Skip to main content
Log in

Affine quiver Schur algebras and p-adic \({\textit{GL}}_n\)

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

In this paper we consider the (affine) Schur algebra which arises as the endomorphism algebra of certain permutation modules for the Iwahori–Matsumoto Hecke algebra. This algebra describes, for a general linear group over a p-adic field, a large part of the unipotent block over fields of characteristic different from p. We show that this Schur algebra is, after a suitable completion, isomorphic to the quiver Schur algebra attached to the cyclic quiver. The isomorphism is explicit, but nontrivial. As a consequence, the completed (affine) Schur algebra inherits a grading. As a byproduct we obtain a detailed description of the algebra with a basis adapted to the geometric basis of quiver Schur algebras. We illustrate the grading in the explicit example of \({\text {GL}}_2({\mathbb {Q}}_5)\) in characteristic 3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernstein, I.N.: Le centre de Bernstein. In: Deligne, P. (ed.) Representations of Reductive Groups Over a Local Field, pp. 1–32. Travaux en Cours, Hermann, Paris (1984)

    Google Scholar 

  2. Bernstein, I.N., Gelfand, I.M.: Schubert cells and the cohomology of a flag space. Funkcional. Anal. i Priloen. 7(1), 64–65 (1973)

    Article  MathSciNet  Google Scholar 

  3. Bernstein, I.N., Zelevinsky, A.: Representations of the group \({{\rm GL}}(n,F)\), where \(F\) is a local non-Archimedean field. Uspehi Mat. Nauk 31, 5–70 (1976)

    Google Scholar 

  4. Blondel, C.: Basic representation theory of reductive \(p\)-adic groups. In: Lecture Series Morningside Center of Mathematics. Beijing (2011)

  5. Brundan, J., Kleshchev, A.: Blocks of cyclotomic Hecke algebras and Khovanov–Lauda algebras. Invent. Math. 178(3), 451–484 (2009)

    Article  MathSciNet  Google Scholar 

  6. Chriss, N., Ginzburg, V.: Representation Theory and Complex Geometry. Birkhäuser, Boston (2010)

    Book  Google Scholar 

  7. Demazure, M.: Désingularisation des variétés de Schubert généralisées. Collection of articles dedicated to Henri Cartan on the occasion of his 70th birthday. I. Ann. Sci. École Norm. Sup. (4) 7, 53–88 (1974)

    Article  Google Scholar 

  8. Doty, S.R., Green, R.M.: Presenting affine \(q\)-Schur algebras. Math. Z. 256(2), 311–345 (2007)

    Google Scholar 

  9. Dipper, R., James, G.: The \(q\)-Schur algebra. Proc. Lond. Math. Soc. (3). 59(1), 23–50 (1989)

    Google Scholar 

  10. Fulton, W.: Young tableaux. In: London Mathematical Society Student Texts, vol. 35. Cambridge University Press (1997)

  11. Geck, M., Pfeiffer, G.: Characters of finite Coxeter groups and Iwahori–Hecke algebras. In: LMS Monographs. New Series, vol. 21. Oxford University Press (2000)

  12. Ginzburg, V., Vasserot, E.: Langlands reciprocity for affine quantum groups of type \(A_ n\). Int. Math. Res. Not. 3, 67–85 (1993)

    Google Scholar 

  13. Green, R.M.: On 321-avoiding permutations in affine Weyl groups. J. Algebr. Comb. 15(3), 241–252 (2002)

    Article  MathSciNet  Google Scholar 

  14. Green, R.M.: The affine \(q\)-Schur algebra. J. Algebra 215(2), 379–411 (1999)

    Google Scholar 

  15. Green, J.A.: Polynomial representations of \({{\rm GL}}_n\). In: Springer Lecture Notes, vol. 830. Springer (1980)

  16. Harris, M.: The local Langlands conjecture for \({{\rm GL}}(n)\) over a \(n< p\)-adic field. Invent. Math. 134(1), 177–210 (1998)

    Google Scholar 

  17. Harris, M., Taylor, R.: The geometry and cohomology of some simple shimura varieties. In: Annals of Mathematics Studies, vol. 151. Princeton University Press (2001)

  18. Henniart, G.: Une preuve simple des conjectures de Langlands pour \(p\) sur un corps \(p\)-adique. Invent. Math. 139(2), 439–455 (2000)

    Google Scholar 

  19. Iwahori, N., Matsumoto, H.: On some Bruhat decomposition and the structure of the Hecke rings of \(p\)-adic Chevalley groups. Inst. Hautes tudes Sci. Publ. Math. 25, 5–48 (1965)

    Google Scholar 

  20. Kang, S.-J., Kashiwara, M., Park, E.: Geometric realization of Khovanov–Lauda–Rouquier algebras associated with Borcherds–Cartan data. Proc. Lond. Math. Soc. (3) 107(4), 907–931 (2013)

    Article  MathSciNet  Google Scholar 

  21. Khovanov, M., Lauda, A., Mackaay, M., Stošić, M.: Extended graphical calculus for categorified quantum \({{\mathfrak{s}}}{{\mathfrak{l}}}(2)\). Mem. AMS 2019(126) (2012)

  22. Khovanov, M., Lauda, A.: A categorification of quantum \({{\mathfrak{s}}}{{\mathfrak{l}}}(n)\). Quantum Topol. 1(1), 1–92 (2010)

    Google Scholar 

  23. Khovanov, M., Lauda, A.: A diagrammatic approach to categorification of quantum groups I. Represent. Theory Am. Math. Soc. 13, 309–347 (2009)

    Article  MathSciNet  Google Scholar 

  24. Mathas, A.: Iwahori–Hecke algebras and Schur algebras of the symmetric group. In: University Lecture Series, vol. 15. American Mathematical Society (1999)

  25. Lusztig, G.: Quivers, perverse sheaves and quantized enveloping algebras. JAMS 4(2), 365–421 (1991)

    MathSciNet  MATH  Google Scholar 

  26. Lusztig, G.: Affine Hecke algebras and their graded version. JAMS 2(3), 599–685 (1989)

    MathSciNet  MATH  Google Scholar 

  27. Lusztig, G.: Some examples of square integrable representations of semisimple \(p\)-adic groups. Trans. Am. Math. Soc. 277, 623–653 (1983)

    Google Scholar 

  28. Mathas, A.: Iwahori–Hecke algebras and Schur algebras of the symmetric group. In: University Lecture Series, vol. 15. AMS (1999)

  29. Ménguez, A., Sécherre, V.: Représentations lisses modulo \(\ell \) de \({{\rm GL}}_m(D)\). Duke Math. J. 163(4), 795–887 (2014)

    Google Scholar 

  30. Przezdziecki, T.: Cohomological Hall algebras and Quiver Schur algebras, in PhD Thesis, Department of Mathematics University of Bonn (2019) (in preparation)

  31. Rouquier, R.: Quiver Hecke algebras and 2-Lie algebras. Algebra Colloq. 19(2), 359–410 (2012)

    Article  MathSciNet  Google Scholar 

  32. Rouquier, R.: 2-Kac–Moody algebras. arXiv:0812.5023

  33. Schiffmann, O.: Lectures on Hall algebras. In: Geometric Methods in Representation Theory. II, pp. 1–141. Seminars and Conferences, 24-II, Society Mathematics, Paris (2012)

  34. Scholze, P.: The local Langlands correspondence for \({{\rm GL}}_n\) over \(p\)-adic fields. Invent. Math. 192(3), 663–715 (2013)

    Google Scholar 

  35. Sécherre, V., Stevens, S.: Block decomposition of the category of \(\ell \)-modular smooth representations of \({{\rm GL}}_{n}(F)\) and its inner forms. Preprint arXiv:1402.5349, to appear in Annales scientifiques de l’Ecole Normale Supérieure

  36. Stroppel, C., Webster, B.: Quiver Schur algebras and \(q\)-Fock space. arXiv:1110.1115

  37. Stroppel, C.: Categorification of the Temperley–Lieb category, tangles, and cobordisms via projective functors. Duke Math. J. 126(3), 547–596 (2005)

    Article  MathSciNet  Google Scholar 

  38. Takeuchi, M.: The group ring of \({{\rm GL}}_n({\mathbb{F}}_q)\) and the \(q\)-Schur algebra. J. Math. Soc. Jpn. 48, 259–274 (1996)

    Google Scholar 

  39. Vignéras, M.-F.: Schur algebras of reductive \(p\)-adic groups. I. Duke Math. J. 116(1), 35–75 (2003)

    Google Scholar 

  40. Vignéras, M.-F.: Induced \(R\)-representations of \(p\)-adic reductive groups. Selecta Math. (N.S.) 4(4), 549–623 (1998)

    Google Scholar 

  41. Varagnolo, M., Vasserot, E.: Canonical bases and KLR-algebras. J. Reine Angew. Math. 659, 67–100 (2011)

    MathSciNet  MATH  Google Scholar 

  42. Varagnolo, M., Vasserot, E.: From double affine Hecke algebras to quantized affine Schur algebras. Int. Math. Res. Not. 26, 1299–1333 (2004)

    Article  MathSciNet  Google Scholar 

  43. Webster, B.: A note on isomorphisms between Hecke algebras. arXiv:1305.0599v1

  44. Wedhorn, T.: The local Langlands correspondence for \({{\rm GL}}(n)\) over \(p\)-adic fields. In: School on Automorphic Forms on \({{\rm GL}}(n)\), ICTP Lecture Notes, vol. 21, pp. 237–320. Trieste (2008)

  45. Zelevinsky, A.V.: Induced representations of reductive \(p\)-adic groups II. On irreducible representations of O. Ann. Sci. Ec. Norm. Super. 13(2), 165–210 (1980)

    Google Scholar 

Download references

Acknowledgements

We thank Günter Harder, David Helm, Peter Scholze, Shaun Stevens and Torsten Wedhorn for useful discussions on the background material of this paper, Ruslan Maksimau and Andrew Mathas for sharing their insight into Hecke algebras, and the referees for their advice. This work was partly supported by the DFG Grant SFB/TR 45 and EPSRC Grant EP/K011782/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catharina Stroppel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miemietz, V., Stroppel, C. Affine quiver Schur algebras and p-adic \({\textit{GL}}_n\). Sel. Math. New Ser. 25, 32 (2019). https://doi.org/10.1007/s00029-019-0474-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s00029-019-0474-y

Mathematics Subject Classification

Navigation