Skip to main content
Log in

Shifted Poisson geometry and meromorphic matrix algebras over an elliptic curve

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

In this paper we classify symplectic leaves of the regular part of the projectivization of the space of meromorphic endomorphisms of a stable vector bundle on an elliptic curve, using the study of shifted Poisson structures on the moduli of complexes from our previous work (Hua and Polishchuk in Adv Math 338:991–1037, 2018). This Poisson ind-scheme is closely related to the ind Poisson–Lie group associated to Belavin’s elliptic r-matrix, studied by Sklyanin, Cherednik and Reyman and Semenov-Tian-Shansky. Our result leads to a classification of symplectic leaves on the regular part of meromorphic matrix algebras over an elliptic curve, which can be viewed as the Lie algebra of the above-mentioned ind Poisson–Lie group. We also describe the decomposition of the product of leaves under the multiplication morphism and show the invariance of Poisson structures under autoequivalences of the derived category of coherent sheaves on an elliptic curve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For an algebraic stack, there always exists an obstruction theory satisfying the conditions in Artin’s representability theorem. We refer to Section 5 [1] for details.

References

  1. Artin, M.: Versal deformations and algebraic stacks. Invent. Math. 27, 165–189 (1974)

    Article  MathSciNet  Google Scholar 

  2. Calaque, D., Pantev, T., Toën, B., Vaquié, M., Vezzosi, G.: Shifted Poisson structures and deformation quantization. J. Topol. 10(2), 483–584 (2017)

    Article  MathSciNet  Google Scholar 

  3. Caldararu, A., Willerton, S.: The Mukai Paring I: a categorical approach. N. Y. J. Math. 16, 61–98 (2010)

    MATH  Google Scholar 

  4. Cherednik, I.V.: Hamiltonian theory of stationary differential equations with elliptic bundle. Dokl. Akad. Nauk SSSR 271(1), 51–55 (1983)

    MathSciNet  MATH  Google Scholar 

  5. Cherednik, I.V.: On R-matrix quantization of formal loop groups. Group Theoretical Methods in Physics, Proc. 3rd Semin. Yurmala (USSR), vol. 2, pp. 161–180 (1986)

  6. Feigin, B.L., Odesskii, A.V.: Sklyanins elliptic algebras. Funktsional. Anal. i Prilozhen. 23(3), 45–54 (1989); English transl.  in Funct. Anal. Appl. 27, 31–38 (1993)

  7. Feigin, B.L., Odesskii, A.V.: Vector bundles on an elliptic curve and Sklyanin algebras. In: Feigin, B., et al. (eds.) Topics in Quantum Groups and Finite-Type Invariants, pp. 65–84. AMS, Providence. arXiv imprint arXiv:q-alg/9509021 (1998)

  8. Hartshorne, R.: Deformation Theory. Springer, Berlin (2009)

    MATH  Google Scholar 

  9. Hurtubise, J.C., Markman, E.: Surfaces and the Sklyanin bracket. Commun. Math. Phys. 230, 485–502 (2002)

    Article  MathSciNet  Google Scholar 

  10. Huybrechts, D.: Fourier–Mukai Transforms in Algebraic Geometry. Oxford University Press, Oxford (2006)

    MATH  Google Scholar 

  11. Hua, Z., Polishchuk, A.: Shifted Poisson structures and moduli spaces of complexes. Adv. Math. 338, 991–1037 (2018)

    Article  MathSciNet  Google Scholar 

  12. Lieblich, M.: Moduli of complexes on a proper morphism. J. Algebraic Geom. 15, 175–206 (2006)

    Article  MathSciNet  Google Scholar 

  13. Melani, V., Safronov, P.: Derived coisotropic structures II: stacks and quantization. Sel. Math. 24(4), 3119–3173 (2018)

    Article  MathSciNet  Google Scholar 

  14. Oda, T.: Vector bundles on an elliptic curve. Nagoya Math. J. 43, 41–72 (1971)

    Article  MathSciNet  Google Scholar 

  15. Olsson, M.: Algebraic Spaces and Stacks, vol. 62. American Mathematical Society, Providence (2016)

    MATH  Google Scholar 

  16. Pantev, T., Toën, B., Vaquié, M., Vezzosi, G.: Shifted Symplectic Structures. Publ. Math. IHES 117(1), 271–328 (2013)

    Article  MathSciNet  Google Scholar 

  17. Polishchuk, A.: Poisson structures and birational morphisms associated with bundles on elliptic curves. IMRN 13, 683–703 (1998)

    Article  MathSciNet  Google Scholar 

  18. Polishchuk, A.: Abelian Varieties, Theta Functions and the Fourier Transform. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  19. Polishchuk, A.: Lefschetz type formulas for dg-categories. Sel. Math. 20, 885–928 (2014)

    Article  MathSciNet  Google Scholar 

  20. Polishchuk, A.: Moduli of curves, Gröbner bases and the Krichever map. Adv. Math. 305, 682–756 (2017)

    Article  MathSciNet  Google Scholar 

  21. Reyman, A.G., Semenov-Tian-Shansky, M.A.: Group-theoretical methods in the theory of finite-dimensional integrable systems. In: Dynamical Systems VII, pp. 116–225. Springer, Berlin (1994)

    Google Scholar 

  22. Rydh, D.: Families of cycles and the Chow scheme. Diss. KTH (2008)

  23. Seidel, P., Thomas, R.: Braid group actions on derived categories of coherent sheaves. Duke Math. J. 108, 37–108 (2001)

    Article  MathSciNet  Google Scholar 

  24. Sklyanin, E.K.: Some algebraic structures connected with the Yang–Baxter equation. Funct. Anal. Appl. 16, 263–270 (1982)

    Article  MathSciNet  Google Scholar 

  25. Spaide, T.: Shifted symplectic and poisson structures on spaces of framed maps. arXiv preprint arXiv:1607.03807v1

  26. Schürg, T., Toën, B., Vezzosi, G.: Derived algebraic geometry, determinants of perfect complexes, and applications to obstruction theories for maps and complexes. Journal fr die reine und angewandte Mathematik (Crelles Journal) 2015(702), 1–40 (2015)

    Article  MathSciNet  Google Scholar 

  27. The Stacks Project: http://stacks.math.columbia.edu (2017)

  28. Toen, B., Vezzosi, G.: Homotopical Algebraic Geometry II: Geometric Stacks and Applications, vol. 193, p. 902. Memoirs of the American Mathematical Society, Providence (2008)

    MATH  Google Scholar 

  29. Toën, B.: Derived algebraic geometry. EMS Surv. Math. Sci. 1(2), 153–240 (2014)

    Article  MathSciNet  Google Scholar 

  30. Toën, B., Vaquié, M.: Moduli of objects in dg-categories. Ann. Sci. ENS 40, 387–444 (2007)

    MathSciNet  MATH  Google Scholar 

  31. Williams, H.: Double Bruhat cells in Kac–Moody groups and integrable systems. Lett. Math. Phys. 103, 389–419 (2013)

    Article  MathSciNet  Google Scholar 

  32. Yakimov, M.: Symplectic leaves of complex reductive Poisson-Lie groups. Duke Math. J. 112, 453–509 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful to Jiang-Hua Lu and Yongchang Zhu for many valuable discussions. The second author thanks Institut Mathematique Jussieu and Institut des Hautes Etudes Scientifiques for hospitality and excellent working conditions during preparation of this paper. The research of Z.H. is supported by RGC General Research Fund No. 17330316, No. 17308818 and NSFC Science Fund for Young Scholars No. 11401501. The research of A.P. is supported in part by the NSF Grant DMS-1700642 and by the Russian Academic Excellence Project ‘5-100’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Hua.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, Z., Polishchuk, A. Shifted Poisson geometry and meromorphic matrix algebras over an elliptic curve. Sel. Math. New Ser. 25, 42 (2019). https://doi.org/10.1007/s00029-019-0489-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s00029-019-0489-4

Mathematics Subject Classification

Navigation