Skip to main content
Log in

Resonant Mirković–Vilonen polytopes and formulas for highest-weight characters

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

Formulas for the product of an irreducible character \(\chi _\lambda \) of a complex Lie group and a deformation of the Weyl denominator as a sum over the crystal \({\mathcal {B}}(\lambda +\rho )\) go back to Tokuyama. We study the geometry underlying such formulas using the expansion of spherical Whittaker functions of p-adic groups as a sum over the canonical basis \({\mathcal {B}}(-\infty )\), which we show may be understood as arising from tropicalization of certain toric charts that appear in the theory of total positivity and cluster algebras. We use this to express the terms of the expansion in terms of the corresponding Mirković–Vilonen polytope. In this non-archimedean setting, we identify resonance as the appropriate analogue of total positivity, and introduce resonant Mirković–Vilonen polytopes as the corresponding geometric context. Focusing on the exceptional group \(G_2\), we show that these polytopes carry new crystal graph structures which we use to compute a new Tokuyama-type formula as a sum over \({\mathcal {B}}(\lambda +\rho )\) plus a geometric error term coming from finitely many crystals of resonant polytopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The dual word arises here due to our definition of the twist map. This choice is motivated by later computations related to the Iwasawa decomposition.

  2. This is simply to align with the conventions of [10].

  3. Here we ignore the dependence on \(\underline{i}\).

  4. This distinction is similar to the Class I, Class II, and totally resonant cases arising in the analysis of Fourier coefficeints of metaplectic Eisenstein series of type B in [16].

References

  1. Anderson, J.E., et al.: A polytope calculus for semisimple groups. Duke Math. J. 116(3), 567–588 (2003)

    Article  MathSciNet  Google Scholar 

  2. Brubaker, B., Bump, D., Friedberg, S.: Schur polynomials and the Yang–Baxter equation. Commun. Math. Phys. 308(2), 281–301 (2011)

    Article  MathSciNet  Google Scholar 

  3. Brubaker, B., Bump, D., Friedberg, S.: Weyl group multiple Dirichlet series, Eisenstein series and crystal bases. Ann. Math. (2) 173(2), 1081–1120 (2011)

    Article  MathSciNet  Google Scholar 

  4. Brubaker, B., Bump, D., Friedberg, S.: Weyl Group Multiple Dirichlet Series: Type A Combinatorial Theory. Annals of Mathematics Studies, vol. 175. Princeton University Press, Princeton (2011)

    Book  Google Scholar 

  5. Brubaker, B., Friedberg, S.: Whittaker coefficients of metaplectic Eisenstein series. Geom. Funct. Anal. 25(4), 1180–1239 (2015)

    Article  MathSciNet  Google Scholar 

  6. Braverman, A., Finkelberg, M., Gaitsgory, D.: Uhlenbeck spaces via affine Lie algebras. In: The Unity of Mathematics, Volume 244 of Progress in Mathematics, pp. 17–135. Birkhäuser Boston, Boston (2006)

  7. Berenstein, A., Fomin, S., Zelevinsky, A.: Cluster algebras. III. Upper bounds and double Bruhat cells. Duke Math. J. 126(1), 1–52 (2005)

    Article  MathSciNet  Google Scholar 

  8. Braverman, A., Gaitsgory, D.: Crystals via the affine Grassmannian. Duke Math. J. 107(3), 561–575 (2001)

    Article  MathSciNet  Google Scholar 

  9. Berenstein, A., Zelevinsky, A.: Total positivity in Schubert varieties. Comment. Math. Helv. 72(1), 128–166 (1997)

    Article  MathSciNet  Google Scholar 

  10. Berenstein, A., Zelevinsky, A.: Tensor product multiplicities, canonical bases and totally positive varieties. Invent. Math. 143(1), 77–128 (2001)

    Article  MathSciNet  Google Scholar 

  11. Chinta, G., Gunnells, P.E.: Constructing Weyl group multiple Dirichlet series. J. Am. Math. Soc. 23(1), 189–215 (2010)

    Article  MathSciNet  Google Scholar 

  12. Chhaibi, R.: Littelmann path model for geometric crystals, Whittaker functions on Lie groups and Brownian motion. arXiv preprint arXiv:1302.0902 (2013)

  13. Casselman, W., Shalika, J.: The unramified principal series of \(p\)-adic groups. II. The Whittaker function. Compos. Math. 41(2), 207–231 (1980)

    MathSciNet  MATH  Google Scholar 

  14. DeFranco, M.: On a conjecture about an analogue of Tokuyama’s theorem for \({G}_2\). arXiv preprint arXiv:1806.09515 (2018)

  15. Friedlander, H., Gaudet, L., Gunnells, P.E.: Crystal graphs, Tokuyama’s theorem, and the Gindikin–Karpelevič formula for \({G}_2\). J. Algebr. Comb. 41(4), 1089–1102 (2015)

    Article  Google Scholar 

  16. Friedberg, S., Zhang, L.: Eisenstein series on covers of odd orthogonal groups. Am. J. Math. 137(4), 953–1011 (2015)

    Article  MathSciNet  Google Scholar 

  17. Friedberg, S., Zhang, L.: Tokuyama-type formulas for characters of type B. Isr. J. Math. 216(2), 617–655 (2016)

    Article  MathSciNet  Google Scholar 

  18. Gao, F.: The Langlands–Shahidi L-functions for Brylinski–Deligne extensions. Am. J. Math. 140, 83–137 (2018)

    Article  MathSciNet  Google Scholar 

  19. Gray, N.: Metaplectic ice for Cartan type C. arXiv preprint arXiv:1709.04971 (2017)

  20. Gupta, V., Roy, U., Van Peski, R.: A generalization of Tokuyama’s formula to the Hall–Littlewood polynomials. Electron. J. Combin. 22(2), Paper 2.11, 18 (2015)

  21. Goncharov, A., Shen, L.: Geometry of canonical bases and mirror symmetry. Invent. Math. 202(2), 487–633 (2015)

    Article  MathSciNet  Google Scholar 

  22. Hamel, A.M., King, R.C.: Symplectic shifted tableaux and deformations of Weyl’s denominator formula for \({{\rm sp}}(2n)\). J. Algebr. Combin. 16(3), 269–300 (2002)

    Article  MathSciNet  Google Scholar 

  23. Hong, J., Kang, S.-J.: Introduction to Quantum Groups and Crystal Bases. Graduate Studies in Mathematics, vol. 42. American Mathematical Society, Providence (2002)

    Google Scholar 

  24. Kamnitzer, J.: Mirković–Vilonen cycles and polytopes. Ann. Math. (2) 171(1), 245–294 (2010)

    Article  MathSciNet  Google Scholar 

  25. Lam, T.: Whittaker functions, geometric crystals, and quantum schubert calculus. arXiv preprint arXiv:1308.5451 (2013)

  26. Leslie, S.: A generalized theta lifting, CAP representations, and Arthur parameters. arXiv preprint arXiv:1703.02597 (2017)

  27. Lusztig, G.: Total positivity in reductive groups. In: Lie Theory and Geometry, Volume 123 of Progress in Mathematics, pp. 531–568. Birkhäuser Boston, Boston (1994)

    Chapter  Google Scholar 

  28. Lusztig, G.: Introduction to Quantum Groups. Modern Birkhäuser Classics. Birkhäuser/Springer, New York (2010). Reprint of the 1994 edition

  29. McNamara, P.J.: Metaplectic Whittaker functions and crystal bases. Duke Math. J. 156(1), 1–31 (2011)

    Article  MathSciNet  Google Scholar 

  30. McNamara, P.J.: The metaplectic Casselman–Shalika formula. Trans. Am. Math. Soc. 368(4), 2913–2937 (2016)

    Article  MathSciNet  Google Scholar 

  31. Mirković, I., Vilonen, K.: Geometric Langlands duality and representations of algebraic groups over commutative rings. Ann. Math. (2) 166(1), 95–143 (2007)

    Article  MathSciNet  Google Scholar 

  32. Springer, T.A.: Linear Algebraic Groups. Modern Birkhäuser Classics, 2nd edn. Birkhäuser Boston Inc, Boston (2009)

    Google Scholar 

  33. Tokuyama, T.: A generating function of strict Gelfand patterns and some formulas on characters of general linear groups. J. Math. Soc. Jpn. 40(4), 671–685 (1988)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I want to thank Solomon Friedberg for introducing me to questions which led directly to this project, as well as for many helpful conversations. I also wish to thank both Ben Brubaker and Dan Bump for helpful conversations on crystal graphs, Whittaker functions, and other topics on multiple occasions. Finally, I wish to thank the anonymous referee who explained to me the notion of (upper) seminormality and suggesting the correct statement of Theorem 6.8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spencer Leslie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Verification of Conjecture 4.6 for \(A_3\)

Appendix A: Verification of Conjecture 4.6 for \(A_3\)

In this appendix, we verify Conjecture 4.6 in the simplest case. Let \(G={{\,\mathrm{SL}\,}}(4)\), and consider the reduced expression \(\underline{i}=(3,2,1,2,3,2)\). We enumerate the three simple roots in the standard way. The induced ordering on the positive roots \(\{\gamma _k\}_{k=1}^6\) is given by:

$$\begin{aligned} \alpha _1<\alpha _1+\alpha _2<\alpha _1+\alpha _2+\alpha _3<\alpha _3<\alpha _2+\alpha _3<\alpha _2. \end{aligned}$$

Given our choice of \(\underline{i}\), there is a unique \(\underline{i}\)-trail from \(\Lambda _2\longrightarrow w_0s_2\Lambda _2\), two from \(\Lambda _3\longrightarrow w_0s_3\Lambda _3\), and four \(\underline{i}\)-trails from \(\Lambda _1\longrightarrow w_0s_1\Lambda _1\). This may be checked by applying [10, Proposition 9.2], as \(\Lambda _k\) is always minuscule in type A. Then by Proposition 4.3, we find that if \(u=z_{\underline{i}}(b_\bullet )\), then \({\mathfrak {s}}_2(u)=1/b_6=X_6\), \({\mathfrak {s}}_3(u)=1/b_5+b_6/b_4b_5=X_5+X_4\), and finally

$$\begin{aligned} {\mathfrak {s}}_1(u) = \frac{1}{b_3}+\frac{b_4}{b_2b_3}+\frac{b_5b_6}{b_1b_2b_3}+\frac{b_6}{b_2b_3}=X_3+X_2+X_1+\frac{X_2X_4}{X_5}. \end{aligned}$$

Following the construction of \(g_i(t_\alpha ,w_\alpha )\) in Sect. 4.2, we have \(g_2(t_\alpha ,w_\alpha ) = t_6\),

$$\begin{aligned} g_2(t_\alpha ,w_\alpha ) = t_5+\frac{t_4w_5}{w_6}, \text { and }g_1(t_\alpha ,w_\alpha )=t_3+\frac{t_2w_3}{w_4}+\frac{t_1w_2w_3}{w_5w_6}+\frac{t_2t_4w_3}{w_4w_6}. \end{aligned}$$

On the other hand, if we apply the algorithm (3.3), we find that \(h_2=g_2\), \(h_3=g_3\), but

$$\begin{aligned} h_1(t_\alpha ,w_\alpha )=g_1(t_\alpha ,w_\alpha )+\frac{t_3w_4}{w_6}\left( 1-\frac{t_4}{w_4}\right) . \end{aligned}$$

As before, we denote the bounding data \(s_k={{\,\mathrm{val}\,}}(\varpi ^{\lambda _{i^*}}X_k)\).

Proposition A.1

Let \(\underline{i}=(3,2,1,2,3,2)\). For any \(\underline{i}\)-Lusztig datum \(\mathbf{m}\) and dominant coweight \(\lambda \), we have the equality

$$\begin{aligned} I_\lambda (\mathbf{m}) = \int _{C^{\underline{i}}(\mathbf{m})}f(u)\psi \left( \sum _{i\in I}\varpi ^{\lambda _{i^*}}g_i(t_\alpha ,w_\alpha )\right) du. \end{aligned}$$
(25)

That is, Conjecture 4.6 holds in this case.

Up to passing to dual long words \(\underline{i}\mapsto \underline{i}^*\), this is the only long word of type \(A_3\) for which the conjecture is not immediate. The analysis below relies in a precise fashion on the various piecewise linear relations between the bounding data.

Proof

For simplicity, we assume that \(n=1\), though the statement holds in general but with more tedious notation. Note that this is obvious if \(t_4=w_4\), so we assume that \(m_4=0\). We may express \(I_\lambda (\mathbf{m})\) as

$$\begin{aligned} \prod _{\alpha \in \Delta ^+}(q^{-1}x_\alpha )^{m_\alpha }I(s_1,m_1)I(s_6,m_6)J_{2,3,4,5}, \end{aligned}$$

where I(ab) is defined in Sect. 5 and

$$\begin{aligned} J_{2,3,4,5}= & {} \displaystyle \int \int \int \int \psi \left( \varpi ^{\lambda _2}\left( t_5+\frac{t_4w_5}{w_6}\right) \right. \\&\left. +\varpi ^{\lambda _3}\left( {t_2w_3}+\frac{t_2t_4w_3}{w_6}+t_3\left( 1+\frac{1-t_4}{w_6}\right) \right) \right) dt, \end{aligned}$$

and the precise domain of integration depends on the circling pattern of \(\mathbf{m}\). Note that if \(m_6>0\), then \(1+(1-t_4)/w_6\in {\mathcal {O}}^\times \), so a simple change of variables reduces this to

$$\begin{aligned} \displaystyle \int \int \int \int \psi \left( \varpi ^{\lambda _2}\left( t_5+\frac{t_4w_5}{w_6}\right) +\varpi ^{\lambda _3}\left( {t_2w_3}+\frac{t_2t_4w_3}{w_6}+t_3\right) \right) dt, \end{aligned}$$

which matches (25). If \(m_6=0\), the same argument works unless \(\lambda _3-m_3\le -1\) and \({{\,\mathrm{val}\,}}(2-t_4)>0\). However in this case, we have the inner integration

$$\begin{aligned} \int \psi \left( \varpi ^{\lambda _3}t_2w_3\left( 1+t_4\right) \right) dt_2=0, \end{aligned}$$

which is also true for (25). This exhausts the cases, proving the proposition. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leslie, S. Resonant Mirković–Vilonen polytopes and formulas for highest-weight characters. Sel. Math. New Ser. 25, 41 (2019). https://doi.org/10.1007/s00029-019-0486-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s00029-019-0486-7

Keywords

Mathematics Subject Classification

Navigation