 5] in this setting.

Lemma 6 Let (X , d), F , ϒ , f , g, and B be as in Lemma 5 and assume that the
hypotheses of Theorem 1 hold. Furthermore, assume that f (r)/g(r) → ∞ as r → 0.
Let KG,B be as in Lemma 5. Then, provided that G is sufficiently large, for any
(A; j) ∈ KG,B there exists a collection C(A; j) of balls satisfying the following
properties:

(i) each ball in C(A; j) is of radius ϒ j and is centred on Fj ;
(ii) if L ∈ C(A; j) then 3L ⊂ A;
(iii) if L, M ∈ C(A; j) are distinct then 3L ∩ 3M = ∅;

(iv) Hg(�(Fj , ϒ j ) ∩ 1
2 A
) � Hg

⎛

⎝
⋃

L∈C(A; j)

L

⎞

⎠ ≤ Hg(�(Fj , ϒ j ) ∩ A
)
; and

(v) there exist some constants d1, d2 > 0 such that

d1 ×
(

f (ϒ j )

g(ϒ j )

) κ
1−κ ≤ #C(A; j) ≤ d2

(
f (ϒ j )

g(ϒ j )

) κ
1−κ

. (15)
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Proof We begin by showing that

ϒ j

ϒ̃ j
→ 0 as j → ∞. (16)

To this end, suppose that N ∈ N. We aim to show that for all sufficiently large j ∈ N

we have

ϒ j <
ϒ̃ j

2N
. (17)

Observe that (17) holds if

g(ϒ j ) < g

(
ϒ̃ j

2N

)
. (18)

Furthermore, by repeated application of (1), we see that

g

(
ϒ̃ j

2N

)
>

g(ϒ̃ j )

λN
= 1

λN

(
f (ϒ j )

g(ϒ j )κ

) 1
1−κ

,

where λ is the doubling constant. Consequently, (18) holds if

g(ϒ j ) <
1

λN

(
f (ϒ j )

g(ϒ j )κ

) 1
1−κ

.

Rearranging the above we get

λN (1−κ) <
f (ϒ j )

g(ϒ j )
.

By the assumptions that f (r)
g(r)

→ ∞ as r → 0 and ϒ j → 0 as j → ∞, we see that
this inequality holds for sufficiently large j ∈ N, thus verifying (16).

In light of (16) we can assume that G is sufficiently large so that

6ϒ j < ϒ̃ j for any j ≥ G. (19)

Let x1, . . . , xt ∈ Fj ∩ 1
2 A be a maximal collection of points such that

d(xi , xi ′) > 6ϒ j if i �= i ′. (20)

Define C(A; j) to be the collection of balls

C(A; j) := {B(x1, ϒ j ), . . . , B(xt , ϒ j )}.

By construction, property (i) is satisfied by the collection C(A; j). Next, recall
that A ∈ 
 j (B) and so 1

2 A has radius 1
2 ϒ̃ j . If L := B(xi , ϒ j ) ∈ C(A; j) then any
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y ∈ 3L satisfies d(y, xi ) < 3ϒ j . Supposing x0 is the centre of A, we also have
d(xi , x0) ≤ 1

2 ϒ̃ j . Combining (19) and the triangle inequality we obtain

d(y, x0) ≤ d(y, xi ) + d(xi , x0) ≤ 3ϒ j + 1
2 ϒ̃ j < ϒ̃ j .

Therefore property (ii) follows. In addition property (iii) follows from (20).
It is a consequence of the maximality of x1, . . . , xt that for any x ∈ Fj ∩ 1

2 A, there
exists an xi from this collection such that d(x, xi ) ≤ 6ϒ j . Consequently

�(Fj , ϒ j ) ∩ 1
2 A ⊂

⋃

L∈C(A; j)

7L.

Therefore, by (1) and (2),

Hg(�(Fj , ϒ j ) ∩ 1
2 A) ≤ Hg

⎛

⎝
⋃

L∈C(A; j)

7L

⎞

⎠

≤
∑

L∈C(A; j)

Hg(7L)

�
∑

L∈C(A; j)

Hg(L)

� Hg

⎛

⎝
◦⋃

L∈C(A; j)

L

⎞

⎠ .

However, by property (ii), we have

◦⋃

L∈C(A; j)

L ⊂ �(Fj , ϒ j ) ∩ A.

This together with the previous inequality proves property (iv).

As a byproduct of (19) we have that ϒ j <
ϒ̃ j
2 for all j ≥ G. Therefore, by the LSP

we have

Hg
(

�(Fj , ϒ j ) ∩ 1

2
A

)

 g

(
ϒ̃ j

2

)κ

· g(ϒ j )
1−κ .

Combining this with the doubling property (1) and the LSP we obtain

Hg
(

�(Fj , ϒ j ) ∩ 1

2
A

)

 g(ϒ̃ j )

κ · g(ϒ j )
1−κ 
 Hg (�(Fj , ϒ j ) ∩ A

)
. (21)
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By (2) and the disjointness of the balls in C(A; j) we have

Hg

⎛

⎝
⋃

L∈C(A; j)

L

⎞

⎠ =
∑

L∈C(A; j)

Hg (L) 

∑

L∈C(A; j)

g(ϒ j ) = #C(A; j) g(ϒ j ).

Combining the above with (21) and property (iv) we get

#C(A; j) 
 g(ϒ̃ j )
κ · g(ϒ j )

1−κ

g(ϒ j )
=
(

g(ϒ̃ j )

g(ϒ j )

)κ

=
(

f (ϒ j )

g(ϒ j )

) κ
1−κ

So property (v) holds. ��

5 Proof of Theorem 1

5.1 Strategy

Fix an arbitrary ball B0 in X and suppose the assumptions of Theorem 1 hold. Our
goal is to show that

H f (B0 ∩ �(ϒ)) = H f (B0). (22)

Since f /g is monotonic, there are three situations to consider:

(a) f (r)
g(r)

→ ∞ as r → 0;

(b) f (r)
g(r)

→ 0 as r → 0; and

(c) f (r)
g(r)

→ � as r → 0, where 0 < � < ∞.

If we are in situation (b) it follows from Lemma 1 that H f (B0) = 0. Since
B0 ∩ �(ϒ) ⊂ B0 the result follows.

If we are in case (c) it can be shown that ϒ̃ j 
 ϒ j . It then follows from
Lemma 4 that Hg(B0 ∩ �(ϒ̃)) = Hg(B0 ∩ �(ϒ)). In turn, it follows from (5) that
Hg(B0 ∩�(ϒ)) = Hg(B0). Finally, the proof is completed in this case by noting that
H f = � · Hg and therefore

H f (B0 ∩ �(ϒ)) = � · Hg(B0 ∩ �(ϒ)) = � · Hg(B0) = H f (B0).

It remains to address case (a). Thus, from now on we will assume that f (r)
g(r)

→ ∞
as r → 0. In this case, it is a consequence of Lemma 1 that H f (B0) = ∞. So, to
prove Theorem 1 it suffices to show that

H f (B0 ∩ �(ϒ)) = ∞.
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To achieve this goal we will show that for any η > 1, we can construct a Cantor set
Kη contained in B0 ∩ �(ϒ) which supports a probability measure μ satisfying

μ(D) � V f (D)

η
, (23)

for all balls Dwith sufficiently small radii,where the implicit constants are independent
of D and η. The result then follows from the Mass Distribution Principle (Lemma 2)
upon taking η to be arbitrarily large since the Mass Distribution Principle yields
H f (Kη) � η and Kη ⊂ B0 ∩ �(ϒ).

5.2 Desired properties ofK�

The construction of the Cantor set we present here is an adaptation of that given in
[1,5]. For ease of comparison we will generally adopt the notation used in [1].

Fix η > 1. Our Cantor set Kη will take the form

Kη =
∞⋂

n=1

K(n)

where K(n) ⊃ K(n + 1). The fact that (X , d) is a locally compact metric space
guarantees that Kη is non empty.

Each level K(n) of the Cantor set will be a union of balls and we will denote the
corresponding set of level n balls by K (n). For each ball B ∈ K (n − 1) we will
construct an (n, B)-local level, henceforth denoted by K (n, B), which will consist of
balls contained in B. The set of level n balls, K (n), will then be defined by

K (n) :=
⋃

B∈K (n−1)

K (n, B).

Each (n, B)-local level will be constructed of local sub-levels and will take the form

K (n, B) :=
lB⋃

i=1

K (n, B, i), (24)

where K (n, B, i)denotes the i th local sub-level and lB is the number of local sub-levels
forming K (n, B). What is more, each local sub-level will take the form

K (n, B, i) :=
⋃

B′∈G(n,B,i)

⋃

(A; j)∈KG′,B′
C(A; j). (25)

Here, G(n, B, i) will be a suitable collection of balls contained in B and, for each ball
B ′ ∈ G(n, B, i), KG ′,B′ will be the corresponding finite collection whose existence is
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asserted by Lemma 5. The collections C(A; j) will be those arising from Lemma 6.
The set of pairs (A; j) included in (25) will be denoted by K̃ (n, B, i). As such

K̃ (n, B, i) :=
⋃

B′∈G(n,B,i)

KG ′,B′ and K (n, B, i) =
⋃

(A; j)∈K̃ (n,B,i)

C(A; j). (26)

We will also require that Kη satisfies the following properties.

The properties of levels and sub-levels ofK�

(P0) K (1) = {B0}.
(P1) For any n ≥ 2 and B ∈ K (n − 1) the balls

{3L : L ∈ K (n, B)}

are disjoint and contained in B.
(P2) For any n ≥ 2, B ∈ K (n−1), and i ∈ {1, . . . , lB}, the local sub-level K (n, B, i)

is a finite union of some collections C(A; j) of balls satisfying properties (i)–(v)
of Lemma 6. Moreover, the balls 3A are disjoint and contained in B.

(P3) For any n ≥ 2, B ∈ K (n − 1), and i ∈ {1, . . . , lB}, we have
∑

(A; j)∈K̃ (n,B,i)

V g(A) ≥ c6V g(B)

where

c6 := 1

2λ

(
c1
c2

)2 c5
c7

.

The constants c1 and c2 are those appearing in (2), c5 comes from Lemma 5 (iii),
λ is the doubling constant associated with g, and c7 is a fixed constant such that

g(r(5B)) ≤ c7g(r(B))

for any ball B in X . Note that the existence of c7 is guaranteed by the doubling
property (1).

(P4) For any n ≥ 2, B ∈ K (n − 1), i ∈ {1, . . . , lB − 1}, L ∈ K (n, B, i), and
M ∈ K (n, B, i + 1), we have

f (r(M)) ≤ f (r(L))

2
and

f (r(M))

g(r(M))κ
≤ f (r(L))

2g(r(L))κ
.
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(P5) The number of sub-levels is defined by

lB :=

⎧
⎪⎪⎨

⎪⎪⎩

[
c2η

c6Hg(B)

]
+ 1 if B = B0 := K(1),

[
V f (B)

c6V g(B)

]
+ 1 if B ∈ K (n) with n ≥ 2,

and lB ≥ 2 for B ∈ K (n) with n ≥ 2.

5.3 Existence ofK�

Wenowprove that it is possible to construct a setKη ⊂ B0∩�(ϒ) satisfying properties
(P0)–(P5). To this end, let

Kl(n, B) :=
l⋃

i=1

K (n, B, i) and K̃l(n, B) :=
l⋃

i=1

K̃ (n, B, i). (27)

Level 1 Let K(1) := B0 so (P0) holds.
All other levels of Kη are defined inductively. Therefore, assume levels

K(1), . . . ,K(n − 1) have been constructed. To construct the nth level, we need to
construct (n, B)-local levels for all balls B ∈ K (n − 1).

Level n Fix B ∈ K (n − 1) and let ε := ε(B) be a small constant which will be
explicitly determined later. Let G be sufficiently large so Lemmas 5 and 6 can be
invoked. We may also assume that G is large enough that

3g(ϒ j )
1−κ <

f (ϒ j )

g(ϒ j )κ
for all j ≥ G, (28)

g(ϒ j )

f (ϒ j )
< ε

g(r(B))

f (r(B))
for all j ≥ G, (29)

and [
f (ϒ j )

c6g(ϒ j )

]
≥ 1 for all j ≥ G. (30)

Here, c6 is the constant appearing in (P3). Inequalities (28)–(30) are achievable since
f (r)/g(r) → ∞ as r → 0.
Recall that the (n, B)-local level, K (n, B), consists of local sub-levels. These are

defined as follows.

Sub-level 1 For B and G as above let KG,B be the collection of balls arising from
Lemma 5. We define the first sub-level of K (n, B) to be

K (n, B, 1) :=
⋃

(A; j)∈KG,B

C(A; j).
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Hence,

K̃ (n, B, 1) = KG,B and G(n, B, 1) = {B}.

Higher sub-levels The higher sub-levels are defined inductively. Suppose the
first l sub-levels K (n, B, 1), . . . , K (n, B, l) have been constructed and properties
(P1)–(P4) hold with l in place of lB . Since we require fairly stringent separation con-
ditions between balls in Kη, we first verify that there is “space” left over in B for the
sub-level K (n, B, l + 1) after the first l sub-levels, K (n, B, 1), . . . , K (n, B, l), have
been constructed. Let

A(l) := 1

2
B\
⋃

L∈Kl (n,B)

4L.

We will show that

Hg(A(l)) ≥ 1

2
Hg
(
1

2
B

)
. (31)

Using (1), (2), and the upper bound for #C(A; j) given in (15), we obtain

Hg

⎛

⎝
⋃

L∈Kl (n,B)

4L

⎞

⎠ ≤
∑

L∈Kl (n,B)

Hg(4L)

(2)≤
∑

L∈Kl (n,B)

c2g(r(4L))

(1)≤
∑

L∈Kl (n,B)

c2λ
2g(r(L))

=
l∑

i=1

∑

L∈K (n,B,i)

c2λ
2g(r(L))

=
l∑

i=1

∑

(A; j)∈K̃ (n,B,i)

c2λ
2#C(A; j)g(ϒ j )

(15)≤
l∑

i=1

∑

(A; j)∈K̃ (n,B,i)

c2λ
2d2

(
f (ϒ j )

g(ϒ j )

) κ
1−κ

g(ϒ j )

= c2λ
2d2

l∑

i=1

∑

(A; j)∈K̃ (n,B,i)

f (ϒ j )
1

1−κ

g(ϒ j )
κ

1−κ

· g(ϒ j )

f (ϒ j )
.
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Recalling condition (29) and property (P2) we further see that

Hg

⎛

⎝
⋃

L∈Kl (n,B)

4L

⎞

⎠ (29)
< εc2λ

2d2 · g(r(B))

f (r(B))

l∑

i=1

∑

(A; j)∈K̃ (n,B,i)

f (ϒ j )
1

1−κ

g(ϒ j )
κ

1−κ

= εc2λ
2d2 · g(r(B))

f (r(B))

l∑

i=1

∑

(A; j)∈K̃ (n,B,i)

g(ϒ̃ j )

(2)≤ ε
c2λ2d2

c1
· g(r(B))

f (r(B))

l∑

i=1

∑

(A; j)∈K̃ (n,B,i)

Hg(A)

(P2)≤ ε
c2λ2d2

c1
· g(r(B))

f (r(B))
lHg(B)

≤ ε
c2λ2d2

c1
· g(r(B))

f (r(B))
(lB − 1)Hg(B)

(2)≤ ε
c22λ

2d2
c1

· g(r(B))2

f (r(B))
(lB − 1). (32)

To establish (31) we will show that

Hg

⎛

⎝
⋃

L∈Kl (n,B)

4L

⎞

⎠ <
1

2
Hg
(
1

2
B

)
.

By (2) we have

1

2
Hg
(
1

2
B

)
≥ c1

2
g

(
1

2
B

)

and by (1) we have

g

(
1

2
B

)
>

1

λ
g(r(B)).

Therefore it suffices to show that

Hg

⎛

⎝
⋃

L∈Kl (n,B)

4L

⎞

⎠ <
c1
2λ

g(r(B)). (33)

It follows from (32) that (33) is implied by

ε
c22λ

2d2
c1

· g(r(B))2

f (r(B))
(lB − 1) <

c1
2λ

g(r(B)). (34)
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Taking

ε(B) := c1
4λ

(c22λ
2d2

c1
· g(r(B))

f (r(B))
(lB − 1)

)−1

we see that (34) is satisfied and, thus, (33) and (31) both hold.
Next, observe that the quantity

dmin := min{r(L) : L ∈ Kl(n, B)}

is well-defined and positive since the collection Kl(n, B) is finite. Let

A(n, B, l) := {B(x, dmin) : x ∈ A(l)}.

By Lemma 3 there exists a disjoint subcollection G(n, B, l + 1) of A(n, B, l) such
that

A(l) ⊂
⋃

B′∈A(n,B,l)

B ′ ⊂
⋃

B′∈G(n,B,l+1)

5B ′. (35)

Note that each element of the collection G(n, B, l + 1) is a subset of B. Since the
balls in this collection are disjoint and all have the same radius, G(n, B, l + 1) must
be finite. Furthermore, by our construction,

B ′ ∩
⋂

L∈Kl (n,B)

3L = ∅ for any B ′ ∈ G(n, B, l + 1). (36)

By (35) and (31) above we have

Hg

⎛

⎝
⋃

B′∈G(n,B,l+1)

5B ′
⎞

⎠ ≥ Hg(A(l)) ≥ 1

2
Hg
(
1

2
B

)
. (37)

Since G(n, B, l + 1) is a disjoint collection of balls we have the following

Hg

⎛

⎝
⋃

B′∈G(n,B,l+1)

5B ′
⎞

⎠ ≤
∑

B′∈G(n,B,l+1)

Hg(5B ′)

(2)≤ c2
∑

B′∈G(n,B,l+1)

g(r(5B ′))

≤ c2c7
∑

B′∈G(n,B,l+1)

g(r(B ′))
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(2)≤ c2c7
c1

∑

B′∈G(n,B,l+1)

Hg(B ′)

= c2c7
c1

Hg

⎛

⎝
◦⋃

B′∈G(n,B,l+1)

B ′
⎞

⎠ .

Combining this with (37) from above implies

Hg

⎛

⎝
◦⋃

B′∈G(n,B,l+1)

B ′
⎞

⎠ ≥ c1
2c2c7

Hg
(1
2

B
)
. (38)

Now, to construct the (l + 1)th sub-level K (n, B, l + 1), let G ′ ≥ G be sufficiently
large so that we can apply Lemmas 5 and 6 to each ball B ′ ∈ G(n, B, l +1). Moreover,
we assume that G ′ is sufficiently large so that for every j ≥ G ′,

f (ϒ j ) ≤ 1

2
min

L∈Kl (n,B)
f (r(L)) and

f (ϒ j )

g(ϒ j )κ
≤ 1

2
min

L∈Kl (n,B)

f (r(L))

g(r(L))κ
. (39)

Such a G ′ exists since there are only finitely many balls in Kl(n, B), ϒ j → 0 as
j → ∞, and because f and f /gκ are dimension functions.
To each ball B ′ ∈ G(n, B, l + 1) we apply Lemma 5 to obtain a collection of balls

KG ′,B′ . We then define

K (n, B, l + 1) :=
⋃

B′∈G(n,B,l+1)

⋃

(A; j)∈KG′,B′
C(A; j).

Consequently,

K̃ (n, B, l + 1) =
⋃

B′∈G(n,B,l+1)

KG ′,B′ .

As G ′ ≥ G, properties (28)–(30) remain valid. We now verify that properties
(P1)–(P5) hold for this local sub-level.

To prove (P1) holds we first observe that it is satisfied for balls in⋃
(A; j)∈KG′,B′ C(A; j) by the properties of C(A; j) and the fact that the balls in

KG ′,B′ are disjoint. The balls in KG ′,B′ are by definition contained in B ′ and the
balls B ′ ∈ G(n, B, l + 1) are disjoint, therefore (P1) is satisfied for all balls L in
K (n, B, l + 1). Last of all, combining this observation with (36) we can conclude
that (P1) is satisfied for all balls L in Kl+1(n, B). Property (P2) is satisfied for this
sub-level because of Lemma 5 (i) and (ii) and because the balls B ′ ∈ G(n, B, l + 1)
are disjoint.
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We now prove that (P3) still holds for i = l + 1. Recalling (2), we have
∑

(A; j)∈K̃ (n,B,l+1)

V g(A) =
∑

B′∈G(n,B,l+1)

∑

(A; j)∈KG′,B′
V g(A)

(2)≥ 1

c2

∑

B′∈G(n,B,l+1)

∑

(A; j)∈KG′,B′
Hg(A).

Combining this with Lemma 5 (iii) and the fact that the balls in G(n, B, l + 1) are
disjoint, we see that

∑

(A; j)∈K̃ (n,B,l+1)

V g(A) ≥ 1

c2

∑

B′∈G(n,B,l+1)

c5Hg (B ′)

= c5
c2
Hg

⎛

⎝
⋃

B′∈G(n,B,l+1)

B ′
⎞

⎠

(38)≥ c1
2c2c7

c5
c2
Hg ( 1

2 B
)

(2)≥ c1
2c2c7

c5
c2

c1g
(
r( 12 B)

)

(1)≥ 1

2λ

(
c1
c2

)2 c5
c7

g(r(B))

= c6V g(B).

Property (P4) is satisfied because of (39). Finally, property (P5), that lL ≥ 2 for any
ball L in K (n, B, l + 1), follows from (30).

Therefore properties (P1)–(P5) are satisfied up to the local sub-level K (n, B, l + 1).
This establishes the existence of the local level K (n, B) = KlB (n, B) for each
B ∈ K (n−1). This then establishes the existence of the nth level K (n) (and alsoK(n)).

5.4 Themeasure� onK�

In what follows we adopt the notation:

h := f

gκ
.

We now define our measure on Kη which we will eventually see satisfies (23). For
each level we distribute mass according to the following rules.

When n = 1 we have that L = B0 := K(1) and let μ(L) := 1.
For balls in K (n), with n ≥ 2, we distribute mass inductively. Therefore, let n ≥ 2

and supposeμ(B) is defined for each B ∈ K (n−1). Let L be a ball in K (n). Since the
balls in K (n − 1) are disjoint there is a unique ball B ∈ K (n − 1) satisfying L ⊂ B.
By (24), (26) and (27), we know that
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K (n, B) :=
⋃

(A; j)∈K̃lB (n,B)

C(A; j).

Therefore, L is contained in one of the collections C(A′; j ′) appearing in the above
union. We define the mass on L to be

μ(L) := 1

#C(A′; j ′)
× h(ϒ j ′)

1
1−κ

∑
(A; j)∈K̃lB (n,B) h(ϒ j )

1
1−κ

× μ(B).

This quantity is well-defined in light of the preceding comment.
Proceeding inductively we see that μ is defined for each ball appearing in the con-

struction ofKη. We can extend μ uniquely in a standard way to all Borel subsets of X
to give a probabilitymeasureμ supported onKη (see, for example, [9, Proposition 1.7]
for further details). Given a Borel subset of X , say F , we let

μ(F) := μ(F ∩ Kη) = inf
∑

L∈C(F)

μ(L),

where the infimum is taken over all covers C(F) of F ∩ Kη by balls L ∈ ⋃
n∈N

K (n).

Let us conclude this section by observing that for any L ∈ K (n) we have

μ(L) ≤ 1

d1
(

f (ϒ j ′ )
g(ϒ j ′ )

) κ
1−κ

× h(ϒ j ′)
1

1−κ

∑
(A; j)∈K̃lB (n,B) h(ϒ j )

1
1−κ

× μ(B)

= f (ϒ j ′)

d1
∑

(A; j)∈K̃lB (n,B) h(ϒ j )
1

1−κ

× μ(B). (40)

This follows from (15) and the definition of h.

5.5 Themeasure of a ball in the Cantor set construction

Our ultimate goal is to prove that (23) is satisfied for any ball D of sufficiently small
radius. Moving towards that goal, we first prove that

μ(L) � V f (L)

η
(41)

for any ball L ∈ K (n) for n ≥ 2. We start with n = 2 and then tackle higher levels
of the Cantor set by induction. Let us fix a ball L ∈ K (2) = K (2, B0). Now, let
(A′; j ′) ∈ K̃lB0

(2, B0) be such that L ∈ C(A′; j ′). Using the upper bound given by
(40), the definition of μ, and the fact that μ(B0) = 1, we obtain
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μ(L) ≤ f (ϒ j ′)

d1
∑

(A; j)∈K̃lB0
(2,B0)

h(ϒ j )
1

1−κ

. (42)

Using properties (P3) and (P5) of the Cantor set construction we obtain

∑

(A; j)∈K̃lB0
(2,B0)

h(ϒ j )
1

1−κ =
∑

(A; j)∈K̃lB0
(2,B0)

V g(A)

=
lB0∑

i=1

∑

(A; j)∈K̃ (2,B0,i)

V g(A)

(P3)≥
lB0∑

i=1

c6V g(B0)

= lB0c6V g(B0)

(2)≥ lB0

c6
c2
Hg(B0)

(P5)≥ c2η

c6Hg(B0)

c6
c2
Hg(B0) = η.

Combining this estimate with (42), and observing that f (ϒ j ′) = V f (L), we
obtain (41) as required.

We now consider n > 2. Assume that (41) holds for all balls in K (n − 1). Let
L be an arbitrary ball in K (n) and let B ∈ K (n − 1) be the unique ball such that
L ∈ K (n, B). Moreover, suppose (A′; j ′) ∈ K̃lB (n, B) is the unique (A′; j ′) such
that L ∈ C(A′; j ′). By (40) and our induction hypothesis we have

μ(L) � f (ϒ j ′)

d1
∑

(A; j)∈K̃lB (n,B) h(ϒ j )
1

1−κ

× V f (B)

η
. (43)

Bounding the denominator of (43) we have

∑

(A; j)∈K̃lB (n,B)

h(ϒ j )
1

1−κ =
lB∑

i=1

∑

(A; j)∈K̃ (n,B,i)

V g(A)

(P3)≥
lB∑

i=1

c6V g(B)

= lBc6V g(B)
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(P5)≥ V f (B)

c6V g(B)
c6V g(B)

= V f (B). (44)

Combining (43) and (44) we see that (41) holds for L . By induction (41) holds for all
L ∈ K (n) for n ≥ 2.

5.6 Themeasure of an arbitrary ball

Let r0 := min{r(B) : B ∈ K (2)} and take an arbitrary ball D such that r(D) < r0.
To conclude our proof of Theorem 1 it suffices to prove (23) for D, that is we wish to
show that

μ(D) � V f (D)

η
,

where the implied constant is independent of D and η. To prove this bound we will
make use of the following lemma from [5]. This statement was originally (implicitly)
proved in the setting of Euclidean space equipped with the usual metric.With virtually
no change required to the proof, the same statement holds in an arbitrary metric space.

Lemma 7 Let A := B(xA, rA) and M := B(xM , rM ) be arbitrary balls in a metric
space (X , d) such that A ∩ M �= ∅ and A\(cM) �= ∅ for some c ≥ 3. Then rM ≤ rA

and cM ⊂ 5A.

Recall that our measureμ is supported onKη and we proved in the previous section
that it satisfies the above inequality whenever D is a ball in our Cantor set construction.
Consquently, without loss of generality, we may assume that D satisfies the following
two properties:

• D ∩ Kη �= ∅;
• for every n large enough D intersects at least two balls in K (n).

If D∩Kη = ∅ thenμ(D) = 0 sinceμ is supported onKη. If the second assumption
were false then D would intersect exactly one ball, say Lni , at level ni for infinitely
many i ∈ N. Then, by (41), we would have μ(D) ≤ μ(Lni ) → 0 as i → ∞. So, if
either of the above two assumptions fail we have μ(D) = 0 and (23) holds trivially.

By these two assumptions there exists a well-defined maximal integer n such that

D intersects at least 2 balls from K (n) (45)

and

D intersects only one ball B from K (n − 1).

Since r0 = min{r(B) : B ∈ K (2)} it follows that n > 2. Suppose B ∈ K (n − 1) is
the unique ballwhich has non-empty intersectionwith D, thenwemay also assume that
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r(D) < r(B). To see why, suppose otherwise that r(B) ≤ r(D). Since D ∩ Kη ⊂ B
and f is increasing, it would follow from (41) that

μ(D) ≤ μ(B) � V f (B)

η
= f (r(B))

η
≤ f (r(D))

η
= V f (D)

η
,

and (23) would be satisfied.
Note that, since K (n, B) forms a cover of D ∩ Kη, we have

μ(D) ≤
lB∑

i=1

∑

L∈K (n,B,i):L∩D �=∅
μ(L)

=
lB∑

i=1

∑

(A; j)∈K̃ (n,B,i)

∑

L∈C(A; j)
L∩D �=∅

μ(L)

(41)�
lB∑

i=1

∑

(A; j)∈K̃ (n,B,i)

∑

L∈C(A; j)
L∩D �=∅

V f (L)

η
. (46)

The remainder of the proof of Theorem 1 will be concerned with showing that (46)
is suitably bounded. In order to perform this task, it is useful to partition sub-levels
into the following cases:
Case 1 Sub-levels K (n, B, i) for which

#{L ∈ K (n, B, i) : L ∩ D �= ∅} = 1.

Case 2 Sub-levels K (n, B, i) for which

#{L ∈ K (n, B, i) : L ∩ D �= ∅} ≥ 2 and

#{(A; j) ∈ K̃ (n, B, i) with D ∩ L �= ∅ for some L ∈ C(A; j)} ≥ 2.

Case 3 Sub-levels K (n, B, i) for which

#{L ∈ K (n, B, i) : L ∩ D �= ∅} ≥ 2 and

#{(A; j) ∈ K̃ (n, B, i) with D ∩ L �= ∅ for some L ∈ C(A; j)} = 1.

Technically we should also consider those sub-levels K (n, B, i) for which
#{L ∈ K (n, B, i) : L ∩ D �= ∅} = 0. However, these sub-levels make no contri-
bution to the sum on the right-hand side of (46) and can therefore be omitted.
Dealing with Case 1Let K (n, B, i∗) be the first sub-level whose intersection with D is
described by Case 1. There is a unique ball L∗ in K (n, B, i∗) satisfying L∗ ∩ D �= ∅.
We know by (45) that there exists another ball M ∈ K (n, B) such that M ∩ D �= ∅.
Moreover, we also know that 3L∗ ∩3M = ∅ by property (P1). Therefore D\3L∗ �= ∅
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and so, applying Lemma 7, we have r(L∗) ≤ r(D). Consequently, since f is a
dimension function and hence increasing,

V f (L∗) ≤ V f (D). (47)

Using property (P4) we know that for i ∈ {i∗ + 1, . . . , lB} and L ∈ K (n, B, i), we
have

V f (L) = f (r(L)) ≤ 2−(i−i∗) f (r(L∗)) = 2−(i−i∗) V f (L∗).

Combining this inequality with (47), we see that the contribution to the right-hand
side of (46) from Case 1 is:

∑

i∈Case 1

∑

L∈K (n,B,i)
L∩D �=∅

V f (L)

η
≤
∑

i≥i∗
2−(i−i∗) V f (L∗)

η
≤ 2

V f (L∗)
η

≤ 2
V f (D)

η
.

(48)

Dealing with Case 2 Let K (n, B, i) be a sub-level whose intersection with D is
described by Case 2. Thus, there exist distinct balls (A; j) and (A′; j ′) in K̃ (n, B, i),
and corresponding balls L ∈ C(A; j) and L ′ ∈ C(A′; j ′) satisfying L ∩ D �= ∅ and
L ′ ∩ D �= ∅. Since L ⊂ A and L ′ ⊂ A′ we have A ∩ D �= ∅ and A′ ∩ D �= ∅. By
property (P2) of our construction we know that the the balls 3A and 3A′ are disjoint
and contained in B. Therefore D\3A �= ∅ and, applying Lemma 7, we see that
r(A) ≤ r(D) and A ⊂ 3A ⊂ 5D. By the same reasoning we also have A′ ⊂ 3A′ ⊂
5D. Hence, on using (15) we get that the contribution to the right-hand side of (46)
from Case 2 is estimated as follows

∑

i∈Case 2

∑

(A; j)∈K̃ (n,B,i)

∑

L∈C(A; j)
L∩D �=∅

V f (L)

η
≤
∑

i∈Case 2

∑

(A; j)∈K̃ (n,B,i)
A⊂5D

#C(A; j)
f (ϒ j )

η

(15)�
∑

i∈Case 2

∑

(A; j)∈K̃ (n,B,i)
A⊂5D

(
f (ϒ j )

g(ϒ j )

) κ
1−κ f (ϒ j )

η

=
∑

i∈Case 2

∑

(A; j)∈K̃ (n,B,i)
A⊂5D

f (ϒ j )
κ

1−κ
+1

g(ϒ j )
κ

1−κ

× 1

η

=
∑

i∈Case 2

∑

(A; j)∈K̃ (n,B,i)
A⊂5D

f (ϒ j )
1

1−κ

g(ϒ j )
κ

1−κ

× 1

η

=
∑

i∈Case 2

∑

(A; j)∈K̃ (n,B,i)
A⊂5D

V g(A)

η
.
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It follows upon combining this estimate with (1), (2), and the disjointness of balls
in K̃ (n, B, i) guaranteed by property (P2), that

∑

i∈Case 2

∑

(A; j)∈K̃ (n,B,i)

∑

L∈C(A; j)
L∩D �=∅

V f (L)

η

(2)� 1

η

∑

i∈Case 2

∑

(A; j)∈K̃ (n,B,i)
A⊂5D

Hg(A)

(P2)= 1

η

∑

i∈Case 2
Hg

⎛

⎜⎜⎝
⋃

(A; j)∈K̃ (n,B,i)
A⊂5D

A

⎞

⎟⎟⎠

≤ 1

η

∑

i∈Case 2
Hg(5D)

(2)� 1

η

∑

i∈Case 2
V g(5D)

(1)� 1

η

∑

i∈Case 2
V g(D)

≤ 1

η
lB V g(D).

Finally, it follows from the above estimate together with property (P5) that

∑

i∈Case 2

∑

(A; j)∈K̃ (n,B,i)

∑

L∈C(A; j)
L∩D �=∅

V f (L)

η

(P5)� 1

η

(
V f (B)

V g(B)

)
V g(D)

� 1

η

V f (D)

V g(D)
V g(D)

= V f (D)

η
. (49)

To deduce the penultimate inequality we used the facts that f /g is decreasing and
r(D) < r(B).
Dealing with Case 3 For each sub-level i whose intersection with D is described by
Case 3 there exists a unique (Ai ; ji ) ∈ K̃ (n, B, i) such that D has non-empty inter-
section with balls in C(Ai ; ji ). Let K (n, B, i∗∗) denote the first sub-level described
by Case 3. There exists a ball L∗∗ in K (n, B, i∗∗) such that L∗∗ ∩ D �= ∅. By the
assumption in (45) there must exist another ball M ∈ K (n, B) such that M ∩ D �= ∅.
It follows from property (P1) that 3L∗∗ and 3M are disjoint and so D\3L∗∗ �= ∅.

Applying Lemma 7, we have that r(L∗∗) ≤ r(D). As h is a dimension function it
follows that

h(r(L∗∗)) ≤ h(r(D)). (50)
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By property (P4) we know that for any i ∈ {i∗∗ + 1, . . . , lB} and L ∈ K (n, B, i) we
have

h(r(L)) ≤ 2−(i−i∗∗) h(r(L∗∗)). (51)

Recall that, by Lemma 6, each L ∈ C(Ai ; ji ) is centred on Fji . Combining this fact
with the LSP, the relations given by (2), and the fact that the elements of C(Ai ; ji ) are
disjoint, by straightforward measure theoretic considerations we have the following
estimate

#{L ∈ C(Ai ; ji ) : L ∩ D �= ∅} � g(ϒ ji )
1−κ g(r(D))κ

g(ϒ ji )
. (52)

Therefore, the contribution to the right-hand side of (46) from Case 3 can be bounded
above as follows:

∑

i∈Case 3

∑

(A; j)∈K̃ (n,B,i)

∑

L∈C(A; j)
L∩D �=∅

V f (L)

η
≤
∑

i∈Case 3

∑

L∈C(Ai ; ji )
L∩D �=∅

V f (L)

η

=
∑

i∈Case 3

∑

L∈C(Ai ; ji )
L∩D �=∅

f (ϒ ji )

η

(52)�
∑

i∈Case 3

g(ϒ ji )
1−κ g(r(D))κ

g(ϒ ji )
× f (ϒ ji )

η

= g(r(D))κ

η

∑

i∈Case 3

f (ϒ ji )

g(ϒ ji )
κ

= g(r(D))κ

η

∑

i∈Case 3
h(ϒ ji )

(51)� g(r(D))κ

η

∑

i≥i∗∗

h(ϒ ji∗∗ )

2i−i∗∗

≤ 2
g(r(D))κ

η
h(ϒ ji∗∗ ).

Recalling (50) and noting that ϒ ji∗∗ = r(L∗∗), we observe that

∑

i∈Case 3

∑

(A; j)∈K̃ (n,B,i)

∑

L∈C(A; j)
L∩D �=∅

V f (L)

η
� 2

g(r(D))κ

η
h(r(D))

= 2
f (r(D))

η
� V f (D)

η
. (53)

Combining estimates (48), (49) and (53) with (46) gives μ(D) � V f (D)
η

, thus prov-
ing (23) as desired. This completes the proof of Theorem 1.
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6 An application of Theorem 1: random lim sup sets

In this section we give an application of Theorem 1 to the study of random lim sup sets,
which is a classical topic of interest within Probability Theory. We refer the reader to
[14] and the references therein for more on this problem.

We start by imposing the additional assumptions that (X , d) is a compact metric
space and g(r) := rs for some s > 0. By rescaling if necessary, we may assume
without loss of generality thatHs(X) = 1.Let (Fj ) j∈N be a sequence of sets satisfying
theLSPwith respect to some0 ≤ κ < 1.Assume thatwe are given a set of isometries

that are chosen randomly according to some law P. Given a sequence of non-negative
real numbers ϒ := (ϒ j ) j∈N and a randomly chosen sequence (φ j ) j∈N ∈ 
N, we
define the corresponding random lim sup set as follows:

�((φ j ), ϒ) := {x ∈ �(φ j (Fj ), ϒ j ) for infinitely many j ∈ N}.

We are interested in determining the P-almost sure Hausdorff dimension and Haus-
dorff measure of�((φ j ), ϒ).When (Fj ) j∈N is a sequence of points, then theP-almost
sure Hausdorff dimension and Hausdorff measure of �((φ j ), ϒ) is well understood.
When (Fj ) j∈N is a more exotic sequence of sets, the problem of determining the
P-almost sure metric properties of �((φ j ), ϒ) is more difficult. That being said, in
the Euclidean setting a comprehensive description of the P-almost sure metric prop-
erties of �((φ j ), ϒ) is given in [11]. See also [15] and [20]. Our application below
holds in the more general metric space setting and also provides an alternative proof
for some of the important results appearing in [11]. In what follows we assume that P
satisfies the following properties:

• For any j ∈ N and δ > 0 sufficiently small:

P(x ∈ �(φ j (Fj ), δ)) = Hs(�(Fj , δ)). (54)

• For any sequence (δ j ) j∈N of sufficiently small numbers, we have that the sequence
of events (E j )

∞
j=1 = ({x ∈ �(φ j (Fj ), δ j )})∞j=1 are independent, i.e. for any finite

set S ⊂ N we have

P

⎛

⎝
⋂

j∈S

E j

⎞

⎠ =
∏

j∈S

P(E j ).

The main result of this section is Theorem 2 below. For convenience it is stated for
(ϒ j ) j∈N of the form ( j−τ ) j∈N, although it holds in greater generality. To prove this
theoremwe will make use of the following well known result from Probability Theory
known as the Second Borel–Cantelli Lemma, see [8].

Lemma 8 (Second Borel–Cantelli Lemma) Let (X ,A, μ) be a probability space. Let
(E j ) j∈N be an independent sequence of events such that

∑∞
j=1 μ(E j ) = ∞, then

μ(lim sup j→∞ E j ) = 1.
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Theorem 2 Let (X , d), 
, and P be as above. Suppose (Fj ) j∈N satisfies the LSP with
respect to some 0 ≤ κ < 1 and let τ > 1

s−κs . Then, for P-almost every (φ j ) j∈N ∈ 
N,
we have

dimH(�((φ j ), ( j−τ ))) = κs + 1

τ
and Hκs+1/τ (�((φ j ), ( j−τ ))) = ∞.

Proof It follows from the LSP that for any j ∈ N and δ > 0 sufficiently small we have

Hs(�(Fj , δ)) 
 δs−κs . (55)

Using the notation of Sect. 4, we see that when f (r) = r t we have ϒ̃ j = j
τ (κs−t)

s−κs .
When t = κs + 1/τ we have

∞∑

j=1

P(x ∈ �(φ j (Fj ), ϒ̃ j ))
(54)=

∞∑

j=1

Hs(�(Fj , ϒ̃ j ))
(55)


∞∑

j=1

j−1 = ∞.

Applying Lemma 8, we may assert that for a fixed x ∈ X we have

P(x ∈ �((φ j ), ϒ̃)) = 1.

Applying Fubini’s Theorem, we obtain that for P-almost every (φ j ) j∈N ∈ 
N we
have

Hs(�((φ j ), ϒ̃)) = 1, (56)

i.e. our random lim sup set has full measure. Equation (56) tells us that for almost
every (φ j ) j∈N ∈ 
N the assumptions of Theorem 1 are satisfied. Therefore, we may
apply Theorem 1 and conclude that for almost every (φ j ) j∈N ∈ 
N we have

Hκs+1/τ (�((φ j ), ( j−τ ))) = ∞,

since we assumed that Hs(X) = 1 and κs + 1/τ < s.
To complete our proof, it suffices to show that Ht (�((φ j ), ( j−τ ))) = 0 for

any (φ j ) j∈N ∈ 
N and t > κs + 1/τ. Therefore fix (φ j ) j∈N ∈ 
N. Apply-
ing the 5r -Covering Lemma (Lemma 3) we may construct for each j ∈ N a
finite disjoint collection of balls {B(xl, j , j−τ )}l∈Y j such that {B(xl, j , 5 j−τ )}l∈Y j

covers �(φ(Fj ), j−τ ). Notice that the collection {B(xl, j , 5 j−τ )}l∈Y j , j≥N covers
�((φ j ), ( j−τ )) for any N ∈ N. Furthermore, combining (2) and (55) we see that

#Y j � Hs(�(φ j (Fj ), j−τ ))

j−τ s

 j−τ(s−κs)

j−τ s
= jτκs . (57)

Taking ρ > 0, ε > 0 and t > κs +1/τ, we may choose N sufficiently large such that

Ht
ρ(�((φ j ), ( j−τ ))) ≤

∞∑

j=N

∑

l∈Y j

(5 j−τ )t
(57)� 5t

∞∑

j=N

jτκs−τ t < ε.
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Since ε and ρ were arbitrary wemay deduce thatHt (�((φ j ), ( j−τ ))) = 0 as required.
Therefore, for P-almost every (φ j ) j∈N ∈ 
N, we have

dimH(�((φ j ), ( j−τ ))) = κs + 1

τ
.
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