Skip to main content
Log in

Internal languages of finitely complete \((\infty , 1)\)-categories

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We prove that the homotopy theory of Joyal’s tribes is equivalent to that of fibration categories. As a consequence, we deduce a variant of the conjecture asserting that Martin-Löf Type Theory with dependent sums and intensional identity types is the internal language of \((\infty , 1)\)-categories with finite limits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. https://www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/files/2015_06_30_RDP.pdf.

  2. However, fibrations are not necessarily closed under retracts.

  3. This ensures that the \(\Sigma \)-type is given by composition and hence preserved by morphisms of categorical models of type theory, cf. Definition 9.6.

References

  1. Avigad, J., Kapulkin, K., Lumsdaine, P.L.: Homotopy limits in type theory. Math. Struct. Comput. Sci. 25(5), 1040–1070 (2015)

    Article  MathSciNet  Google Scholar 

  2. Baues, H.J.: Algebraic Homotopy, Cambridge Studies in Advanced Mathematics, vol. 15. Cambridge University Press, Cambridge (1989)

    Book  Google Scholar 

  3. Brown, K.S.: Abstract homotopy theory and generalized sheaf cohomology. Trans. Am. Math. Soc. 186, 419–458 (1973)

    Article  MathSciNet  Google Scholar 

  4. Cisinski, D.-C.: Catégories dérivables. Bull. Soc. Math. Fr. 138(3), 317–393 (2010)

    Article  MathSciNet  Google Scholar 

  5. Cisinski, D.-C.: Invariance de la \(K\)-théorie par équivalences dérivées. J. K-Theory 6(3), 505–546 (2010)

    Google Scholar 

  6. Dwyer, W.G., Kan, D.M.: Calculating simplicial localizations. J. Pure Appl. Algebra 18(1), 17–35 (1980)

    Article  MathSciNet  Google Scholar 

  7. Favonia, K.-B. Hou, Finster, E., Licata, D.R., Lumsdaine, P.L.: A mechanization of the Blakers–Massey connectivity theorem in homotopy type theory, Proceedings of the 31st annual ACM/IEEE symposium on logic in computer science, pp. 565–574 (2016)

  8. Gambino, N., Garner, R.: The identity type weak factorisation system. Theor. Comput. Sci. 409(1), 94–109 (2008)

    Article  MathSciNet  Google Scholar 

  9. Garner, R.: Two-dimensional models of type theory. Math. Struct. Comput. Sci. 19(4), 687–736 (2009)

    Article  MathSciNet  Google Scholar 

  10. Hirschhorn, P.S.: Model Categories and Their Localizations, Mathematical Surveys and Monographs, vol. 99. American Mathematical Society, Providence (2003)

    MATH  Google Scholar 

  11. Bauer, A., Gross, J., Lumsdaine, P. LeFanu, Shulman, M.: The HoTT Library. https://github.com/HoTT/HoTT. open code repository. Accessed 31 Jan 2019

  12. Hovey, M.: Model Categories, Mathematical Surveys and Monographs, vol. 63. American Mathematical Society, Providence (1999)

    Google Scholar 

  13. Jacobs, B.: Comprehension categories and the semantics of type dependency. Theor. Comput. Sci. 107(2), 169–207 (1993)

    Article  MathSciNet  Google Scholar 

  14. Jacobs, B.: Categorical Logic and Type Theory, Studies in Logic and the Foundations of Mathematics, vol. 141. North-Holland Publishing Co., Amsterdam (1999)

    Google Scholar 

  15. Joyal, A.: The theory of quasi-categories and its applications, Quadern 45, Vol. II. Centre de Recerca Matem‘atica, Barcelona (2008)

  16. Joyal, A.: Notes on clans and tribes (2017). arXiv:1710.10238. Accessed 31 Jan 2019

  17. Kan, D.M.: On c. s. s. complexes. Am. J. Math. 79, 449–476 (1957)

    Article  Google Scholar 

  18. Kapulkin, K.: Locally cartesian closed quasi-categories from type theory. J. Topol. 10(4), 1029–1049 (2017)

    Article  MathSciNet  Google Scholar 

  19. Kapulkin, K., Lumsdaine, P.L.: The homotopy theory of type theories. Adv. Math. 337, 1–38 (2018)

    Article  MathSciNet  Google Scholar 

  20. Kapulkin, K., Szumiło, K.: Quasicategories of frames of cofibration categories. Appl. Categ. Struct. 25(3), 323–347 (2017)

    Article  MathSciNet  Google Scholar 

  21. Latch, D.M., Thomason, R.W., Wilson, W.S.: Simplicial sets from categories. Math. Z. 164(3), 195–214 (1979)

    Article  MathSciNet  Google Scholar 

  22. Lumsdaine, P.L., Warren, M.A.: The local universes model: an overlooked coherence construction for dependent type theories, ACM Trans. Comput. Log. 16(3), Art. 23, 31 (2015)

  23. Lurie, J.: Higher Topos Theory, Annals of Mathematics Studies, vol. 170. Princeton University Press, Princeton (2009)

    MATH  Google Scholar 

  24. Munson, B.A., Volić, I.: Cubical Homotopy Theory, New Mathematical Monographs, vol. 25. Cambridge University Press, Cambridge (2015)

    Book  Google Scholar 

  25. Nikolaus, T., Schreiber, U., Stevenson, D.: Principal \(\infty \)-bundles: presentations. J. Homotopy Relat. Struct. 10(3), 565–622 (2015)

    Google Scholar 

  26. Quillen, D.: Higher algebraic \(K\)-theory. I, Algebraic \(K\)-theory, I: Higher \(K\)-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), Lecture Notes in Math., Vol. 341, pp. 85–147. Springer, Berlin (1973)

  27. Rasekh, N.: A theory of elementary higher toposes (2018). arXiv:1805.03805

  28. Rădulescu-Banu, A.: Cofibrations in homotopy theory (2006). arXiv:math/0610009v4

  29. Rourke, C.P., Sanderson, B.J.: \(\Delta \)-sets. I. homotopy theory. Quart. J. Math. Oxford Ser. 22, 321–338 (1971)

    Google Scholar 

  30. Schwede, S.: The \(p\)-order of topological triangulated categories. J. Topol. 6(4), 868–914 (2013)

    Google Scholar 

  31. Shulman, M.: Univalence for inverse diagrams and homotopy canonicity. Math. Struct. Comput. Sci. 25(5), 1203–1277 (2015)

    Article  MathSciNet  Google Scholar 

  32. Szumiło, K.: Homotopy theory of cofibration categories. Homol. Homot. Appl. 18(2), 345–357 (2016)

    Article  MathSciNet  Google Scholar 

  33. Szumiło, K.: Frames in cofibration categories. J. Homot. Relat. Struct. 12(3), 577–616 (2017)

    Article  MathSciNet  Google Scholar 

  34. Szumiło, K.: Homotopy theory of cocomplete quasicategories. Algebra Geom. Topol. 17(2), 765–791 (2017)

    Article  MathSciNet  Google Scholar 

  35. The Univalent Foundations, Homotopy type theory—univalent foundations of mathematics, The Univalent Foundations Program, Princeton, NJ; Institute for Advanced Study (IAS), Princeton NJ (2013)

  36. van den Berg, B., Garner, R.: Types are weak \(\omega \)-groupoids. Proc. Lond. Math. Soc. 102(2), 370–394 (2011)

    Google Scholar 

  37. Voevodsky, V., Ahrens, B., Grayson, D. et al.: UniMath: Univalent Mathematics. https://github.com/UniMath

  38. Waldhausen, F.: Algebraic \(K\)-theory of spaces, Algebraic and geometric topology (New Brunswick, N.J., 1983), Lecture Notes in Math., vol. 1126, pp. 318–419. Springer, Berlin (1985)

Download references

Acknowledgements

This work would not have been possible without the support and encouragement of André Joyal. We are also very grateful to him for sharing an early draft of his manuscript on the theory of tribes with us.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Kapulkin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapulkin, K., Szumiło, K. Internal languages of finitely complete \((\infty , 1)\)-categories. Sel. Math. New Ser. 25, 33 (2019). https://doi.org/10.1007/s00029-019-0480-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s00029-019-0480-0

Mathematics Subject Classification

Navigation