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Abstract A generalized Cauchy problem for nonlinear hyperbolic functional differential
systems is considered. A theorem on the existence of weak solutions is proved. The initial
problem is transformed into a system of functional integral equations for an unknown function
and for their partial derivatives with respect to spatial variables. The existence of solutions
of this system is proved by using a method of successive approximations. It is shown a result
on the differentiability of solutions with respect to initial functions. This is the main result
of the paper.
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1 Introduction

For any metric spaces U and V we denote by C(U, V) the class of all continuous functions
from U into V. We will use vectorial inequalities if the same inequalities hold between
corresponding components. Suppose that M € C([0,a],R"}),a > 0, Ry = [0, +00), M is
nondecreasing and M (0) = O, where Op,;; = (0, ..., 0) € R". Let E be the Haar pyramid

E={(tx)eR": te€[0,a], =b+ M) <x <b—M(®)},

where b € R" and b > M(a). Suppose that by € Ry and M—, M+ € C([—by, 0], R"),
M~ = My,....My), M* = (M;,...,M,[) and M=(0) = —b, MT(0) = b and
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380 7. Kamont

M~(t) < Mt(@t) fort € [—by,0]. Set Eg = {(t,x) € R : ¢t € [—by, 0], M~ (¢) <
X < M7*(t)}. For (t, x) € E we define

Dlt,x]={(x,y) eR"™™: 1 <0, t+1,x+y) € EgUE)}.
Then DIt, x] = Dy[t, x] U D,[t, x) where

Dolt,x]={(t,y) e R : —bg—t <t <—t, x+M (t+71)<y<—x

+MT(t + 1)},
D,t,x]={(r,y): =t <t<0, = b—x+MET+t)<y<b—x—M(T+1))}.
Seth™ = (by,...,b;),bT = (b, ..., bF) where

b7 =min{M; (1) : 1 € [=b, 01}, bF = max{MF(t):t € [~by,0l), 1<i<n,

1

and B = [~by — a,0] x [-=b +b~, b+ bT]. Then D[t, x] C B for (¢, x) € E. Denote by
N the set of natural numbers. Let S be the class of all sequences p = {pi }rewy Where pr € R
for k € N. Write

Eox = (EoUE) N ([—bo,ax] xR"), k€N,

where a; > 0 for k € Nand k = sup{ar : k € N} < a. For a function z: EgU E — S,
Z = {2k }ken, and fora point (¢, x) € E wedefine 2 xy: D[, x] = S, 2(1,x) = {(2k)(1,x) JkeNs
by

@) e (T y) =t +t,x+y), (tr,y) € D[t,x], keN.

Then z(; x) is the restriction of z to the set (Eg U E) N ([—bo, t] x R") and this restriction is
shifted to the set D[¢, x].

Suppose the ¢o : [0,a] - Rand ¢ : E — R", ¢ = (¢1, ..., ¢,) are given functions.
The requirements on ¢ and ¢ are that 0 < ¢ () <t and (¢o(t), ¢ (¢, x)) € Efor (t,x) € E.
Write ¢(t, x) = (¢o(t), ¢ (t, x)) on E. Let [*° be the class of all sequences p = {pi}ren
such that || plleo = sup{|pk| : k € N} < 00.Set Q = E x C(B,[*®) x C(B,[*°) x R" and
suppose that

F:Q2— S, F={Fi}ken, and ¥ = {¥x}ken, Yi: Eoxr — R fork € N,

are given functions. We will say that F' satisfies condition (V) if for each (¢, x, ¢) € E x R"
andforv, v, w, w € C(B, [*°)suchthatv(z, y) = v(t, y)for(t, y) € D[t, x]andw(z, y) =
w(t, y) for (t,y) € D[p(t, x)] we have F(t, x,v, w,q) = F(t, x, v, w, q). Note that the
condition (V') means that the values of F at the point (¢, x, v, w, g) € 2 depends on (¢, x, q)
and on the restriction of v and w to the sets D[t, x] and D[¢(t, x)] only.

Let us denote by z = {zx}rey an unknown function of the variables (f,x), x =
(x1, ..., x,). We consider the system of functional differential equations
0rzk(t, x) = Fr(t, X, 2¢t,x)» Zo(1,x)» Ox 2k (t, X)), k €N, ()

with the initial conditions
zk(t,x) = Y (t,x)on Eog, k€N, 2

where 9, zx = (0x, 2k, - - -, Ox,2k), | <i < k. We assume that F satisfies the condition (V).
Write

E;=(EoUE)N([—bo, t]1 xR"), S =[-b+M(@),b—M®)], te[0,al,
Ieylx]={t €lar,cl:=b+M@) <x <b—M()}, xe€[-b,b], k€N,
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Differentiability with respect to initial functions 381

where k < ¢ < a. We consider weak solutions of initial problems. A function z : E. — S,
Z = {Zx }ren, Where k < ¢ < a, is a solution to (1), (2) provides

() Zg,x) € C(B,I®) for (t,x) € E;, 0 <t < c and 9,z exist and they are continuous on
E N ([ag, c] x R") fork € N,
(ii) for each k € N and x € [—b, b] the function Zx(-,x) : I.x[x] — R is absolutely
continuous,
(iii) for each x € [—b, b] and for k € N, the k-th equation in (1) is satisfied for almost all
t € I.[x] and conditions (2) hold.

System (1) with initial conditions (2) is called a generalized Cauchy problem. If gy = 0
for k € N then (1), (2) reduces to the classical Cauchy problem. The following question is
considered in the paper. We prove that under natural assumptions on given functions there
exists exactly one solution to (1), (2) defined on E. and we give an estimate of ¢ € («, a].
Let us denote by X the class of all ¥ = {Yx}ken, Y& : Eox — R for k € N, such that there
exists exactly one solution E[v/] : E. — [*° to (1), (2). We give a construction of the space
X. We prove that there is Y C X such that for each { € Y there exists the Fréchet derivative
JdE[Y¥] of E at . Moreover, if ¥ € Y and 7 € X and z = dE[¢]x then Z is a solution of
an integral functional system generated by (1), (2).

Until now there have not been any results on the differentiability with respect to initial
functions for solutions of nonlinear hyperbolic functional differential systems. Our theorems
are new also in the case when (1), (2) reduces to a finite functional differential system.

In recent years, a number of papers concerning first order partial functional differential
equations have been published. The following questions were considered: functional differ-
ential inequalities generated by initial or mixed problems and their applications [1,5,6,12],
existence theory of classical or weak solutions of equations or finite systems with initial or
initial boundary conditions [2-4,9,14,22] approximate solutions of functional differential
problems [15-17,25]. Essential extensions of some ideas concerning generalized solution of
Hamilton—Jacobi equations are given in [20,21] where viscosity solutions are considered.

Infinite systems of first order partial functional differential equations were first treated in
[18,19]. The existence result presented in [18] is based on a method of successive approxi-
mations which was introduced by Wazewski [23] for systems without the functional depen-
dence. Existence results for initial problems [11] and for mixed problems [8] related to
infinite systems of nonlinear equations are obtained by a quasilinearization procedure and by
construction of functional integral systems for unknown functions and for their derivatives
with respect to spatial variables. This method was initiated in [7] for nonlinear systems with-
out functional variables. Differential inequalities and suitable comparison results for infinite
systems of hyperbolic functional differential inequalities are given in [13,19].

Information on applications of functional differential equations can be found in [12,24].
The monograph [10] contains results on differentiability with respect to initial functions for
solutions of ordinary functional differential equations.

The paper is organized as follows. In Sect. 2 we transform the generalized Cauchy problem
into a system of integral functional equations. This system is solved in Sect. 3 by the method
of successive approximations. As a consequence we obtain a theorem on the existence of
solution to (1), (2) an on continuous dependence of solutions on initial functions.

A theorem on the differentiability of solutions with respect to initial functions is presented
in Sect. 4. It is the main result of the paper.

Two types of assumptions are needed in theorems on the existence of solutions to initial
or initial boundary value problems related to hyperbolic functional differential systems. The
first type conditions concern the bicharacteristics. The second type assumptions concern the
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regularity of given functions. The authors of the papers [2—4,8,9,11,18,22] have assumed
that the partial derivatives of given functions satisfy the Lipschitz condition with respect to
all variables except for ¢. These conditions are global. Our assumptions on the regularity
of given functions are more general. We assume that the partial derivatives of F satisfy the
Lipschitz condition and suitable estimates are local with respect to all variables. It is clear
that there are differential systems with deviated variables and differential integral systems
such that local estimates hold and global inequalities are not satisfied.

Motivations for investigations of functional differential systems with two functional vari-
ables are given in Remark 2.4. We give examples of functional differential systems which
can be derived from (1) be specializing the operator F.

Example 1.1 Suppose that G : E x [*®° x [*® x R" — S, G = {Gy}ren, is a given function
and F is defined by

F(t,x,v,w,q) = G, x,v(0, 0p1), w(0, Opyp), ) on 2. 3
Then (1) reduces to the system of differential equations with deviated variables
Oz (t, x) = Gi(t, x, 2(t, x), z(p(t, x)), 0x 2k (1, X)), k € N. “

Example 1.2 Suppose that by > 0 and that there is M € R’ such that M () = Mt for
t € [0, a]. Then E is the classical Haar pyramid

E={(tx)eR* : 1 €[0,al, —=b+ Mt <x <b— Mt)}. 5)
Set M~ (t) = —b + Mt and M+ (t) = b — Mt for t € [—bg, 0]. Then
Eo={(t,x) e R"™" : 1 € [=by,0], =b+ Mt <x <b — Mt}. 6)

Suppose that 0 < v < u < bp and Op,) < h < M. For the above G we put
h
F(t,x,v,w,q) =G |t,x, / v(—=p, y)dy, w0, 0, g on Q. )
—h
Then (1) reduces to the differential integral system
x+h
oz, x) =G [ t,x, / 2(t — w, y) dy, z(p(t, x)), dxzx(t, x) |, keN. ®)
x—h

Itis clear that more complicated examples of differential functional systems can be derived
from (1).

2 Integral functional equations

Let L([7, t], R), [7, ] C R, be the class of all w : [r,¢] — R, which are integrable on
[z,¢]. For x € R", x = (x1,...,x,), we put ||x]| = |x1| + ...+ |x,|. We use the symbol

o” to denote the scalar product in R". We denote by M, ., be the class of all n x n matrices
with real elements. For A € M),», where A = [a;;]; j=1

.....

n
| Allyxn = max Z|aij| c1<i<n
j=1
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Differentiability with respect to initial functions 383

Let Mo x, be the class of all real matrices B = [b;;]ien, 1<j<n With the finite norm

n
| Bllooxn = sup Z|bij| :ieN
j=1

We will use the symbol Mooxoto denote the set of real matrices C = [c;;];, jen with the
finite norm:

0
ICllcoxoo = sup Z|Cij| :ieN
j=1
For the above B € Muoxy and C € Mooxoo We Wwrite b[,’] = (b,'], Ce ,bin), and Cli] =

(C,‘l, Ci2, .. .), i €N

We will denote by CL(B, R) the class of all linear and continuous operators defined
on C(B,R) and taking values in R. The norm in the space CL(B, R) generated by the
maximum norm in C (B, R) will be denoted by || - ||.. Let CL(B, Mxoxoo) be the class of
all E = [Eij]i,jeN such that

| Ellcoxoco;x = sup{ll Efijlloo;« : i € N} < 400,
where
o0
I1Ziillocse = D IEijlls  Epy = (i1, ig,...)  for ieN.
j=1

Now we define some function spaces. Given ¢ = (co, c1, ¢2) € Ri, we denote by X the set
of all ¥ = {Y}ken such that for each k € N we have

(i) Y € C(Eox, R), the derivatives ¥k = (0x, Yk, - . ., Ox, Yi) existon Egx and 9, €
C(Eox, R"),
(ii) the estimates

[V, x)| < co, N0xYr(r, X)| < c,
10x Yk (7, X) — O Yk (1, X)|| < c2llx — x|

are satisfied on Eg .

Let ¥ € X, ¥ = {Yx}ken, be given and k¥ < ¢ < a. We denote by Cy . the class of all
z € C(E., %), z = {zk }ren, such that 7 (z, x) = Y (¢, x) on Eqy for k € N. For the above
Y and k < ¢ < a we denote by Cyy, ¢, k € N, the class of all ¥ € C(E., R") such that
D (t,x) = 0xYx(t,x) on Egg.

Write Q7 = [—b, b]x C(B,[*®°)x C(B,[*®)xR"and Q; = S; x C(B,[*°)x C(B, [*) x
R", t € [0, al.
Assumption Hy[F']. The function F': 2 — S satisfies the condition (V) and

1. foreach (x, v, w, g) € 2y the function F : (-, x, v, w,qg): I[x] — S is measurable and
there is o € L([0, a], Ry) such that

||F(t$x39797 0["])”00 ia(t) OnE

where 6 € C(B,[°°) is given by 6(t, s) = 0 and 0; is the zero in the space [*°,
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2. foreach P = (¢, x, v, w, q) € 2 there exist the derivatives
0 F(P) = [0x; Fi(P)lieN1<j<n, 0gF(P) =[0q,; Fi(P)lien,1<j<n,

and the functions 0y F (-, x, v, w, q), 3, F (-, x, v, w, q): I[x] = Myox, are measurable
and the functions 9, F' (¢, -), 9, F (¢, ) : ; — Mooxp are continuous,
3. foreach P = (¢, x, v, w, q) € Q there exist the Frechét derivatives

0 F(P) = [0y, Fi(P)li,jen, 0wF(P)=[0w;Fi(P)lijen,
and for each w € C(B, R) we have
WF(,x,v,w,q)w, 3 F (-, x,v,w,g)w: I[x] = Msxoo are measurable
and
0 F(t, )W, 0y F(t, )W: QL - Msxoso are continuous
where
O F(P)w = [0y, Fi (P)W]i jen, OwF (P)W = [0y, Fi (P)W];, jeN,

4. there are 8 € L([0,a],R;) and L € L([0, a], ]Ri), L = (Ly,...,Ly), such that for
P =(t,x,v,w,q) € Q2 we have

10x F(P)llooxn < B(1), 110uF(P)llooxocox < B(), 10w F (P)llooxocox < B(1),
and
(194, Fx (P, ..., 10g, Fx(P)]) < L(t), k€N,

and for ¢ € [0, a] we have

1

M) = / L&) dt.

0

Assumption H[g]. The functions ¢g: [0,a] —> R, ¢p: E — R", ¢ = (¢1,...,¢y), are
continuous and

1. 0 <¢o <tfort €[0,a]and o(z, x) = (o (1), (¢, x)) € E,
2. there exist the derivatives

0x @ (t, x) = [0x;¢i (£, X) )i j=1...n

and 8x¢ € C(E, Mnxn)a
3. the constant Q¢ € R is defined by the relation [|0,¢ (¢, X)|lnxn < Qo for (¢, x) € E and
there is Q € Ry such that

[9x@ (2, x) — 0xP (2, X)|lnxn =< Q on E.

Suppose that Assumptions Ho[F], H[gp] are satisfied and € X,z € Cy., u €
C(E;, Mxoxoo) Where k < ¢ < a and

z = {zktken, u = [Uijlien1<j<n>
up) = (u,-l, ey um), up) € Ca‘/li-t' fori € N.
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Write S[z, upl(z, x) = (T, X, Z(z,x)> 2o, x)> Uk (T, X)), k € N. We consider the Cauchy
problem

@' (1) = =3, Fi(Slz, un (v, 0(2))), (1) = x, (€))

where (t,x) € E, ax <t < a and 0,F; = (94, Fx, ..., dq, Fr). Let us denote by
8ikilz, upk1(-, £, x) the solution of (9). The function gk [z, uk1(-, ¢, x) is the k-th bichar-
actersitic of (1) corresponding to (z, u). Write

ui,xy = [Wij)e,x)lieN,1<j<n;
W) ) = (k) t,x0)s - - > Ukn) (1,0)), k€N,

and Plz, ugl(z, t, x) = Slz, upI(z, gulz, uxgl(z, ¢, x)), k € N. For P € € and for
W e C(B,I%), W =/{ikhken, W € C(B, Mooxn), W = [Wilien1<j<n,
we put

o0
0 Fi(p) o = D 8y, Fe(P)ib;,
j=1

o0 o0
0uFi(P)x W = | D 8y, Fi(PYWjt, .. D> 8y, Fi(P)dju | .
j=1 j=1

where k € N. In similar way we define the expressions 9, Fx(P) ¢ W, 0y Fx(P) * W for
k € N. Let us denote by F[z, u] = {Fx[z, u]}xen the function defined in the following way:

Frlz, ul(t, x) = ¥ (t,x) on Egg

and

t

Felz, ul(t, x) = wk(ak,g[k][z,u[k]](ak,z,x»+/Fk(P[z,u[kmr,r,x)) dr
ai

t

—/ 9 Fx (Plz, up1(t, 1, %)) © up) (t, grylz, upkgl(z, t,x)) dv on E N ([ag, c] x R").

ag
Moreover we put
Glz, u] = {Gjjlz, ul}ien,1<j<n;
Gulz, ul = (Gkilz, ul, ..., Giulz, ul), k€N,

where

Gilz, ul(t, x) = 0x ¥y (t, x) on Eqx

and

1

Glz, ul(t, x) = 0x i (ak, gralz, upl(a, t, x)) +/8XF]<(P[Z1 ul(z, t,x)) dt

Ak
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t

+/ Oy Fie (Plz, uig1(T, 1, X)) * Uz, gy lzoup)(z..x)) AT
ay
t

+/aka(P[Zvu[k]](fvtsx))*[u¢(r,g[k][z,u[k]](r,t,x))axd)(T, gz, upgl(r, 1, x))] dt

ak

on EN([ak, c]xR"). The functions uy(z,y)0x @ (T, ¥): B = Mooxn,y = gilz, upl(z, t, s),
are defined by

n
u(p(r,y)axd)(fv y) = Z(”iu)w(r,y)axj-d)u(fs y)
n=l ieN,1<j<n

We consider the system of functional integral equations
z="Flz,u]l, u=Glz,ul. (10)

We show that under natural assumptions on given functions there exists a solution
(z,): Ec = 1°° X Mooxp of (10) and there exist the derivatives dyzx = (9, Zk, - - - » Ox, Zk)>
k e N,and ux) = 0,7 fork e N.

We first give estimates of solutions to (10). For z € C(E.,[*®), 9 € C(E;,R"), u €
C(E;, Msoxy,) we define the seminorms

Izl 100y = max{flz(7, $)llec : (T,5) € Ef},
191l ¢, rry = max{||9(z, $) oo : (T,5) € Ef},

IVl Mooy = Max{llu(t, $)llooxn : (T,8) € Et},

where t € [0, c].

Lemma 2.1 Suppose that Assumptions Ho[ F1, H|] are satisfied and

1. y eXandk <c <a,
2. the functions 7: E; — [, u: E. — Muxoxn satisfy (10) and 7 € C(E., ), u €
C(Ec, Mooxn)

Then
Nzl ooy < €@y Nitllr, Moosn) < X&) fort €10,cl,

where

t t t
(1) = c1 exp <1+Qo>/ﬂ@)ds +/ﬂ(€)eXp (1+Qo)/ﬁ(f)dr "
0 0 3

1

t t

£(t) = coexp Z/ﬂ@)ds +/J7(S)exp Z/ﬁ(f)df dt,
0 0 3

() = () + (W) + ILODX ).
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Differentiability with respect to initial functions 387

Proof Write Z(t) = Izl .10y, X () = llitll(t, Moo r)» £ € 10, €] It follows from Assumptions
Ho[F]and H[g] that the (¢, ) satisfy the integral inequalities

1

t t
¢() 560+/0l(€) d$+2//3(5)f(5) d5+/(ﬁ($)+ ILEINXE) d,
0 0

0
t 1
x(t) < ci +/ﬂ(«§) dé + (1 + Qo)/ﬁ(S)X(E) d§, t€l0,cl.
0 0

The functions (¢, x) satisfy the integral equations corresponding to the above inequalities.
This proves the lemma.

Suppose that v € X, x < ¢ < a and dp, ro € R4 and dy > ¢y, ro > c. We denote by
Cy.cl¢, do] the class of all z € Cy . such that

lzllr1¢) = £(2) forz € [0, a]
and
|z (t, x) — 2 (2, X)| < dollx — x| for (¢, x), (t, %) € EN ([ak, a] x R"), k € N.
Let Cyy,.clx. r0l, k € N, be the class of all ¢ € Cyy,  satisfying the conditions:
Il ¢, rey < x (@) fort € [ag, c]
and
19, x) = 9 (t, Ol < rollx — x|l on EN ([ax, c] x R").

Write d = ¢(a), r = x(a) and Q[d, r] = E x Kc(p,1>)[d] x Kc(p.1oy[d] x Krr[r] where
Kcpeoyld]l ={w e C(B, %) : lwllp <d}, Krel[r] ={q e R": |lg|l <r}.

Assumption H,[F]. The function f: Q — S satisfies Assumption Hp[F] and there is
y € L([0, a], R) such that the terms

0xF(z, x,v,w,q) = 0 F(t, %, 0, W, @ llooxn, [19gF (1, x, v, w,q)
=0 F(t, %, 0, W, q)llcoxn
and
180 F (1, x, v, w, q) — 8, F (8, %, B, 0, D looxosses 18w F (. x, v, w, @)
=0 F (1, X, 0, W, g)looxoo;x
are bounded from above by y (t)[||x — x|| + l[v —v||p + [|lw — wl| g + llg — gl|] on Q[d, r].

Remark 2.2 1t is important in our considerations that we have assumed the Lipschitz con-
dition for 0 F, 9y F, 9y F', 9, F with respect to (x, v, w, ¢) and the estimates are local with
respect to all variables. It is clear that there are differential systems with deviated variables
and differential integral systems such that local estimates hold and global inequalities are not
satisfied.

Lemma 2.3 Suppose that Assumptions H,[F], H[¢] are satisfied and k < ¢ < a and
v, ¥ €X, z€Cycle,dol, Ze€Cy ¢, dol,
u,u € C(Ec, Mooxn), u=[ujjlieNni<j<n, u = [UijlieNn1<j<n,

ui) = Wit, -, Uin), U = W1, ..., Uiy), 1 €N,

and ur € Cal/f,'.L'[X7 rol, b_t[,'] € Ci)lﬁi.c[x’ ro]fori e N
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Then for each k € N we have:

(1) the bicharacteristics gixjlz, up1(-, t, x) and gz, upgl(-, t, x), (¢, x) € EN([ax, c]x
R"), exist on intervals [ax, Alz, up1(t, x)] and [ax, AlZ, ux1(t, x)] such that for
T = Alz,uplt, x), T = AlZ, upgl(t, x) we have (z, gilz, upgl(z, t, x)) € 9E,,
(T, gz, upl(z, t, x)) € 9E,, where OE is the boundary of E.,

(ii) for each k € N the solution of (9) is unique and we have the estimates

gz, up1(r, 1, x) — gulz, u1(z, 1, %) ||

1

< ||x—xn+/||L(s>||ds exp é/y(&)d& , (11)
t

T

and

llgkilz, upl(z, t, x) — gilz, upl(z, 1, )|l
t T
< /}/(S)[2||Z — Zll) + llugy — i lle,rny] d€|exp § C /7/(5) dé| ¢, (12)

T t

where (t,x), (f, %) € EN ([ak, c] x R and C = 1 + do(1 + Qo) + ro.

Proof The local existence and uniqueness of the solution to (9) follows from classical theo-
rems on Carethéodory solutions of ordinary differential equations. Suppose that [#y, ¢] is the
interval on which the bicharacteristic gz, ujx1(-, ¢, x) is defined. Then

d
—L(7) < Eg[k][z, upl(r, t,x) < L(t), 7 € [fo, 1],
and consequently
—b+ M(7) < gilz, upl(z, t,x) <b—M(z), 7 €ln,1?]

We conclude that (t, gx)lz, upgl(r, t,x)) € E. for T € [to, t] and the bicharacteristic
8iklz, upk1(- . ¢, x) is defined on [ax, ¢] and the assertion (i) follows.

Now we prove that for each k € N the function gz, u1(- . ¢, x) — glz, upg1(-, 1, X)
satisfies a linear integral inequality. Note that the functions z(;y) and z(; 5 Wwhere
(r,y), (r,y) € EN([0, c] xR™), y # y, have different domains. Hence we need the follow-
ing construction. Write B, = [—by, c] x [—2b 4+ 2b~, 2b + 2b™]. There is z, € C(B,, ™)
such that

(D) za(t,x) = z(z, x) on Ec and [[(z4) ¢, llB = d on E N ([0, c] x R™),
(i) [|z«(7, X) = zu(2, X)loo < dollx — X[ on E N ([0, c] x R").

Then the functions (z,)(z,y) and (z.)(¢,5) Where (z, y), (7, y) € EN([0, c] x R") are defined
on B. It follows form (9) that

gLz, upg1(z, t, x) — gz, up1(r, 1, %) = x — X
t r

+/3qu(P[Z*,u[k]](r*E,t,x)) dg —/3qu(P[Z*,u[k]](§,t_, X)) d§

T
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and consequently

g lz, gz, 1, x) — gulz, u1(z, 1, X)||

7 t
fllx—fll+/IIL(€)II d&|+C /V(S)Ilg[k][zyu[k]](é,t,X)—g[k][z,u[k]](é,t_,i)lldé -
1

T

From the Gronwall inequality we deduce (11). It follows from Assumptions H[¢], Ho[ F]
and from (9) that

gz, uml(z, t, x) — gulz, up1(z, t, )|l
t
< / YOz — Zleme) + ey — gl ] de

T
t

+C /V(é)”g[kl[za”[kJ]@J»x)_g[kJ[Z,ﬁ[kJ](sJyx)” d§|.

T

Then we obtain (12) form the Gronwall inequality.

Remark 2.4 Set Q@ = E x C(B,[®) x R" and suppose that F: Q@ — S, F = {Fi}ren, is a
given function of the variables (¢, x, v, g). Let us consider the functional differential system

8,zk(t,x):I‘:k(t,x, Z(t,x),axzk(t»x))v kENv (13)

which is a particular case of (1).

There are the following motivation for investigations of (1), (2) instead of (13), (2). Differ-
ential equations with deviated variables are obtained from (13) in the following way. Suppose
that G: E X [ x [*® x R" — S, G = {Gy}ken, is a given function. Write

F(t,x,v,9) = G(t, x, (0, O, v(g(t, x) — (1, %)), ). (14)

Then system (13) is equivalent to (4). )
Note that Assumption Hy[F] is not satisfied in this case for F given by (14). More
precisely, the derivatives

W F(t,x,v,q) = [0, Fi(t, x, v, @)lien 1<) <n (15)

do not exist on €. It is clear that under natural assumptions on G the function F given by (3)
satisfies Assumption Hy[ F].

Let us consider the second example. Suppose that £ and Eg are given by (5) and (6)
respectively. For the above G we put

h

Ftxv.) = Gx. [ 0uy) dyooto. — @) on (16

—h
Then system (13) is equivalent to (8). Note that Assumptio_n Hy[F] is not satisfied for F
given by (16) because the derivatives (15) do not exist on 2. It is clear that under natural

assumptions on G the function F given by (7) satisfies Assumption Hy[ F].
With the above motivation we have considered problem (1), (2).
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3 Existence of solutions to initial problems

For vy € X, ¥ = {¥i}ken, we put
Wkl £, = max{[y(t, x)| : (t, x) € Eox},
10x il £o,, = max{||0xYu (2, X)|I : (£, x) € Eox})

where k € N and

¥ lix = sup{llV¥kll £ox + 10x Vil Eg, = k € NJ.
Write

1

t 1
Py=ci+(1 —I—do—I—doQo)/ﬁ(E) dg§ —I—rC/J/(S)dE +2ro/ L&)l dé,
0 0

0
t

I(r) = ['(t) exp C/y(é) dt |,
0
t t t

AW = c2+Bo/y<s>ds+Bl/ﬂ(s>ds exp é/y(&)ds ,
0 0 0
Bo=C(+r+rQy), Bi=ro+rQi+rQ.

Assumption H[F]. The function F : Q — S satisfies Assumption H,[F] and the constant
¢ € (k, a] is small enough to satisfy the conditions

I'(c) =do, A(c) = ro. a7

Remark 3.1 If we assume that dy > c; and rg > c¢p then there is ¢ € (0, a] such that
condition (17) is satisfied.

Theorem 3.2 IfAssumption H[¢], H[F]are satisfied and v € X then there exists a solution
Z2:E. = [%®1t0 (1), 2)and

120y < dv 10x2ll ¢ Mooy <7 fort €10, cl, (183)
and
19x2(t, x) — 9x2(t, X)llooxn < rollx — X on E.. 19)
Ify € X, ¥ = {Yi)ken, and 7 = E. — 1 is a solution to (1) with the initial conditions
2k(t,x) = Y(t,x) on Eox fork €N, (20)

then

t

12 = Zll i) 4 1922 = 8 Zll (1. Mooy < ¥ — Fllxc exp /F*(T) dr |, te€[0.cl, 2D
0

where

(1) = Boy (1) +28(0) + 2[[L(D)[. B, =2[I'(c) + A(c) + 1 +r +rQol.
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Proof We have divided the proof into a sequence of steps. We use a method of successive
approximations.
1. We consider the sequences {z™} and {1} where

2™ Ec 1%, u"™  E. — Maosn,
2™ = (g e, u™ = {uf ke, ufl) = @l ui)), kel
We put first
Z,((O)(t, x) = Y (t, x) on Egy and z,(co) = Y (ar, x) on E N ([ag, c] x R*) fork € N,
and
u,(co)(z, x) = 0¥ (ax, x) on E N ([ag, c] x R*) fork € N.

If z™ : E. — 1% and u"™ : E, — My, are known functions then for each k € N the

function u{,’(”l) is a solution of the equation

(%) = G 91, x) (22)
where 9 = (91, ..., 0,) and G\ [9] = G\ [91, ..., G\ [9]) and G{"[#] is defined by

G911, x) = .Y (t,x) on Egx
and

G901, x) = v (ax, guglz™, ¥1(ax, 1, x))

t

(m) (m) (m)
+/ aka(P[Z ] ﬁ](fa ta )C)) dr—‘f_/ aka(P[Z 9, 7.9](1—7 t; )C)) * u(t,g[k][z(m),ﬂ](f,l,x)) df
ay ag
t
(m) (m) (m)
+/ aka(P[Z ’ 19](‘[7 ta )C)) * [u(p(f,g[k][Z(’"),ﬁ](f,f,X))ax(b(r’ g[k] [Z ’ ﬁ](f, tv .X))] dT
a
(23)
on E N ([ag, c] x R™). The function z"*1 is given by
2D x) = F[z™, u™ Dz, x) on E.. (24)

II. We prove that
(A,,) the sequences {z'™} and {1} are defined on E. and for m > 0 we have

2™ € Cyclt, dol, ul™ € Cayyclx,rol fork €N,

(B) there are X, Ao € L([0, c], Ry) such that for any m > 0 we have

1 1

127t %) =2 (F, ) oo < /Ao(f)df, ™ (2, ) =™ (7, %) looxn < /A(r) dr|,

t t

where (¢, x), (f,x) € E., 0<t,f <c,
(Cyn) there exists the sequence {3,z™Y and for m > 0 we have: 3,z (¢, x) = u™ (¢, x)
on E..
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We prove (A,,) — (Cy,) by induction. It is clear that conditions (Ag) — (Cp) are satisfied.
Supposed now that (A,,) — (C,,) hold for a given m > 0, we will prove that there exists
umtD B Maosn and u%“’ € Cyyy.clx, rol for k € N. We first prove that

G{™ : Cayyclx, 10l = Coyyelx,r0l, k€N (25)

It follows from Assumptions H[¢] and H[F] that for © € Cyy, c[x,r0l, k € N, we have

t t
IC™B1, 0l < e + (1 + Qo)/ﬁ@)x(s) d +/ﬂ($) d& = x (1)
0 0

and
IGI 91, x) — G (91, D)l < A@)llx — &I < rollx — £l on Ee N ([ag, ¢] x RY).

From the above estimates we deduce (25). It follows easily that for o, O e Cayy.clx, rol we
have

t
IGI 91, x) — G (1, 1)l < Ae) / YD — 3 llern dé on E N (lax, ] x RY).

Ak

For the above ¥, D we put
t
[19 — D[] = max { [ — D ¢.z) exp —2A<c)/y<$) dé | i1 € ag, c]
ag

We deduce from Assumption H[F] that
~ 1 -
(G191 = G911 < 5119 — 1.

It follows from the Banach fixed point theorem that for each k € N there exists exactly one

solution of Eq. (22). Then there exists u™mt) - E. 5 Mooy, and u,(cmﬂ) € Coyy.clx, rol

for k € N.
We deduce from Assumption H[g], H[F] and from (24) that

1

t t
12D (r.00) sco+/a(r) dr+2/ﬂ(r)§(r) dr+2/llL(r)llx(t) dr =¢(t)
0 0

0

where 7 € [0, c¢] and
2"V @0 = 2"V D < TOlx — & on E N (lag, ] x BY).

The above relations and Assumption H[c] show that Zmth ¢ Cy.cl¢, dol.
An easy computation shows that condition (B, 1) is satisfied with

ro(7) = (I'(c) + 2r)|IL(D)|| + 2dB(z) + a(T),
M) =AOIL@DI+ A +r+rQo)p(r), Tel0,cl

Now we prove (Cp,41). Write

Dyt x,y) = 2" ) — ") —u TV ) 0 (v —x), ke,
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where (¢, x), (t,y) € E N ([ak, c] x R™"). We prove that there is C, € R such that
Dk (¢, x, )| < Cullx = y[>, keN. (26)

Set 8[(:]1)(I,t,x) = g[k][z(m),u(mH)](r t, x). Then we have

Di(t,x. y) = Felz™., u™ V2, y) = F2™ ™ D)t x) — G luy ™1, x) 0 (v — x)

= I/fk(ak,g g, 1, y)) — Y (a, g (ak,t x))
t

+ / (P w1 1 y)) = Fe(PE™, w1 1 x0) d

Ak

1

- / 0y Fe (P2 uli 01w e, y) oy (z gl (.1, ) d
ay

t

+/aqu(P[z<’”> i 1 ) ouly TV (L gl (x.1, x)) d

ak
—Gule ™1 2 0 (v —x), keN.

We transform the above expressions in the following way. We apply the Hadamard mean
value theorem to the differences

Fe (L™ uf V1 1, 9) = Fe(PE™, w0z e x), ke,
and we denote by
QM Tt x,y) = EP™ uf (T 1 y)
+(1 = &) P, iV, x) £e[0,1], keN,

suitable intermediate points. Let us denote by Dy o(f, x, ¥), D 1(f, x,y), Dral(t, x,y),
Dy 3(¢, x, y) the expressions defined by

Dro(t. x.y) = Yelar. g5} (@ 1. ) — V(ax. glf}) (@ 1, x))
— 0y ar, g{,’?)(ak 1,x)) o [gfy (a1, 3) — g (ax, 1, )],

Dia(t. x. y) = // [0 F0™ €. 7. 1.5, )

A

— 8 F(PE", uffy ™1, 10 o Lgff) (1, 3) — gl (7.1, 001 d dx

// [00F(Q"™ (. 7. 1.x, ¥) — 3 Fi(P[z"™, uffy " )(z. 1, )]

Ak

* [z(’") - — "™ ] de dt

(r g[k] (T.1,) (z, 8k (T.1,x))

/ / [0 F(Q™ (€, 7,1, x, 1)) — BuFu(PE™, 1)z, 1, )]

Ak
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*|:Z(m) (m) ] ds dt

o g[kf(r b Cegl @)

//[a F(QM (&, 7.1, x. ) — 8 Fe (P2, ullytV1(z, 1, 2))]

Ak

[u(m+1)(r g(m)(r £, y)) —u(m+1)(f g(m)(f t,x))]dé§ dt

and

t

Dot x,y) = | 9,F(P[z™, (er)‘L'tx* .
k2( y) / vk (P[ Ui 1( ) ( g[(;(])(r’t’y))

ay
(m) ¢, (m) (m) m)
. «S’{Z”(”x)) (u )(‘E,g[(g)(r,t,x))(g[k] (t.t,y) — g[k] (T, 1, x)) ] T
t
o F PZ(m),M(m+1) T1 X)) () . (m) .
/ wi (Pl 1@ * 200 T Lpteg )
ag

— @™ >>q,(,gk)(m)) B (T, gy (T 1. X)) (g1 (T 1. y) — g[k><rtx))]
Moreover we set

Di3(t.x.y) = duWelar. g1y (ax. 1. %)) o (18} (@x. 1. y) — gy (ax. 1. )] = (y = x)]

1
+ / [9g Fie (P12 uffy ™V 1(x. 1. 2)) = 8 Fe(PL2™ w01, 1y o uffy ™

x (T, g (f t,y))dr
t

+ / B (P, w1, £, 0) o [1g) (0,1, ¥) — g (e, 1, 0] — (v — )] d

ak
t

(m)  (m=+1) (m)
[ B RPE e 1)« ) 10 18 (1)

Ak

—g(;’?(r t.x0)] = (y —x)ldr

+ / (O Fe (P, 1), 1, 20) % (™)

ag
ollgl) (x.1.y) — g} (x.£.0)] = (y — 1)) dr.

We put k£ € N in the above definitions. Then we have

o, g('”)(rtx)) o (z, gk] (7: t,x)]}

Dg(t, x,y) = Drolt, x, y) + D1, x, y) + Dra(t, x, y) + Drs(t, x, y), keN. (27)
Since ¢ € X, there is Cop € R4 such that

IDeo(t, x, y)| < Collx — ylI>, k€N, (28)
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where (¢, x), (t,y) € E N ([ak, c] x R™). It is easily seen that

IDe1 (7, x, y)| < Cillx — ylI>, k€N, (29)
where
c =(EC>2/y<s> dg, &= exp C/y(é) d
0 0

It follows from (C,,) that there is ¢, € R such that
12 () = 2 x) — ul (@, x) 0 (v — )| < eallx — I, (30)

where (7, x), (¢, y) € E N ([ak, c] x R"). We conclude from Assumptions H[F'], H[¢] and
from (11), (30) that there is C2 € Ry such that

IDe2(t, x, y)| < Callx — ylI*, k €N, 31)

where (¢, x), (t,y) € E N ([ag, c] x R").
We transform the expressions D 3(¢, x, ¥), k € N, in the following way. Write

Vi, T.1,x,y) = laka(P[z("’), ufy ™1 1, x)

(m) m+1) (m)
+ aUFk(P[Z u[k ](T t x)) * (M )(r,g[(,:"])(r,t,x))

o o Fie (P, gy ™1 1 0) * 16 ) Db (g (@1 x))]}

o3y Fi (P2 uly V1. 1. y) — 0y Fe (P12 ufl V)&, 1, x))]

and

Wi (€, 1, x) = Ox Yy (ag, g (ak,t x))
+/[aka<P[z<"’>,u(’”“)]<r £0) + B Fe (P a1 (e 1, )

*(u™ ldr

)

) (26 (wt.00)
£

+/ 0w Fe (P a0 1z, 1, 3)) % [ ™)

Ak

. g<m>(”x))3x¢(f g[k] (r t,x))]dr, keN,

and

t t
Dya(t, x,y) Z//Vk(é,r, t,x,y)dé dr
aip T

t

+oc Y (ax. 87y (ax. 1. X)) 0 / [9g Fe (PL=™  uffy ™0 1(E. 1. )

ak

—8y Fe(PL™ w016, 1, 3))] dg (32)

@ Springer



396 7. Kamont

where k € N. Then we have

//Vk(é T,t, X, y)dédt—//Vk(é T,t,x,y)dt d§

Ak Ak

and consequently

D4, x,y)

=/wk(5,r,x)o[aqu(P[z(m> ul TONE 1) =g Fe (L™ ufy TV 1E 1. x0)] dE.

Ak

(33)
It is clear that the bicharacteristics satisfy the relations
g (e gl €. rx) =gt x), ke,
where (¢, x) € E N ([ag, c] x R™). This gives
u ™V & gl & 1, x0) = Wi(E, 1, %), keN.
We conclude from (32), (33) that
t
Dyt x,y) = / [0 Fe (Pl V1w 1, 00)
ag
=0, Fi (P iy 1w 1 ) | o il o gl )
—uli (e g (r 2] dT, kel
Hence, there is C3 € R such that
IDe3(t, %, )| < Csllx — yI>, k€N, (34)

where (¢, x), (¢t,y) € E N ([ag, c] x R").

It follows from (27)—(29), (31), (34) that estimates (26) are satisfied with C* = Co+C| +
C> + C3. Hence, for each k € N there exists 9,z (¢, x) for (¢, x) € E N ([ag, c] x R?)
and 9,2""+) = u{"*". This proves (Cyi+1). Thus (A,) — (Cyn) follow by induction.

III. Now we prove that the sequences {z"} and {x™} are uniformly convergent on E.. It
follows from Assumptions H[F'], H[¢] and from (23) that there are Yo, Y1 € L([0, c], Ry)
such that

t
+1 +1
D — ) gy < / Yol = ulf e dr

0
1

/ THOZ™ — 2D ey + 14 — u® Dy 1dT, K €N,
0
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By using the Gronwall inequality we get

+1
el — i ey

t t

< exp / Yo(r) dt / 1Oz = 2 D erny + 1™ — u D) o p ] dT,
0 0

(35)

where k € N. We conclude from (10) and from Assumption H[F], H[¢] that there is
T, € L([0, c], Ry) such that

2D — 20| ¢ ooy
t
< / L@ = 2 ey + 1™ = u™ | pre dr. (36)
0

Write
+1
K™ @) = (120 = 2 ooy + Ny ™ = ufy ey ¢ €10, cl.

We deduce from (35), (36) that there is Y € LL([0, c], R4) such that
t
K™ (1) 5/T(t)1<('"*1>(r) dr, m>1.
0
Set
t
(1K™ ] = max { K" (1) exp —2/ Y(r)dr | :1 €0, ]
0
Then we have
t T
K0 < (1K [ T@en |2 [ 1) de | ar

0 0
1

1K™V exp | 2 [ 1 (0
0

and consequently
1
K™ < SIK V) form > 1.

Then lim,,— oo [| K (m) |1 = 0 and consequently there are the limits

Z(t,x) = lim 2" (t,x), @@, x)= lim «”(t, x) uniformly on E.,
m—00 m—0Q

where Z = {Zx)ken, @ = [itjjlien, 1<j<n and djx) = (g1, . .., Ugy) for k e N.
It follows from (C,,) that there exist the derivatives 0z, k € Nand 9,2y = ) fork € N.
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IV. Now we prove that Z : E. — S is a solution to (1), (2). Write g (-, ¢, x) =
gmlz, 9xZ1C, t, x), (t,x) € E N (lak,c] x R"), k € N. It follows from (III) that
Zi(t, x) = Y (t, x) on Eq for k € N and

t
B3t x) = Vi (ak, Gy (ax 1. 1)) + / Fu(PE, 0:30(x, 1, x) d

Ak
t

—/3qu(P[Z, 0x2k1(z, 1, x))) 0 0x 2k (7, k) (7, 1, X)) d, (37)

Ak

where (z,x) € E N ([ag, c] x R"), k € N. Suppose that k € N is fixed. For given (¢, x) €
EN([ak, c] xR™"), letus put y = gk (ax, t, x). It follows that the relations x = g (¢, ak, y)
and y = gpxj(ax, t, x) are equivalent. We conclude from (37) that

(@, g (t, ax, X)) = Y (ak, y)

t t

+ / Fe(Tu(r. y)) dr — / 0, Fe(Te(r. v)) 0 05 (1. G (. ap. ) dT (38)

ay ay

where

Tk(f, y) = (T7 g[k] (ta Afes )’), Z(r,g[k](r,ak,y)% Z(p(t.g[k](t,ak,y))v 3)(2]( (Ta g[k] (1-7 A, y)))

By differentiating (38) with respect to ¢ and by putting again x = g (¢, ak, y), we obtain
that 7 is a weak solution of (1), (2).
V. It follows form (A,,)— (C,,) that the sequences {z"} and {3, "} satisfy the conditions

12"y < ds 10x2™ by <7
and
102 (1, x) = 02 (1. D)l Macr) < rollx = T

where m € N, (¢, x), (t,x) € E.. From the above inequalities we obtain in the limit, letting
m tend to oo, estimates (18), (19).
VI. Now we prove (21). It follows from Assumption H[F] that

z(m)

12 = Zll 00y + 1822 — 8221, Moo o)

t

<y —¥lix + / TL(O[IZ = Zll o) + 18c2™ — 82" (. Moo 1 T, 1 € [0, €.
0

Then we obtain (21) from the Gronwall inequality. This completes the proof of the theorem.

4 The main result

Suppose that Assumptions H[¢], H[F] are satisfied and i € X. Let us denote by E[¢/] the
solution to (1), (2). It follows from Theorem 3.2 that E[v] exists on E. and it is unique.
Then we have: E : X — C(E,, [*°). We will denote by Y the class of all 4 € X satisfying
the conditions:
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sup {|¥xll £o © kK € N} <co, sup{lloxvillgy, : k € N} <ci,

1 _ _ _
sup [‘”x —)E” ||3x1/fk(t,x) - axwk(tvx)” : (tsx)’ (tsx) S EO.kv X #'x’ ke N] <.

We prove that for each ¢ € Y there exists the Fréchet derivative d E[y] of E at the point
Y. Moreover, if € Y, 7 € Xand z = dE[¢]r then Z is a solution of a linear system of
integral functional equations generated by (1), (2).

Suppose that Assumptions H[¢], H[F] are satisfied. Write

t
Z(I)ZCO exp Z/ﬂ(r)dr ,
0

1

1 t
1§(t)=c§ exp ﬁ/ﬁ(r)dr +/ y () exp (i/ﬂ(r)dr dut ,
0 0 "

where t € [0, c] and

= exp C_‘/y(r)dt max{cy, 2¢C, 14+ Qo}. (39)
0

(@}

Il
>
~~
o
N
>

Suppose that 7 € X, 7 = {mg }ren. Let us denote by CJM[E, f)] the classofallz : E. — [®°,
7 = {zr}ken, satisfying the conditions:

(i) z € C(E,, lof) and z; (¢, x) = m (¢, x) for (t,x) € Egr and k € N,
(i) llzllioy < ¢(2) fort € [0, ¢] and

1 N
e lz(z, x)—2(z, D)oo : (7, %), (7, X) € E, rst] =9(t) forrel0,c].

In this section we denote by z(-; ¥) = {zk (- ; ¥)}ken the solution to (1), (2). Let us consider
the Cauchy problem

o' (1) == Fi (7, 0(1), G5 ¥ o) @E5¥D)eror),. 52T, @(@):9)), w)=x,
(40)

where (t,x) € EN ([ak, c] x R”) and k € N. The solution to (40) will be denote by
g1, t, x). If Assumptions H[gp], H[F] are satisfied and € X then for each k € N
the solution g [¥]1(: , £, x) is defined on [ax, t]. For k € N we put

Ti [y (T, 1, x)
= (‘C, g[k][l[f](f, t,x), (z(-; w))(r,gm[l/f](z,r,x))a (z(-; w))q)(z,glkjlw](r,t,x))v
xxz(T, g W1(T, 1, x); ¥)).

Suppose that 7 € X, m = {mr}ken, and z € CH_L.[E, 5‘], Z = {zx}ken. Let us denote by
Wlz] = {Wk[z]}ken the function defined by

Wilzl(t, x) = mr(t, x) for (t,x) € Eox 41)
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and

1

Wilz](t, x) = mp(ak, gl ax, t, x)) +/3ka(Tk[¢](f,t,x)) O Z(r.glvl(r.t.x)) AT

Ak
t

+/3ka (Tel¥1(r, 1, X)) O Zy(r.guyl(r.ix) AT for (2, x) € E N ([ax, c] x R"), (42)

a
where k € N. We consider the linear system of integral functional equations

z=Wlzl. (43)

Lemma 4.1 Suppose that Assumptions H[p], H[F] are satisfied and & € X. Then there
exists exactly one solutionz : E. — [ of (43) and

|Zlloo < C on E, (44)
IZ(r, x) — (1, )lloo < Ll|x — X|| on E, 45)

where C is given by (39) and L= zg(c).
Proof We prove that
W i Crclt, 91— Crclt, 1. (46)

It follows from Assumptions H[g], H[F] that for 7 € Cﬂ,c[f, 19], (t,x) € E., T <t,we
have

t
Wilz1(e, x)] < CO+2/5(M)2(M)du — )
0

and consequently
Wizl 00y < Z(r) forz e [0,cl. 47)

For the above z and for (z, x), (7, x) € E., T <, we have

t t

|Wilz](z, x) — Wilz](z, %) < d 1+/V(M)dﬂ+/,3(l/«)l§(ll-)dﬂ llx — x|
0 0
=d@)|x — x|, keN.
This gives
[Wzl(z, x) = WIZI(T, D)oo < D)X — X, (48)

where (7, x), (1, x) € I:Zc, t < t. From (47), (48) we deduce (46).
For z, z. € C.c[¢, U] and for k € N we have

Wilz](t, x) — Wilz.1(t, x) =0 on Eoy, (49)

and

t
IWil21(2, ) — Wiz, )] <2 / B(D) 1z = zalleay dT on E N ([ag, c] x R"). (50)
0
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Write
t
[z = z+l] = max § llz — z«ll(z,10) €xp —4/,3(T)dr 11 el0,c]
0

It follows from (49), (50) that for z, z, € Cr.c[{, ¥] we have

1
Wzl — Wizl =< EHZ — Zl]-

From the Banach fixed point theorem we deduce that there is exactly one solution Z €
Crclg, 9] of (43). We conclude from (46) that conditions (44), (45) are satisfied. This
completes the proof.

Theorem 4.2 Suppose that Assumptions H[¢], H[F] are satisfied. Then
1. for each € Y there exists the Fréchet derivative 0 E[{],

2. ifv eY, m e Xandz = 0E[Y]n, Z = {Zi }ren, then Z is a solution to (43) with W given
by (41), (42).

Proof The proof will be divided into three steps.
I.Let ¥ € Y and m € X be fixed. There is &9 > 0 such that for £ € Iy = (—&p, €9) we have
Vv +EreX LetAg : E. — I, & € Ip, £ # 0, be defined by

1
A = {Aci}ioy ekt x) = E[Zk(t,x; Y +Em) — it xiy)]. keN.

It follows from Lemma 4.1 that there is exactly one solution Z = {Z}xen to (43), Z €
C(E,,[*) and z satisfies (44), (45). We prove that

gin}) |Ag(t, x) — Z(t, X)|loo = 0 uniformly on E.. (51)
=

IL. It follows from Theorem 3.2 that for k € N, & € Iy, & # 0 we have
0 Ag i (2, x)
1
= g{Fk(t, X, @C Y FET) 0, @GV FET))gr,x), 02k (t, X5 ¥ + E7))

—Fi(t, %, 2G5 ) @5 Y))gan, 0xzi(t, x39)) on E N ([ag, c] x R"), (52)

and
Ag(t,x) = m(t,x) on Egy. (53)
Set
Ot x; ) = (£, %, ¢35 ¥ awy» @5 YD)gawy, deze(t, x39)), k€N,
and

Oy, m)(t, x:6,m) = (L= Q(t, x; ¥) + nQx(t, x; ¥ + £m), k€N,
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where n € [0, 1]. Then we obtain from (52) that

1

O Agk(t, x) =/3ka(®k[1/f,7T](t,x;é,n))<>(Ag)(r,x)dﬂ
0
1
+/3ka(®k[w,ﬂ](t,x;$,n))O(Ag)w(r,x)dn

0
1

+/3qu(®k[1/f»7T](f»x§ £,m) 0 Aex(r,x)dn, (1,x) € EN ([a, c] x R"), (54)

0

where k € N. Let us denote by gpxj[¥, 7; £1(-, t, x) the solution of the Cauchy problem

1

o' (1) = —/3qu(®k[1ﬂ,ﬂ](f,w(f);$, mdn, o) =x,

0

where (f,x) € EN ([ak, cl x ]R"). Write

Ol m: &, (7,1, x) = Oy, m(T, g, w: 1z, 1, x); 6, ), keN.

It follows from (54) that Ag satisfies relations
Ag i (t, x) = mx(ak, gy, m; §1(ak, 1, x))

+// O Fr(Qulvr, w5 &, 11(x, 1, X)) © (Ag) (r.qp[yrm:1(r .0 AN AT
11
+// Ow Fi (Qkl¥, 3 £ 01(T. 1, %)) © (A (e, gu[vr. 7361 (.t.x)) AN AT
where (¢, x) € E N ([ak, c] x R") and k € N.
III. We construct an integral functional inequality for Az — z. Write

Ap(t, x) Zﬂk(ak g, m; El(ak, t, x)) — mp(ax, gyl lax, t, x)),

(55)

Bk(t X) //a Fk Qk[\ﬁ TS S 77](77 t, X)) ( i)(r,g[k][w,n;é](r,t,x)) d’ldT

1

//a Fi(Qelr. 73 &, 1T 1,0) © (B¢ = B) 0 gty 147

0
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and

t 1
Ck(t,x)=//Bka(Qk[w,n;é,n](t,t,X))<>[i<r,g[k][¢f,n;s1(r,r,x>)
a0

X = Z(z,gly](z.,xn dndT

ag

t 1
Dy(t, %) = / / [0, Fi (QkI¥, 73 &, nl(x, 1, ) — 3y Fi (Th[¥ 1z, 1, 0)) ]
0

ak

X O Lz, gy [¥)(z,0,x)) dndT
t

ap 0
where k € N. Then we have
Ag(t,x) —Zk(t, x) = Ar(t, x) + Bi(t, x) + Ci(t, x) + Di(t, x),
It follows from Assumption H[F] and from (21) that
g, 5 §1(z, £, x) — gual¥ (T, £, x) |l

1

r 1
+//3ka(Qk[1/f’7T;5’n](m,x))<>[iw(r,gmw,n;sm,r,x)) = Zy (e, g [¥)(e,t,0 | A dT,
0

1
+/ [3ka(Qk[1/f’ T $7 n]("-: t7 .X)) _8ka (Tk[W](-L-’ t? X))] ¢ i(p(r,g[k][llf](f,t,x)) d’? dT

keN.  (56)

<C /V(M)Ilg[kl[l/f,ﬂ;E](M,I,X)—g[kl[w](u, t,x)du|+15|A., k€N,

T

where
¢ ¢
Ay =37 |lx exp /F*(r)dr /y(r)df-
0 0
This gives
lgu v, w1 €1(z, £, x) — g[¥1(z. . 0)|| < [E|A, k€N,
where

[
A:A*exp C‘/y(r)dr s
0

and consequently
Akt 0] < 1Al keN.

It is clear that

I3
Bt )] 22 [ BOIA = Bl dr. KEN.
0

(57

(58)

(59)
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We conclude from Assumption H[F] and from (45) that
t

|Cr(t, )] < L1 + Q) / BO gy, 73 E1(x. 1, %) — gul¥ (. 1, )l de
a

.
<L+ o) [ pdrd, ke, (60)
0
It follows from Assumption H[F] and from (21) that the expressions

t 1
// H aka(Qk[‘(/jv T, Ev ’]](Ts t,X)) - aUFk(Tk[llf](tv ts 'x))HOO;* d’? dtv
a0

11
//Haka(Qk[‘/fJT;5777]('5,1‘795))—aka(Tk[lH(T,fJC))HOO;*d'?dT, k€N,
ax 0
can be estimated from above by
t
C/V(f)llg[k][llf,ﬂ;S](T,t,x)—g[k][llf](f, t,x)|dr +|€|1B, keN,

a

where
B =3/y(‘[)d1’ 7 |lx exp /F*(t)dr
0 0

We conclude from the above relations and from (44), (57) that
|Di(t,0)] < |E1D, k€N, (61)
where
c

b=2C C’A/y(r)dr—i—é
0

It follows from (56) and (58)—(61) that there is Q € R4 such that

c
|86 =2y < 1610 +2 [ BO)] A =]y dr. € D0.CL
0

By the Gronwall inequality we obtain

c
| e =72] , ooy < 1E1Q exp Z/ﬂ(r)dt . 1€[0,cl.
0

This completes the proof of (51).

The assertion of the theorem follows from (51).
Remark 4.3 1t is easy to see that Theorems 3.2 and 4.2 can be applied to problems (4), (2)
and (8), (2).
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