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Abstract The target is potential theory in connection with Morrey spaces on general
metric measure spaces. The present paper is oritented to investigating Sobolev’s inequal-
ity, Trudinger exponential integrability and continuity for Riesz potentials of functions in
non-doubling Morrey spaces of variable exponents. A counterexample shows that our results
are reasonable. In addition to the example above, what is new about this paper is that every-
thing can be developed once the underlying measure does not charge any point.
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Generalized smoothness
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1 Introduction

We shall show that the Adams theorem about the boundedness of fractional integral operators
and the related theorems can be extended even to general metric measure spaces by a slight
modification of Morrey norms. We present an example showing that the modification is
essential.
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314 Y. Sawano, T. Shimomura

Morrey spaces date back to the work of Morrey [25] in 1938. His observation has become
a useful tool for partial differential equations and with this tool we can study the exis-
tence and regularity of solutions of partial differential equations. Nowadays, his technique
turned out to be a wide theory of function spaces called Morrey spaces. The (original)
space M p

u (Rd) with 1 ≤ u ≤ p < ∞ is a normed space whose norm is given by

|| f ||M p
u

≡ sup
x∈Rd , r>0

r
d
p − d

u

⎛
⎜⎝

∫

B(x,r)

| f (y)|u dy

⎞
⎟⎠

1
u

for f ∈ Lu
loc(R

d).

In the present paper, we are oriented to Sobolev’s inequality for Riesz potentials of func-
tions in Morrey spaces of variable exponents in the non-doubling setting, which will extend
the results in [3,15,21,22,24,35]. We also establish Trudinger exponential integrability for
Riesz potentials of functions in Morrey spaces of variable exponents in the non-doubling set-
ting, as extensions of our earlier papers [21,22,34]. Further, we discuss continuity of Riesz
potentials of variable order, which extends [7,12,21,23].

Let X be a separable metric space equipped with a non-negative Radon measure μ. Assume
that X is a bounded set and we denote by dX its diameter. By B(x, r) we denote the open
ball centered at x of radius r > 0. We write d(x, y) for the distance of the points x and y in
X . We assume that

μ({x}) = 0 (1.1)

for x ∈ X and that 0 < μ(B(x, r)) < ∞ for x ∈ X and r > 0 for simplicity. In the
present paper, we do not postulate on μ the “so-called” doubling condition. Recall that
a Radon measure μ is said to be doubling, if there exists a constant C > 0 such that
μ(B(x, 2r)) ≤ Cμ(B(x, r)) for all x ∈ supp(μ)(= X) and r > 0. Otherwise μ is said to be
non-doubling. In connection with the 5r -covering lemma, the doubling condition had been
a key condition in harmonic analysis. However, Nazarov, Treil and Volberg [29,30] showed
that the doubling condition is not necessary by using the modified maximal operator. In the
present paper, we shall show that this is the case for Riesz potentials.

Let p ≥ 1 and κ > 0. Define the Morrey norm ‖ f ‖L p,κ,ν (μ) by

|| f ||L p,κ,ν (μ)

≡ sup

⎧⎪⎨
⎪⎩

⎛
⎜⎝ rν

μ(B(x, κr))

∫

B(x,r)

| f (y)|p dμ(y)

⎞
⎟⎠

1/p

: x ∈ X, r ∈ (0, dX ), μ(B(x, r)) > 0

⎫⎪⎬
⎪⎭

for μ-measurable functions f . The Morrey space L p,κ,ν(μ) is the set of all μ-measurable
functions f for which the norm || f ||L p,κ,ν (μ) is finite.

The parameter κ affects the definition of the Morrey space L p,κ,ν(μ), as shall be illustrated
by the following proposition. We state one of the main results in this paper.

Theorem 1.1 There does exist a separable metric space (X, d, μ) such that the function
spaces L p,4,ν(μ) and L p,2,ν(μ) do not coincide as sets.

About the modified Morrey norm, we have the following remarks. The proof is simple
and we omit it.

Remark 1.2 Let f be a μ-measurable function.

1. From the definition of the norm we learn || f ||L p,κ2,ν (μ) ≤ || f ||L p,κ1,ν (μ) for all κ2 > κ1 >

0 and p ≥ 1.
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Sobolev embeddings for Riesz potentials of functions 315

2. If p2 ≥ p1 ≥ 1, κ ≥ 1 and ν1/p1 = ν2/p2 > 0, then, || f ||L p1,κ,ν1 (μ) ≤ || f ||L p2,κ,ν2 (μ)

by the Hölder inequality.
3. If μ is a doubling measure, then || f ||L p,κ,ν (μ) and || f ||L p,1,ν (μ) are equivalent for all

p ≥ 1, κ > 0 and ν > 0.

Our result can be readily translated into the Morrey space M p
q (�), where M p

q (�) is the set
of all functions f ∈ Lq

loc(�) for which the norm

|| f ||M p
q (�) ≡ sup

x∈�, r>0
rd/p−d/q

⎛
⎜⎝

∫

B(x,r)∩�

| f (y)|q dy

⎞
⎟⎠

1/q

< ∞,

where � is an open bounded set in R
d . In the present paper, we also show that a modification

enables us to obtain boundedness results even in the variable Lebesgue setting. We consider
variable exponents p(·) and q(·) on X such that
(P1) 1 < p− ≡ inf x∈X p(x) ≤ supx∈X p(x) ≡ p+ < ∞;
(P2) |p(x) − p(y)| ≤ C/ log(e + d(x, y)−1) whenever x ∈ X and y ∈ X ;
(Q1) −∞ < q− ≡ infx∈X q(x) ≤ supx∈X q(x) ≡ q+ < ∞;
(Q2) |q(x) − q(y)| ≤ C/ log(e + (log(e + d(x, y)−1))) whenever x ∈ X and y ∈ X .

In general, if p(·) satisfies (P2) (resp. q(·) satisfies (Q2)), then p(·) (resp. q(·)) is said to
satisfy the log-Hölder (resp. loglog-Hölder) condition.

Let G be a bounded open set in X . For a bounded μ-measurable function α : X → (0,∞)

and τ > 0, we define the Riesz potential of (variable) order α for a non-negative μ-measurable
function f on G by

Uα(·),τ f (x) ≡
∫

G

d(x, y)α(x) f (y)

μ(B(x, τd(x, y)))
dμ(y).

The assumption (1.1) will be necessary for the definition of Uα(·),τ f in order that the integral
is not infinite. Here and in what follows we tacitly assume that f = 0 outside G. Observe
that this naturally extends the Riesz potential operator

Uα f (x) ≡
∫

Rd

f (y)

|x − y|d−α
dy

when (X, d) is the d-dimensional Euclidean space and μ = dx .
We also assume

α− ≡ inf
x∈X

α(x) > 0 (1.2)

for α(·) appearing in the definition of the operator Uα(·),τ .
Now we are going to formulate our results in full generality. First of all, we set

�(x, r) = �p(·),q(·)(x, r) ≡ r p(x)(log(C0 + r))q(x) (x ∈ X, r > 0); (1.3)

here the constant C0 > e is chosen so that the following condition (�) holds:

(�) �p(·),q(·)(x, ·) is convex on [0,∞) for every x ∈ X

(see [17, Theorem 5.1]). Note from (�) that the function t−1�(x, t) is nondecreasing on
(0,∞) for fixed x ∈ X .
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316 Y. Sawano, T. Shimomura

Let κ > 1 be a fixed parameter and let G be a bounded subset of X . Let us denote
by dG the diameter of G. For bounded μ-measurable functions ν : X → (0,∞) and
β : X → (−∞,∞), we introduce the family L�,ν,β;κ (G) of all μ-measurable functions f
on G such that for some λ ∈ (0,∞)

sup
x∈G,0<r<dG

rν(x)(log(e + 1/r))β(x)

μ(B(x, κr))

∫

G∩B(x,r)

�(y, | f (y)|/λ) dμ(y) ≤ 1. (1.4)

Denote by || f ||L�,ν,β;κ (G) the smallest value of λ satisfying (1.4).
The space L�,ν,β;κ(G) is a kind of generalized Morrey spaces. Generalized Morrey spaces

with non-doubling measures on Rd are taken up in [11,33]. However, it appears in a nat-
ural context. Nowadays, generalized Morrey spaces are not generalization for its own sake.
Note that generalized Morrey spaces occur naturally when we consider the limiting case as
Proposition 1.3 below shows.

Proposition 1.3 [36, Theorem 5.1] Let 1 < q < p < ∞. Then there exists a positive
constant C p,q such that

∫

Q

| f (x)|dx ≤ C p,q |Q|(1 + |Q|)− 1
p log

(
e + 1

|Q|
)

||(1 − 
)d/2p f ||M p
q

holds for all f ∈ M p
q (Rd) with (1 − 
)n/2p f ∈ M p

q (Rd) and for all cubes Q.

In view of the integral kernel of (1 − 
)−α/2 (see [37]) and the Adams theorem, we have

(1 − 
)−α/2 : M p
q (Rd) → Ms

t (Rd) (1.5)

is bounded as long as

1 < q ≤ p < ∞, 1 < t ≤ s < ∞,
1

s
= 1

p
− α

d
,

t

s
= q

p
.

The operator norm of (1 − 
)α/2 : M p
q (Rd) → Ms

t (Rd) blows up as p → d
α

. Hence we
can say that Proposition 1.3 substitutes (1.5). We refer to [36] for a counterexample showing
that (1.5) is no longer true for α = d

p .
Meanwhile, the function q(·) can be used to describe the Hardy–Littlewood maximal

operator control in very subtle settings. To describe the situation, we place ourselves in the
setting of the Euclidean space Rd . We denote again by B(x, r) the open ball centered at
x ∈ Rd and of radius r . For a locally integrable function f on Rd , we consider the Hardy–
Littlewood maximal function

M f (x) ≡ sup
r>0

1

|B(x, r)|
∫

B(x,r)

| f (y)| dy (x ∈ Rd).

For the fundamental properties of the Hardy–Littlewood maximal function, see Duo
andikotxea [5] and Stein [37]. It is known as Stein’s theorem that there exists a universal
constant C > 0 such that

∫

B

M f (x) dx ≤ C inf

⎧⎨
⎩λ > 0 :

∫

B

| f (x)|
λ

log

(
2 + | f (x)|

λ

)
dx ≤ 1

⎫⎬
⎭

for all functions f supported on a ball B with radius 1.
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Sobolev embeddings for Riesz potentials of functions 317

Remark that, if X = Rd , the parameter κ is not essential as long as κ > 1 as Proposition
1.4 below shows:

Proposition 1.4 Let κ1, κ2 > 1 and X = Rd be the Euclidean space. Suppose that G is
a bounded open set. Assume in addition that ν and β satisfy the log-Hölder continuity and
the loglog-Hölder continuity, respectively. Then the spaces L�,ν,β;κ1(G) and L�,ν,β;κ2(G)

coincide as sets and their norms are equivalent.

We shall prove Proposition 1.4 in Sect. 3.
In the present paper, we consider a generalized and modified Hardy–Littlewood maximal

function defined by

M16 f (x) ≡ sup
r>0

1

μ(B(x, 16r))

∫

G∩B(x,r)

| f (y)|dμ(y) (1.6)

for a locally integrable function f on G.
In the present paper, we shall also show that most of the results known as the limiting cases

can be carried over to the non-doubling measure spaces. It counts that we take an attentive care
of the parameters κ appearing in (1.4). For example, unlike the doubling measure spaces, we
need delicate geometric observations [see the Proof of Lemma 4.2 and (6.17), for example].
Because we need careful geometric observations, we need to set everything up from the start.
Section 4 is our actual starting point.

We organize the remaining part of the present paper as follows:
In Sect. 2, we intend to justify that the modification is necessary in the non-doubling

setting by proving Theorem 1.1. To construct a counterexample, we shall refine the one in
[32]. In Sect. 3, we see some more examples of this metric measure setting.

From Sect. 4, we are going to construct a general theory. Section 4 is devoted to the study
of the modified centered Hardy–Littlewood maximal operator M16.

We are going to obtain Sobolev’s inequality for Riesz potentials Uα(·),32 f of functions
in L�,ν,β;2(G) in Sect. 5. To this end, we apply Hedberg’s trick [14] by the use of the
boundedness of the Hardy–Littlewood maximal function M16 adapted to our setting. Our
result (see Theorem 4.1 below) is given in Sect. 5, which extends the results in [15,21,22,
24,35].

A famous Trudinger inequality [39] insists that Sobolev functions in W 1,d(�) satisfy finite
exponential integrability, where � is an open bounded set in R

d . In Sect. 6, we are concerned
with the Morrey counterpart of Trudinger’s type exponential integrability for Uα(·),9 f . Our
result contains the result of Trudinger [39] as well as those in [21,22,34]. For related results,
see [2,7–9,18–20,28,40].

In Sect. 7, we discuss the continuity of Riesz potentials of variable order, as an extension
of [7,12,21,23]. For related results, see [8,19,20]. More precisely, in Sect. 7 we discuss
the continuity of Riesz potentials Uα(·),4 f , which can be considered as generalized variable
smoothness. It seems of interest in other fields of mathematics such as PDEs that we investi-
gate the continuity of functions according to each points. Indeed, the fundamental solution of
−
u = f on Rd is continuous except on the origin. Therefore, we are interested in tools with
which to investigate continuity differently according to the points. In view of the continuity
we postulate on variable exponents, we can say that this is achieved to some extent.

Finally we explain some notations used in the present paper. The function χE denotes the
characteristic function of E . Throughout the present paper, let C denote various constants
independent of the variables in question.
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318 Y. Sawano, T. Shimomura

2 Proof of Theorem 1.1

In Sect. 2, we prove Theorem 1.1. Here will be a series of definitions which are valid only in
Sects. 2.1–2.2.

2.1 The space we work on

First, we define a set X on which we work.

Definition 2.1 (Definition of X ) Define a set X as follows:

1. One writes 
(z, r) ≡ {w ∈ C : |w − z| < r}.
2. Let Ak ≡ {z ∈ C : |z| = 3−k} for k ∈ N ∪ {0}. (For the graph of A0 we refer to the

footnote 1.)

3. Define X0 ≡ {0} ∪
∞⋃

k=0

Ak ⊂ C. (For the graph of X0 we refer to the footnote 1.)

4. Let X ≡ XN

0 ⊂ CN be the cross product.
5. Let O ≡ (0, 0, · · · ) ∈ X .

Remark 2.2 Here and below, we adopt the following rules in Sect. 2:

1. The letter z without subindex denotes the point in C.
2. Points in X are written in the bold letters such as x, y, z.1

3. Symbols such as x j , y j , z j and so on are complex numbers and they denote the j th
component of elements in X .

The point is that we give a “singular” metric on X . The precise definition is as follows:

Definition 2.3 (Definition of the metric)

1. The integer N0 is chosen so that log3 N0 is a big integer.
2. Denote by [·] a Gauss symbol and define N (δ) ≡ max(1, [logN0

δ−1]) for δ > 0.

1 We draw graphs of A0 and X0.

1.0 0.5 0.5 1.0

1.0

0.5

0.5

1.0

1.0 0.5 0.5 1.0

1.0

0.5

0.5

1.0

Note that A0 is an annulus and X0 is the union and X is a countable product of X0.
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Sobolev embeddings for Riesz potentials of functions 319

3. Let x = {x j }∞j=1 and y = {y j }∞j=1 be points in X . Then define the distance d(x, y) of x
and y by

d(x, y) ≡ inf{δ > 0 : |x j − y j | ≤ δ for all j ≤ N (δ)}.
4. One defines a sphere Sk by

Sk ≡ (Ak)
N (3−k ) × X0 × X0 × · · · (2.1)

for each k ∈ N.

At this moment, about the definition of the natural number N0, it is only the fact that the
function N : (0,∞) → R is a decreasing function that counts for the moment.

Before we start a (long) proof, let us outline it. Roughly speaking, sphere testing suffices.
Based upon the metric space (X, d) given above, we shall show that (X, d) is in fact a separable
metric measure space and that there does exist a Borel measure μ such that L p,4,ν(μ) and
L p,2,ν(μ) do not coincide as sets: More precisely, we shall show that

lim inf
k→∞

||χSk ||L p,4,ν (μ)

||χSk ||L p,2,ν (μ)

= 0.

Choose an increasing sequence {k(n)}∞n=1 such that
||χSk(n)

||L p,4,ν (μ)

||χSk(n)
||L p,2,ν (μ)

≤ 4−n . If we define

F =
∞∑

n=1

2n

||χSk(n)
||L p,2,ν (μ)

χSk(n)
,

then ‖F‖L p,2,ν (μ) ≥ 2n and ‖F‖L p,4,ν (μ) ≤ 1 for all n ∈ N. This implies F ∈ L p,4,ν(μ) \
L p,2,ν(μ). The remainder of this subsection is devoted to some preparatory observation on
this metric measure space and in the next subsection we get the conclusion.

Note that

d(x, y) = inf{δ > 0 : |x1 − y1| ≤ δ, |x2 − y2| ≤ δ, . . . , |xN (δ) − yN (δ)| ≤ δ}
and that

Sk = {z = (z1, z2, . . .) ∈ X0
N : |z1| = |z2| = · · · = |zN (3−k )| = 3−k}.

Thus, dX = 2. Let us check that d is a metric function and that χSk is μ-measurable.

Lemma 2.4 In Definition 2.3, d is a metric function, that is,

0 ≤ d(x, y) < ∞ (x, y ∈ X), (2.2)

d(x, y) = 0 �⇒ x = y (x, y ∈ X), (2.3)

d(x, y) = d(y, x) (x, y ∈ X), (2.4)

d(x, z) ≤ d(x, y) + d(y, z) (x, y, z ∈ X). (2.5)

Furthermore, the d-topology is exactly the product topology of X.

Proof Since 2 ∈ {δ > 0 : |x j − y j | ≤ δ for all j ≤ N (δ)}, (2.2) is clear. If x �= y,
then |x j0 − y j0 | > δ for some δ > 0 and j0 ∈ N. Therefore, if we choose δ∗ > 0 so that
N (δ∗) > j0,

|x j0 − y j0 | > min(δ, δ∗), j0 < N (min(δ, δ∗)).
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320 Y. Sawano, T. Shimomura

This implies

min(δ, δ∗) /∈ {r > 0 : |x1 − y1| ≤ r, |x2 − y2| ≤ r, · · · , |xN (r) − yN (r)| ≤ r}.
Hence, d(x, y) ≥ min(δ, δ∗), which shows (2.3). Equality (2.4) follows immediately from
the definition of d . Next, we check (2.5). To this end, we take ε > 0. Then by the definition
of d(x, y) and d(y, z), we can find δ1 ∈ (d(x, y), d(x, y)+ ε) and δ2 ∈ (d(y, z), d(y, z)+ ε)

so that

|x j − y j | ≤ δ1 for all j ≤ N (δ1)

and that

|y j − z j | ≤ δ2 for all j ≤ N (δ2).

Noting that N (δ1 + δ2) ≤ min(N (δ1), N (δ2)), we have

|x j − y j | ≤ δ1, |y j − z j | ≤ δ2 for all j ≤ N (δ1 + δ2)

and hence

|x j − z j | ≤ δ1 + δ2 for all j ≤ N (δ1 + δ2).

Consequently, d(x, z) ≤ δ1 +δ2 ≤ d(x, y)+d(y, z)+2ε. Since ε > 0 is arbitrary, we obtain
(2.5).

Since any d-open set is open with respect to the product topology, the product topology
is not weaker than the d-topology. However, we can express X as a union of d-open balls as
long as X is given by

X = 
(z1, r1) × 
(z2, r2) × · · · × 
(zÑ , rÑ ) × X0 × X0 × · · ·
with some Ñ ∈ N, (z1, z2, · · · , zÑ ) ∈ X0

Ñ and (r1, r2, · · · , rÑ ) ∈ (0,∞)Ñ . Therefore, two
topologies coincide. ��
Lemma 2.5 Let r > 0 and x = (x1, x2, · · · ) ∈ X. Then

B(x, r) = 
(x1, r) × 
(x2, r) × · · · × 
(xN (r), r) × X0 × X0 × · · · . (2.6)

Proof From the definition of the open ball, we have

B(x, r) = {y = {y j }∞j=1 ∈ X : d({y j }∞j=1, {x j }∞j=1) < r}
=

⋃
δ∈(0,r)

{y = {y j }∞j=1 ∈ X : |y1 − x1| ≤ δ, |y2 − x2| ≤ δ, · · · , |yN (δ) − xN (δ)| ≤ δ}.

Since N : (0,∞) → R is left-continuous and assumes its value in Z, if δ is slightly less than
r , N (δ) = N (r). Together with the monotonicity of the most-right hand side of the above
equality, we conclude

B(x, r) = {y = {y j }∞j=1 ∈ X : |y1 − x1| < r, |y2 − x2| < r, · · · , |yN (r) − xN (r)| < r}.
Consequently, (2.6) was proved. ��

The measure is given by way of product:

Definition 2.6 (Definition of the measure) Let H1 denote the 1 dimensional Hausdorff
measure.
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Sobolev embeddings for Riesz potentials of functions 321

1. One defines a function w0 : X0 → [0,∞) by w0 ≡ γ
∑∞

k=0

1

(k!)k
χAk , where γ is

chosen so that
∫

X0

w0(z) dH1(z) = 1.

2. Define a measure on X0 by μ0 ≡ w0 dH1.
3. One defines a measure μ on X by μ ≡ μ0 × μ0 × · · · = w0 dH1 × w0 dH1 × · · · .

As for the measures μ and μ0, we have the following relations.

Lemma 2.7 For k ∈ N ∪ {0}, μ0(Ak) and μ0

(⋃∞
j=k A j

)
are comparable in the following

sense:

2πγ

(3 · k!)k
= μ0(Ak) ≤ μ0

⎛
⎝

∞⋃
j=k

A j

⎞
⎠ ≤ 2πγ

(3 · k!)k

(
1 + 1

γ · (k + 1)!
)

. (2.7)

Proof From the definition of μ0, we see

μ0(Ak) =
∫

Ak

w0(z) dH1(z) = γ

(k!)k

∫

|z|=3−k

dH1(z) = 2πγ

(3 · k!)k

and hence

μ0

⎛
⎝

∞⋃
j=k

A j

⎞
⎠ =

∞∑
j=k

2πγ

(3 · j !) j
= 2πγ

(3 · k!)k

∞∑
j=k

(3 · k!)k

(3 · j !) j
. (2.8)

This observation yields the lower bound for μ0

(⋃∞
j=k A j

)
. It remains to obtain the upper

bound for μ0

(⋃∞
j=k A j

)
.

First of all, let us assume that k = 0. Note that μ0(A0) = 2πγ . Hence, when k = 0, from
(2.8), we deduce

μ0

⎛
⎝

∞⋃
j=k

A j

⎞
⎠ = μ0

⎛
⎝

∞⋃
j=0

A j

⎞
⎠ = 1 ≤ 2πγ

(
1 + 1

γ

)
.

Note that μ0(A1) = 2πγ
3 . Hence, when k = 1, again from (2.8), we deduce

μ0

⎛
⎝

∞⋃
j=k

A j

⎞
⎠ ≤ μ0

⎛
⎝

∞⋃
j=0

A j

⎞
⎠ = 1 ≤ 2πγ

3

(
1 + 1

2γ

)
. (2.9)

Let k ∈ N ∩ [2,∞) below. We calculate

μ0

⎛
⎝

∞⋃
j=k

A j

⎞
⎠= 2πγ

(3 · k!)k

⎛
⎝1+

∞∑
j=k+1

(3 · k!)k

(3 · j !) j

⎞
⎠ ≤ 2πγ

(3 · k!)k

⎛
⎝1+

∞∑
j=k+1

(3 · k!)k

(3 · j !)k(3 · j !)

⎞
⎠ .

If j ≥ k + 1, then k! × j ≤ j !. Thus, we have

μ0

⎛
⎝

∞⋃
j=k

A j

⎞
⎠ ≤ 2πγ

(3 · k!)k

⎛
⎝1 +

∞∑
j=k+1

1

3 · j k(k + 1)!

⎞
⎠ .
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Note that γ ∈ (0, 1) and that

∞∑
j=k+1

1

j k
≤

∞∑
j=2

1

j2 = π2

6
− 1 < 1

for all k ∈ N ∩ [2,∞). Thus, we obtain

μ0

⎛
⎝

∞⋃
j=k

A j

⎞
⎠ ≤ 2πγ

(3 · k!)k

(
1 + 1

(k + 1)!
)

≤ 2πγ

(3 · k!)k

(
1 + 1

γ · (k + 1)!
)

.

Thus, (2.7) was proved. ��
Lemma 2.8 Let r > 0 and x = (x1, x2, · · · , xN , · · · ) ∈ X. Then

μ(B(x, r)) =
N (r)∏
j=1

μ0(
(x j , r)). (2.10)

Proof This is an easy consequence of (2.6). ��
Lemma 2.9 Let ν > 0 be fixed. The sequence {3νkμ(B(O, 3−k))}∞k=1 is almost decreasing,
that is, there exists a constant C > 0 such that

3νlμ(B(O, 3−l)) ≤ C3νkμ(B(O, 3−k))

for all k, l ∈ N with l ≥ k.

Proof In view of (2.6), we have

B(O, 3−k) ⊃ (Ak+1)
N (3−k ) × X0 × X0 × · · ·

and hence, from (2.7) and Lemma 2.5, we deduce

(
2πγ

(3 · (k + 1)!)k+1

)N (3−k )

≤ μ(B(O, 3−k)) =
⎛
⎝

∞∑
j=k+1

2πγ

(3 · j !) j

⎞
⎠

N (3−k )

. (2.11)

Meanwhile, from the right inequality of (2.7), we have

μ(B(O, 3−k)) ≤
(

2πγ

(3 · (k + 1)!)k+1

)N (3−k ) (
1 + 1

γ · (k + 2)!
)N (3−k )

.

Since (k + 2)! grows much faster than N (3−k) = max(1, [logN0
3k]), we see from (2.11)

that
(

2πγ

(3 · (k + 1)!)k+1

)N (3−k )

≤ μ(B(O, 3−k)) ≤ C

(
2πγ

(3 · (k + 1)!)k+1

)N (3−k )

. (2.12)

Therefore, from (2.12), instead of considering {3νkμ(B(O, 3−k))}∞k=1 directly, we can deal
with

{
3νk

(
2πγ

(3 · (k + 1)!)k+1

)N (3−k )
}∞

k=1

=
{

3νk
(

2πγ

(3 · (k + 1)!)k+1

)max(1,[(logN0
3)k])}∞

k=1

.

For this case, it is not so hard to see that this sequence is almost decreasing. ��
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The next lemma is an easy consequence of a simple geometric observation and the inequal-
ity sin−1 r ≥ r for r ∈ (0, π

2

)
.

Lemma 2.10 For all r ∈ (0, 2),2

H1({(x, y) ∈ R2 : x2+y2 =1} ∩ {(x, y) ∈ R2 : (x−1)2 + y2 ≤ r2})=4 sin−1 r

2
≥ 2r.

(2.13)

Lemma 2.11 For all x ∈ X and r > 0, we have

μ(B(O, r)) ≤ μ(B(x, 10r)).

Proof Let us write x = (x1, x2, · · · , xN , · · · ) ∈ X . In view of (2.10), we have

μ(B(O, r)) =
N (r)∏
j=1

μ0(
(0, r)) and μ(B(x, 10r)) =
N (10r)∏

j=1

μ0(
(x j , 10r)).

For the definition of 
(z, r) see Definition 2.1. Now that N (r) ≥ N (10r) and μ0 is a
probability measure, it suffices to prove

μ0(
(0, r)) ≤ μ0(
(z, 10r)) (2.14)

2 (a) The left circle is x2 + y2 = 1 and the right circle is (x − 1)2 + y2 = 1/4.

2 1 0 1 2
2

1

0

1

2

Let us observe that the length of the set {x2 + y2 = 1, (x − 1)2 + y2 < r2} grows linearly when r is small
enough.
(b) The left circle is x2 + y2 = 49 and the right circle is (x − 1)2 + y2 = 49.

10 5 0 5 10
10

5

0

5

10

Since the left circle is large enough, the intersection of the large disk and the small one is sufficiently large.
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for all z ∈ Ak for some k = 0, 1, 2, · · · and r > 0.
Assume first that r > 1

9 · 3−k . Then, since |z| = 3−k , a geometric observation shows


(0, r) ⊂ 
(z, 10r). (2.15)

This shows (2.14). Assume that 0 < r ≤ 1
9 · 3−k . Then, from the equality

μ0(
(z, r) ∩ Ak)

μ0(Ak)
= μ0(
(3k z, 3kr) ∩ A0)

μ0(A0)
= μ0(
(1, 3kr) ∩ A0)

μ0(A0)

and Lemma 2.10 [see (2.13)], we deduce

μ0(
(z, r) ∩ Ak)

μ0(Ak)
≥ 2 · 3kr

H1(A0)
= 3kr

π
.

Hence it follows from Lemma 2.7 that

μ0(
(z, 10r)) ≥ μ0(
(z, r) ∩ Ak) ≥ 3kμ0(Ak)

π
r = 2 · 3kγ

(3 · k!)k
r = 2γ

k!k r. (2.16)

It follows from the definition of Al that

μ0(
(0, r)) = μ0

⎛
⎝ ⋃

l>− log3 r

Al

⎞
⎠ .

Let l ∈ N. Then l > − log3 r if and only if l ≥ [1 − log3 r ]. Hence, from Lemma 2.7,

μ0(
(0, r)) =
∑

l>− log3 r

2πγ

(3 · l!)l
≤

∑
l≥[1−log3 r ]

2πγ

3l · ([1 − log3 r ]!)[1−log3 r ] .

If we calculate the geometric series, then we obtain

μ0(
(0, r)) ≤ 3πγ

3[1−log3 r ] · ([1 − log3 r ]!)[1−log3 r ] <
3πγ r

([1 − log3 r ]!)[1−log3 r ] . (2.17)

Consequently, we deduce, from 0 < r ≤ 1
9 ·3−k , that is, 1− log3 r ≥ k +1+ log3 9 = k +3,

(2.16) and (2.17),

μ0(
(z, 10r)) ≥ 2γ r

k!k ≥ ((k + 3)!)k+3

k!k
2γ r

([1 − log3 r ]!)[1−log3 r ] > μ0(
(0, r)). (2.18)

Putting (2.15) and (2.18) together, we obtain (2.14) and the proof is complete. ��

We specify the natural number N0 in Definition 2.3 by

N0 = 32a (2.19)

for some a ∈ N large enough. As long as b ∈ [1, 9] and k is an odd multiple of a, logN0
b ·3−k

and logN0
3−k have the same integer part since we have (2.19).

Lemma 2.12 There exists a constant C > 0 such that μ(B(O, 2.2 × 3−k)) ≤ Cμ(Sk) for
all k ∈ N such that k is an odd multiple of a.
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Proof Let us write B(O, 2.2 × 3−k) out in full by using (2.6):

B(O, 2.2 × 3−k)

= {x={x j }∞j=1 ∈ X : |x1|<2.2 × 3−k, |x2|< 2.2×3−k, · · · , |xN (2.2×3−k )| < 2.2 × 3−k}.
Thus, from the definition of Ak , we have

B(O, 2.2 × 3−k) = {x={x j }∞j=1 ∈ X : |x1| ≤ 3−k, |x2| ≤ 3−k, · · · , |xN (2.2×3−k )| ≤ 3−k}

=
⎛
⎝

∞⋃
j=k

A j

⎞
⎠

N (2.2×3−k )

× X0 × X0 × · · · .

Hence, it follows from (2.7) that

μ(B(O, 2.2 × 3−k)) ≤
(

2πγ

(3 · k!)k

)N (2.2×3−k ) (
1 + 1

γ · (k + 1)!
)N (2.2×3−k )

.

Now that (k +1)! grows much faster than N (2.2×3−k) = max(1, [(logN0
3)k − logN0

2.2]),
we have

μ(B(O, 2.2 × 3−k)) ≤ C

(
2πγ

(3 · k!)k

)N (2.2×3−k )

. (2.20)

Meanwhile, from (2.1) and (2.7), we deduce

μ(Sk) =
N (3−k )∏

j=1

(
2πγ

(3 · k!)k

)
=
(

2πγ

(3 · k!)k

)N (3−k )

. (2.21)

Since k/a is an odd integer, N (3−k) = N (2.2 × 3−k). We thus deduce the desired result
from (2.20) and (2.21). ��

The next lemma concerns the norm estimates of χSk .

Lemma 2.13 Let k be an odd multiple of a. Then, equivalence

‖χSk ‖L p,2,ν (μ) = sup
x∈X, r∈(0,2)

rν/p

⎛
⎜⎝ 1

μ(B(x, 2r))

∫

B(x,r)

χSk (y) dμ(y)

⎞
⎟⎠

1/p

∼ 3−νk/p (2.22)

holds, where the implicit constant in ∼ is independent of k.

Proof The lower bound of ‖χk‖L p,2,ν (μ) is a consequence of Lemma 2.12: It is easy, from
Lemma 2.12, to see that

3−νk/p ≤ C3−νk/p

⎛
⎜⎝ 1

μ(B(O, 2.2 × 3−k))

∫

B(O,1.1×3−k )

χSk (y) dμ(y)

⎞
⎟⎠

1/p

.

By using sup, we have

3−νk/p ≤ C sup
x∈X, r∈(0,2)

rν/p

⎛
⎜⎝ 1

μ(B(x, 2r))

∫

B(x,r)

χSk (y) dμ(y)

⎞
⎟⎠

1/p

.
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Consequently, (2.22) will have been established once we prove

sup
x∈X, r>0

rν/p

⎛
⎜⎝ 1

μ(B(x, 2r))

∫

B(x,r)

χSk (y) dμ(y)

⎞
⎟⎠

1/p

≤ C3−νk/p. (2.23)

In order that Sk and B(x, r) intersect, we need to have d(x, O) < r + 3−k . In this case we
have either d(x, O) < 2r or d(x, O) < 2 · 3−k . Actually, we distinguish two cases by setting

I := rν/p

⎛
⎜⎝ 1

μ(B(x, r))

∫

B(x,r)

χSk (y) dμ(y)

⎞
⎟⎠

1/p

.

Let us suppose r ≤ 36−k . Then we have

I ≤ rν/p ≤ 729ν/p · 3−νk/p. (2.24)

Let us suppose r > 36−k instead. Then we have

I ≤ rν/p

⎛
⎜⎝ 1

μ(B(O, r/10))

∫

B(x,r)

χSk (y) dμ(y)

⎞
⎟⎠

1/p

≤ rν/p
(

μ(Sk)

μ(B(O, r/10))

)1/p

from Lemma 2.11. Thus, by choosing an integer m ≤ k so that 36−m < r ≤ 37−m , by virtue
of Lemma 2.9 with (l, k) replaced by (m − 1, k − 1), we obtain

I ≤ C(31−m)ν/p
(

μ(Sk)

μ(B(O, 31−m))

)1/p

≤ C(31−k)ν/p
(

μ(B(O, 31−k))

μ(B(O, 31−k))

)1/p

= C3−νk/p.

(2.25)

In view of (2.24) and (2.25), we obtain (2.23). ��
2.2 Conclusion of the proof of Theorem 1.1

As we announced before, we shall now show that there does exist a separable metric space
(X, d, μ) such that L p,4,ν(μ) and L p,2,ν(μ) do not coincide as sets. Let us consider the
norms of χSk . It suffices to show that

lim sup
k→∞

‖χSk ‖L p,2,ν (μ)

‖χSk ‖L p,4,ν (μ)

= ∞. (2.26)

More precisely

lim
k→∞

‖χSa+2ak ‖L p,2,ν (μ)

‖χSa+2ak ‖L p,4,ν (μ)

= ∞. (2.27)

Let B(x, r) = B({x j }∞j=1, r) be a ball such that B(x, r) meets Sk at a point y, that is,
y ∈ Sk ∩ B(x, r). We distinguish three cases assuming that k is an odd multiple of a.
Case 1 Assume first that 3−k+2/10 ≤ r ≤ 3−k+6. Then d(x, y) < r implies

μ(B(x, r) ∩ Sk)

μ(B(x, 4r))
≤ μ(Sk)

μ(B(y, 3r) ∩ Sk−1)
≤ μ(Sk)

μ(B(y, 2.7 · 3−k) ∩ Sk−1)
.
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Meanwhile let us set

θ ≡ H1({x2 + y2 = 32, (x − 1)2 + y2 ≤ (2.7)2})
6π

∈ (0, 1).

Since k is an odd multiple of a, we have N (3−k) = N (2.7 · 3−k) = N (31−k).
Recall that y ∈ Sk . A geometric observation shows that

μ(B(y, 2.7 · 3−k) ∩ Sk−1)

= μ({x = {x j }∞j=1 ∈ Sk−1 : |x j − y j | < 2.7 · 3−k for all j ≤ N (3−k)})

=
N (3−k )∏

j=1

μ0({x j ∈ Ak−1 : |x j − y j | < 2.7 · 3−k})

= (μ0({x1 ∈ Ak−1 : |x1 − y1| < 2.7 · 3−k}))N (3−k )

= (θμ0(Ak−1))
N (3−k )

= θ N (3−k )μ(Sk−1).

Hence, from (2.21), we deduce

μ(B(x, 4r))

μ(B(x, r) ∩ Sk)
≥ θ N (3−k )μ(Sk−1)

μ(Sk)
=
(

3θ(k − 1)!kk
)N (3−k ) → ∞

as k → ∞. Consequently, since ‖χSk ‖L p,2,ν (μ) ∼ 3−νk/p from Lemma 2.13, we have

rν/p
(

μ(B(x, r) ∩ Sk)

μ(B(x, 4r))

)1/p

≤ C

p
√(

3θ(k − 1)!kk
)N (3−k )

3−νk/p

≤ C

p
√(

3θ(k − 1)!kk
)N (3−k )

‖χSk ‖L p,2,ν (μ). (2.28)

Case 2 If 3−k+2/10 ≥ r , then we use

μ(B(x, r) ∩ Sk)

μ(B(x, 4r))
≤ μ(B(x, r) ∩ Sk)

μ(B(x, 4r) ∩ Sk)
≤ μ(B(y, 2r) ∩ Sk)

μ(B(y, 3r) ∩ Sk)
,

which follows from a geometric observation. Now we go into the structure of the measure
μ; if we insert the definition of the measure μ, then we obtain

μ(B(x, r) ∩ Sk)

μ(B(x, 4r))

=
⎛
⎝

N (3−k )∏
j=1

μ0(
(x j , r) ∩ Ak)

⎞
⎠
⎛
⎝

N (r)∏

j=N (3−k )+1

μ0(
(x j , r))

⎞
⎠
⎛
⎝

N (4r)∏
j=1

μ0(
(x j , 4r))

⎞
⎠

−1

≤
⎛
⎝

N (3−k )∏
j=1

μ0(
(x j , r) ∩ Ak)

⎞
⎠
⎛
⎝

N (r)∏

j=N (3−k )+1

μ0(
(x j , r))

⎞
⎠
⎛
⎝

N (r)∏
j=1

μ0(
(x j , 4r))

⎞
⎠

−1

≤
⎛
⎝

N (3−k )∏
j=1

μ0(
(x j , r) ∩ Ak)

⎞
⎠
⎛
⎝

N (3−k )∏
j=1

μ0(
(x j , 4r))

⎞
⎠

−1
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≤
(

μ0(
(y1, 2r) ∩ Ak)

μ0(
(y1, 3r) ∩ Ak)

)N (3−k )

=
(H1(
(y1, 2r) ∩ Ak)

H1(
(y1, 3r) ∩ Ak)

)N (3−k )

.

Now we consider a transform given by z ∈ Ak �→ 3k z ∈ Ak and we deduce

μ(B(x, r) ∩ Sk)

μ(B(x, 4r))
≤
(H1(
(3k y1, 2 · 3kr) ∩ A0)

H1(
(3k y1, 3k+1r) ∩ A0)

)N (3−k )

≤
(

sup
r≤0.9

[H1(
(1, 2r) ∩ A0)

H1(
(1, 3r) ∩ A0)

])N (3−k )

.

Consequently, since ‖χSk ‖L p,2,ν (μ) ∼ 3−νk/p and r ≤ 0.9 · 3−k , we have

rν/p
(

μ(B(x, r) ∩ Sk)

μ(B(x, 4r))

)1/p

≤ C‖χSk ‖L p,2,ν (μ)

(
sup

r≤0.9

[H1(
(1, 2r) ∩ A0)

H1(
(1, 3r) ∩ A0)

])N (3−k ))/p

. (2.29)

Case 3 Finally, assume that r ≥ 3−k+6. Choose l ≤ k so that 36−l ≤ r < 37−l . Then we
have, from Lemma 2.11, we deduce

rν/p
(

μ(B(x, r) ∩ Sk)

μ(B(x, 4r))

)1/p

≤ rν/p
(

μ(Sk)

μ(B(O, 4r/10))

)1/p

≤ 3(7−l)ν/p
(

μ(Sk)

μ(B(O, 3−l+5))

)1/p

.

It follows from Lemma 2.9 and the fact that ‖χSk ‖L p,2,ν (μ) ∼ 3−kν/p that

rν/p
(

μ(B(x, r) ∩ Sk)

μ(B(x, 4r))

)1/p

≤ C3−kν/p
(

μ(Sk)

μ(B(O, 32−k))

)1/p

≤ C‖χSk ‖L p,2,ν (μ)

(
μ(Sk)

μ(Sk−1)

)1/p

.

We have

rν/p
(

μ(B(x, r) ∩ Sk)

μ(B(x, 4r))

)1/p

≤ C‖χSk ‖L p,2,ν (μ)

⎛
⎝ θ N (3−k )

(
3θ(k − 1)!kk

)N (3−k )

⎞
⎠

1/p

≤ C

p
√(

3θ(k − 1)!kk
)N (3−k )

‖χSk ‖L p,2,ν (μ). (2.30)

Inequalities (2.28) – (2.30) yield

‖χSk ‖L p,4,ν (μ)

≤ C‖χSk ‖L p,2,ν (μ)

⎧⎨
⎩

1

p
√(

3θ(k − 1)!kk
)N (3−k )

+
(

sup
r≤0.9

[H1(
(1, 2r) ∩ A0)

H1(
(1, 3r) ∩ A0)

])N (3−k ))/p
⎫⎬
⎭

for all k such that k is an odd multiple of a. Thus, (2.26) follows.
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3 Remarks and examples

3.1 Proof of Proposition 1.4

We follow the idea in [10], [33, Proposition 1.2], [34, Proposition 2.2] and [35, Proposition
1.1].

Before we start the proof of Proposition 1.4, we need some preparatory observations. By
symmetry, we can assume that κ1 > κ2. Next, since 0 < ν− ≤ ν+ < ∞ and −∞ < β− ≤
β+ < ∞, we can find a constant K independent of x such that

K −1rν(x)(log(e + 1/r))β(x) ≤ (2r)ν(x)(log(e + 1/2r))β(x) ≤ Krν(x)(log(e + 1/r))β(x)

(3.1)

for all r > 0. Based upon these observations, we prove Proposition 1.4. We need to compare
the following two conditions (3.2) and (3.3):

∃λ1 > 0 sup
x∈G,0<r<dG

rν(x)(log(e + 1/r))β(x)

μ(B(x, κ1r))

∫

G∩B(x,r)

�(y, | f (y)|/λ1) dμ(y) ≤ 1. (3.2)

∃λ2 > 0 sup
x∈G,0<r<dG

rν(x)(log(e + 1/r))β(x)

μ(B(x, κ2r))

∫

G∩B(x,r)

�(y, | f (y)|/λ2) dμ(y) ≤ 1. (3.3)

If (3.3) holds, then (3.2) trivially holds with λ1 = λ2. So let us suppose (3.2). We need to
show that, for x ∈ G,

rν(x)(log(e + 1/r))β(x)

μ(B(x, κ2r))

∫

G∩B(x,r)

�(y, | f (y)|/λ2) dμ(y) ≤ 1

for some λ2 = N∗λ1, where N∗ is independent of f, x and r . We decompose B(x, r) into
N small balls B(x1, s), B(x2, s), . . . , B(xN , s), so that

s ≤ r, B(x, r) ⊂
N⋃

j=1

B(x j , s), B(x, κ2r) ⊃
N⋃

j=1

B(x j , κ1s), (3.4)

where N depends only on κ1 and κ2. Observe that (3.4) shows that s and r satisfy

r ≤ 2m0 s (3.5)

for some constant m0 depending only on κ1 and κ2. Then, from (3.1), (3.4) and (3.5), we
have

rν(x)(log(e + 1/r))β(x)

μ(B(x, κ2r))

∫

G∩B(x,r)

�(y, | f (y)|/λ1) dμ(y)

≤
N∑

j=1

rν(x j )(log(e + 1/r))β(x j )

μ(B(x, κ2r))

∫

G∩B(x j ,s)

�(y, | f (y)|/λ1) dμ(y)

≤
N∑

j=1

rν(x j )(log(e + 1/r))β(x j )

μ(B(x j , κ1s))

∫

G∩B(x j ,s)

�(y, | f (y)|/λ1) dμ(y)
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≤ K m0

N∑
j=1

sν(x j )(log(e + 1/s))β(x j )

μ(B(x j , κ1s))

∫

G∩B(x j ,s)

�(y, | f (y)|/λ1) dμ(y)

≤ K m0 N . (3.6)

By virtue of (3.6) and the convexity of �(y, ·), (3.3) holds with λ2 = K m0 Nλ1.

3.2 Other examples of non-doubling metric measure spaces

The doubling condition had been playing a key role in harmonic analysis. However, non-
doubling measure spaces occur very naturally in many branches of mathematics. The typical
examples we envisage are the following ones:

Example 3.1 Let B(1) ≡ {(x1, x2, · · · , xn) ∈ Rn : x2
1 + x2

2 + · · · + x2
n < 1} be the unit

ball in Rn . Equip B(1) with a metric given by

g ≡ 4
dx1 ⊗ dx1 + dx2 ⊗ dx2 + · · · + dxn ⊗ dxn

1 − x1
2 − x2

2 − · · · − xn
2 .

Then (B(1), g) is called the space with constant curvature −1 and if we denote by μ the
induced measure, then μ(B(x, r)) grows exponentially.

Example 3.2 Equip the Euclidean space (Rn, |·1−·2|)with a measure dμ=π−n/2 exp(−|x |2).
Then (Rn, | ·1 − ·2 |, μ) is called the Gauss measure space and the operator

L = −
 + (x · ∇)

is a self-adjoint operator on L2(μ). Recently, the first author, Liguang Liu and Dachun Yang
considered Morrey spaces in [16]. Let us set

Ba ≡ {B(x, r) : r ≤ a min(1, |x |−1)}
be the set of locally doubling balls. Recently, in [16] the first author, Liguang Liu and Dachun
Yang considered Morrey spaces given by

‖ f ‖Mp,q
Ba

(μ) ≡ sup
B∈Ba

1

[μ(B)]1/q−1/p

⎧⎨
⎩
∫

B

| f (y)|q dμ(y)

⎫⎬
⎭

1/q

< ∞.

In [16, Proposition 2.6], the space Mp,q
Ba

(μ) is not depend upon the parameter a > 0. But

unfortunately we cannot realize Mp,q
Ba

(μ) by adjusting parameters.

Example 3.3 The attractors of a dynamical system can have non-doubling Hausdorff mea-
sures.

4 An estimate of the modified centered Hardy–Littlewood maximal operator M16

In Sect. 4 we work on a bounded open set G and we write dG for the diameter of G.
For a locally integrable function f on G, recall that in (1.6) we defined the centered and

generalized Hardy–Littlewood maximal operator by

M16 f (x) = sup
r>0

1

μ(B(x, 16r))

∫

G∩B(x,r)

| f (y)|dμ(y) (4.1)
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for x ∈ G. Observe that

M16 f (x) = sup
r∈(0,dG )

1

μ(B(x, 16r))

∫

G∩B(x,r)

| f (y)|dμ(y), (4.2)

since G is bounded.
In what follows, as we did in Sect. 1, if f is a function on G, then we assume that f = 0

outside G.
As a starting point of the present paper, we shall prove the following estimate of the

centered Hardy–Littlewood maximal operator M16. For the case q = 0, see Kokilashvili–
Meskhi [15]. As a consequence of Theorem 4.1 the centered Hardy–Littlewood maximal
operator M16 is bounded from L�,ν,β,G;2(G) to L�,ν,β,G;4(G).

Theorem 4.1 Assume that p(·) and q(·) satisfy (P1), (P), (Q1) and (Q2) and that ν : X →
(0,∞) and β : X → (−∞,∞) are bounded μ-measurable functions. Define � by (1.3).
Suppose that p− > 1 and that ν− > 0. Then there exists a constant C > 0 such that

1

μ(B(z, 4r))

∫

B(z,r)

M16 f (x)p(x)(log(e+M16 f (x)))q(x)dμ(x)≤Cr−ν(z)(log(e+1/r))−β(z)

for all z ∈ G, r ∈ (0, dG) and μ-measurable functions f with ‖ f ‖L�,ν,β;2(G) ≤ 1.

To prove Theorem 4.1, we need several lemmas. Let us begin with the following result,
which concerns an estimate for the case p(x) ≡ p0 and q(x) ≡ 0 (cf. [21, Lemma 4.3] and
[24, Lemma 2.2]).

Lemma 4.2 Assume that p(·) and ν(·) satisfy p(·) ≡ p0 > 1 and ν− > 0, respectively. Let
f be a μ-measurable function on G satisfying

1

μ(B(x, 2r))

∫

B(x,r)

| f (y)|p0 dμ(y) ≤ r−ν(x)(log(e + 1/r))−β(x) (4.3)

for all x ∈ G and 0 < r < dG. Then there exists a constant C > 0 such that

1

μ(B(z, 4r))

∫

B(z,r)

M16 f (x)p0 dμ(x) ≤ Cr−ν(z)(log(e + 1/r))−β(z)

for all z ∈ G and 0 < r < dG, where the constant C is independent of f satisfying (4.3).

Proof Let f satisfy (4.3), and fix z ∈ G and 0 < r < dG . Write A0 ≡ B(z, 2r) and
A j ≡ B(z, 2 j+1r)\ B(z, 2 j r) for each positive integer j . Based upon this partition {A j }∞j=1,
we set

f j ≡ f χA j for j = 0, 1, 2, · · · , g0 ≡
∞∑
j=1

| f j |.

Let us set

I1 ≡
∫

B(z,r)

M16 f0(x)p0 dμ(x), I2 ≡
∫

B(z,r)

M16g0(x)p0 dμ(x).
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Then we have
∫

B(z,r)

M16 f (x)p0 dμ(x) ≤ C(I1 + I2).

By virtue of (4.3), we have

I1 ≤C
∫

X

| f0(x)|p0 dμ(x)=C
∫

B(z,2r)

| f (x)|p0 dμ(x)≤Cr−ν(z)(log(e+1/r))−β(z)μ(B(z, 4r)).

The estimate for I1 is now valid.
Let us turn to I2. In view of the definition of f j and A j , we have

M16 f j (x) ≤ sup
t∈((2 j −1)r,(2 j+1+1)r)

1

μ(B(x, 16t))

∫

B(x,t)

| f j (y)|dμ(y)

for x ∈ B(z, r). For x ∈ B(z, r), we estimate the right-hand side crudely:

M16 f j (x) ≤ 1

μ(B(x, 16(2 j − 1)r)

∫

B(x,(2 j+1+1)r)

| f j (y)|dμ(y)

≤ 1

μ(B(x, 16(2 j − 1)r)

∫

B(z,(2 j+1+2)r)

| f j (y)|dμ(y)

≤ 1

μ(B(z, (2 j+4 − 17)r)

∫

B(z,(2 j+1+2)r)

| f j (y)|dμ(y).

By the Hölder inequality and the fact that 2 j+4 − 17 ≥ 2 j+1 + 2 for j = 1, 2, · · · , we have

M16 f j (x) ≤
⎛
⎜⎝ 1

μ(B(z, (2 j+4 − 17)r))

∫

B(z,(2 j+1+2)r)

| f (y)|p0 dμ(y)

⎞
⎟⎠

1/p0

.

Since 16(2 j − 1) − 1 ≥ 2(2 j+1 + 2) for any positive integer j , we see that for x ∈ B(z, r)

M16 f j (x) ≤
(
(2 j+1r + 2r)−ν(z)(log(e + 1/(2 j+1r + 2r)))−β(z)

)1/p0
.

Finally, keeping in mind that β(·) and ν(·) are both assumed to be bounded, we obtain

M16 f j (x) ≤ C(2 j r)−ν(z)/p0(log(e + 1/(2 j r)))−β(z)/p0 ,

so that, adding this estimate over j , we obtain a pointwise estimate: for all x ∈ B(z, r),

M16g0(x) ≤
∞∑
j=1

M16 f j (x)

≤ C
∞∑
j=1

(2 j r)−ν(z)/p0(log(e + 1/(2 j r)))−β(z)/p0

≤ Cr−ν(z)/p0(log(e + 1/r))−β(z)/p0 .
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Integrating the above estimate over B(z, r), we obtain

I2 ≤ Cr−ν(z)(log(e + 1/r))−β(z)
∫

B(z,r)

dμ(x) = Cr−ν(z)(log(e + 1/r))−β(z)μ(B(z, r)).

Since μ(B(z, r)) ≤ μ(B(z, 4r)), we deduce

1

μ(B(z, 4r))

∫

B(z,r)

M16 f (x)p0 dμ ≤ Cr−ν(z)(log(e + 1/r))−β(z),

which proves Lemma 4.2. ��

It is significant that ν(·) and β(·) do not have to be continuous.
The next lemma concerns an estimate for x such that | f (x)| is large. For convenience of

the readers, we supply its proof the following key inequality (4.5) which is similar to the one
dealt in [27].

Lemma 4.3 Suppose ν− > 0. Let f be a non-negative μ-measurable function on G satis-
fying ‖ f ‖L�,ν,β;2(G) ≤ 1 such that

f (x) ≥ 1 or f (x) = 0 (4.4)

for each x ∈ G. Define g(y) ≡ f (y)p(y)(log(e + f (y)))q(y) for y ∈ X. Then there exists a
constant C > 0, independent of f , such that

M16 f (x)p(x)(log(e + M16 f (x)))q(x) ≤ C M16g(x) (4.5)

for all x ∈ G.

Proof Let x ∈ G and r > 0. We let

H ≡ Hx,r = 1

μ(B(x, 16r))

∫

B(x,r)

g(y) dμ(y). (4.6)

To prove (4.5), it suffices to show that

1

μ(B(x, 16r))

∫

B(x,r)

f (y) dμ(y) ≤ C H1/p(x)(log(e + H))−q(x)/p(x) (4.7)

for all x ∈ G and 0 < r < dG with the constant C independent of x and r . Indeed, once (4.7)
is proved, if we insert (4.6) to (4.7) and consider the supremos over all admissible x and r ,
then we will have

M16 f (x) ≤ C M16g(x)1/p(x)(log(e + M16g(x)))−q(x)/p(x). (4.8)

In view of the definition of g and the fact that the inverse function of t �→ t P (log t)Q with
P > 1 and Q ∈ R is equivalent to the function t �→ t1/P (log t)−Q/P , it follows that (4.8)
implies the desired conclusion (4.5). So let us prove (4.7).

To show (4.7), first consider the case when H ≥ 1. Set

k ≡ H1/p(x)(log(e + H))−q(x)/p(x).
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Decompose the integral according to the set { f > k};
1

μ(B(x, 16r))

∫

B(x,r)

f (y) dμ(y)

= 1

μ(B(x, 16r))

⎛
⎜⎝

∫

B(x,r)∩{0≤ f ≤k}
f (y) dμ(y) +

∫

B(x,r)∩{ f >k}
f (y) dμ(y)

⎞
⎟⎠ . (4.9)

Since we are assuming (Q1), we obtain

1

μ(B(x, 16r))

∫

B(x,r)

f (y) dμ(y)

≤ k + C

μ(B(x, 16r))

∫

B(x,r)

f (y)

(
f (y)

k

)p(y)−1 ( log(e + f (y))

log(e + k)

)q(y)

dμ(y)

= k + C

μ(B(x, 16r))

∫

B(x,r)

g(y)k−p(y)+1(log(e + k))−q(y)dμ(y).

Let y ∈ B(x, r) be fixed. Since ‖ f ‖L�,ν,β;2(G) ≤ 1, we have

H ≤ r−ν(x)(log(e + 1/r))−β(x) (4.10)

for all x ∈ G and 0 < r < dG . Assuming that dG < ∞ and that (P2) and (Q2) hold, we
obtain by (4.10)

k−p(y) ≤ Ck−p(x) = C H−1(log(e + H))q(x)

and

(log(e + k))−q(y) ≤ C(log(e + k))−q(x) ≤ C(log(e + H))−q(x).

Consequently (4.7) follows in this case.
In the case H ≤ 1, we find

H ≤ C H1/p(x)(log(e + H))−q(x)/p(x) (4.11)

from (P1) and (Q1). In view of the assumption (4.4), we have

g(y) = f (y) · f (y)p(y)−1(log(e + f (y)))q(y) ≥ C f (y) (y ∈ G)

for some C > 0 and hence

1

μ(B(x, 16r))

∫

B(x,r)

f (y) dμ(y) ≤ C
1

μ(B(x, 16r))

∫

B(x,r)

g(y) dμ(y) = C H. (4.12)

If we combine (4.11) and (4.12), we obtain (4.7) in the case H ≤ 1. ��
Keeping Lemmas 4.2 and 4.3 in mind, we prove Theorem 4.1.

Proof We may assume that f ≥ 0 by considering | f | instead of f if necessary. Write

f = f χ{y∈X : f (y)≥1} + f χ{y∈X : f (y)<1} ≡ f1 + f2.
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Take p0 ∈ (1, p−) and define g1(y) ≡ f1(y)p(y)/p0(log(e + f1(y)))q(y)/p0 . Set

�∗(x, r) ≡ r p(x)/p0(log(c0 + r))q(x)/p0

for x ∈ X and r > 0.
We claim that ‖ f1‖L�∗,ν,β;2(G) ≤ 1. Indeed,

1

μ(B(x, 2r))

∫

B(x,r)

g1(y) dμ(y)

= 1

μ(B(x, 2r))

∫

B(x,r)

f1(y)p(y)/p0(log(e + f1(y)))q(y)/p0 dμ(y)

≤ C
1

μ(B(x, 2r))

∫

B(x,r)

f1(y)p(y)(log(e + f1(y)))q(y) dμ(y)

≤ Cr−ν(x)(log(e + 1/r))−β(x)

for all x ∈ G and 0 < r < dG . Applying Lemma 4.3 with p(x) replaced by p(x)/p0, we
obtain

M16 f1(x)p(x)/p0(log(e + M16 f1(x)))q(x)/p0 ≤ C M16g1(x). (4.13)

Since M16 f2(x) ≤ 1 for all x ∈ G, it follows from (4.13) that

M16 f (x)p(x)(log(e + M16 f (x)))q(x)

≤ C
{

M16 f1(x)p(x)(log(e + M16 f1(x)))q(x) + M16 f2(x)p(x)(log(e + M16 f2(x)))q(x)
}

≤ C(1 + M16g1(x)p0).

By Lemma 4.2 with f replaced by g1, from the fact that ν− > 0, we see that

1

μ(B(z, 4r))

∫

B(z,r)

M16 f (x)p(x)(log(e + M16 f (x)))q(x) dμ(x)

≤ C
1

μ(B(z, 4r))

∫

B(z,r)

(1 + M16g1(x)p0) dμ(x)

≤ C + Cr−ν(z)(log(e + 1/r))−β(z).

Assuming that 0 < r < dG , we obtain

1

μ(B(z, 4r))

∫

B(z,r)

M16 f (x)p(x)(log(e+M16 f (x)))q(x) dμ(x) ≤ Cr−ν(z)(log(e + 1/r))−β(z)

for all z ∈ G and 0 < r < dG , as required. ��
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5 Sobolev’s inequality

In Sect. 5, we deal with the Hardy–Littlewood–Sobolev inequality for the operator defined
in Sect. 1 by

Uα(·),32 f (x) ≡
∫

G

d(x, y)α(x) f (y)

μ(B(x, 32d(x, y)))
dμ(y).

Recall that α : X → (0,∞) and ν : X → (0,∞) are both bounded μ-measurable functions
and that α− > 0 [see (1.2) above]. Throughout Sect. 5, we assume in addition that

inf
x∈X

(1/p(x) − α(x)/ν(x)) > 0. (5.1)

In this case we have ν− ≥ α− > 0 automatically.
We consider the Sobolev exponent p�(·) given by

1/p�(x) ≡ 1/p(x) − α(x)/ν(x) (x ∈ X) (5.2)

and the new modular function

�(x, t) ≡ t p�(x)(log(e + t))p�(x)(q(x)/p(x)+α(x)β(x)/ν(x)) [x ∈ X, t ∈ (0,∞)]. (5.3)

In Sect. 5 we shall prove the following result asserting that Uα(·),32 is bounded from
L�,ν,β;2(G) to L�,ν,β;4(G) postulating only (1.1) on μ:

Theorem 5.1 Assume (P1), (P2), (Q1) and (Q2) and define � by (5.3) and an exponent p�

by (5.2). Assume in addition that ν : X → (0,∞) and β : X → (−∞,∞) are bounded
μ-measurable functions. Then, there exists a positive constant c such that

1

μ(B(z, 4r))

∫

B(z,r)

�(x, Uα(·),32 f (x))dμ(x) ≤ cr−ν(z)(log(e + 1/r))−β(z)

for all z ∈ G and 0 < r < dG, whenever f is a non-negative μ-measurable function on G
satisfying ‖ f ‖L�,ν,β;2(G) ≤ 1.

We plan to prove Theorem 5.1 by using three auxiliary estimates, keeping in mind the
original proof of Hedberg [14].

The first lemma concerns the embedding property of Morrey spaces. If we let �(x, t) ≡ t
for x ∈ X and t ≥ 0, then L�,ν,β;2(G) is embedded into L�,ν/p,(q+β)/p;2(G).

Lemma 5.2 (cf. [21, Lemma 2.7]) There exists a constant C > 0 such that

1

μ(B(x, 2r))

∫

B(x,r)

f (y)dμ(y) ≤ Cr−ν(x)/p(x)(log(e + 1/r))−(q(x)+β(x))/p(x)

for all x ∈ G, r ∈ (0, dG) and non-negative μ-measurable functions f satisfying

‖ f ‖L�,ν,β;2(G) ≤ 1. (5.4)

Proof Let us write g(y) ≡ f (y)p(y)(log(e + f (y)))q(y) as usual. We fix x ∈ G and r ∈
(0, dG). For k = r−ν(x)/p(x)(log(e + 1/r))−(q(x)+β(x))/p(x) > 0, as we did in (4.9), we have
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1

μ(B(x, 2r))

∫

B(x,r)

f (y)dμ(y)

= 1

μ(B(x, 2r))

∫

B(x,r)∩{ f ≤k}
f (y)dμ(y) + 1

μ(B(x, 2r))

∫

B(x,r)∩{ f >k}
f (y)dμ(y)

≤ k + 1

μ(B(x, 2r))

∫

B(x,r)

f (y)

(
f (y)

k

)p(y)−1 ( log(e + f (y))

log(e + k)

)q(y)

dμ(y)

= k + 1

μ(B(x, 2r))

∫

B(x,r)

g(y)k−p(y)+1(log(e + k))−q(y)dμ(y).

We find by (P2) and (Q2)
1

μ(B(x, 2r))

∫

B(x,r)

f (y)dμ(y)

≤ k + C
1

μ(B(x, 2r))

∫

B(x,r)

g(y)k−p(x)+1(log(e + k))−q(x)dμ(y)

≤ k + Ckrν(x)(log(e + 1/r))β(x) 1

μ(B(x, 2r))

∫

B(x,r)

g(y) dμ(y).

In view of (5.4), we obtain
1

μ(B(x, 2r))

∫

B(x,r)

f (y)dμ(y) ≤ Ck = Cr−ν(x)/p(x)(log(e + 1/r))−(q(x)+β(x))/p(x),

as required. ��
The next lemma concerns an estimate inside balls.

Lemma 5.3 (c.f. [24]) If f is a non-negative μ-measurable function on G, then
∫

B(x,δ)

d(x, y)α(x) f (y)

μ(B(x, 32d(x, y)))
dμ(y) ≤ Cδα(x)M16 f (x) (5.5)

for x ∈ G and δ > 0.

Proof The proof is similar to the one in [24, Lemma 2.3]. Assuming that μ does not charge
a point {x}, we have∫

B(x,δ)

d(x, y)α(x) f (y)

μ(B(x, 32d(x, y)))
dμ(y)

=
∞∑
j=1

∫

B(x,2− j+1δ)\B(x,2− j δ)

d(x, y)α(x) f (y)

μ(B(x, 32d(x, y)))
dμ(y)

≤
∞∑
j=1

∫

B(x,2− j+1δ)

(2− j+1δ)α(x) f (y)

μ(B(x, 2− j+5δ))
dμ(y)

≤
∞∑
j=1

(2− j+1δ)α(x)M16 f (x).
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If we use (1.2), then we see the geometric series of the most right-hand side converges and,
with a constant C independent of x , we have

∫

B(x,δ)

d(x, y)α(x) f (y)

μ(B(x, 32d(x, y)))
dμ(y) ≤ Cδα(x)M16 f (x).

Thus, Lemma 5.3 is proved. ��
We get information outside a fixed ball by using Lemma 5.4 below.

Lemma 5.4 Let f be a non-negative μ-measurable function on G such that

‖ f ‖L�,ν,β;2(G) ≤ 1. (5.6)

Then
∫

G\B(x,δ)

d(x, y)α(x) f (y)

μ(B(x, 32d(x, y)))
dμ(y) ≤ Cδα(x)−ν(x)/p(x)(log(e + 1/δ))−(q(x)+β(x))/p(x)

(5.7)

for x ∈ G and small δ > 0.

Proof Let dG be the diameter of G as before and let j0 be the smallest integer such that
2 j0δ ≥ dG . By Lemma 5.2 and our convention that f is 0 outside G, we have

∫

G\B(x,δ)

d(x, y)α(x) f (y)

μ(B(x, 32d(x, y)))
dμ(y)

=
j0∑

j=0

∫

B(x,2 j+1δ)\B(x,2 j δ)

d(x, y)α(x) f (y)

μ(B(x, 32d(x, y)))
dμ(y)

≤
j0∑

j=0

(2 j+1δ)α(x) 1

μ(B(x, 2 j+5δ))

∫

B(x,2 j+1δ)

f (y)dμ(y)

≤
j0∑

j=0

(2 j+1δ)α(x)−ν(x)/p(x)(log(e + 1/(2 j+1δ)))−(q(x)+β(x))/p(x).

Let η ≡ inf x∈G(ν(x)/p(x) − α(x)). Then η > 0 by (5.1). Since the functions log α, q, β

are all bounded, p− > 1 and the function ν is positive, we obtain
∫

G\B(x,δ)

d(x, y)α(x) f (y)

μ(B(x, 32d(x, y)))
dμ(y)

≤ C
j0∑

j=0

(2 jδ)α(x)−ν(x)/p(x)(log(e + 1/(2 jδ)))−(q(x)+β(x))/p(x)

≤ C

2dG∫

δ

tα(x)−ν(x)/p(x)(log(e + 1/t))−(q(x)+β(x))/p(x) dt

t
.
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So we need to consider the integral

I(δ) =
2dG∫

δ

tα(x)−ν(x)/p(x)(log(e + 1/t))−(q(x)+β(x))/p(x) dt

t
. (5.8)

Recalling that η > 0, we have
∫

G\B(x,δ)

d(x, y)α(x) f (y)

μ(B(x, 32d(x, y)))
dμ(y)

≤ Cδα(x)−ν(x)/p(x)+η/2(log(e + 1/δ))−(q(x)+β(x))/p(x)

2dG∫

δ

t−η/2 dt

t

≤ Cδα(x)−ν(x)/p(x)(log(e + 1/δ))−(q(x)+β(x))/p(x),

which completes the proof. ��
With the aid of Theorem 4.1, Lemma 5.3 and Lemma 5.4, we can apply Hedberg’s trick

(see [14]) to obtain a Sobolev type inequality for Riesz potentials, as an extension of Adams
[1, Theorem 3.1], Chiarenza and Frasca [4, Theorem 2], Sawano–Tanaka [35, Theorem 3.3]
and Mizuta–Shimomura–Sobukawa [24, Theorem 2.5], Mizuta–Nakai–Ohno–Shimomura
[21, Theorem 4.5] and Kokilashvili–Meskhi [15, Theorem 4.4].

Proof of Theorem 5.1 We see from Lemmas 5.3 and 5.4 that

Uα(·),32 f (x) =
∫

X\B(x,δ)

d(x, y)α(x) f (y)

μ(B(x, 32d(x, y)))
dμ(y) +

∫

B(x,δ)

d(x, y)α(x) f (y)

μ(B(x, 32d(x, y)))
dμ(y)

≤ Cδα(x)M16 f (x) + Cδα(x)−ν(x)/p(x)(log(e + 1/δ))−(q(x)+β(x))/p(x)

for all δ > 0. Here, we optimize the above estimate by letting

δ ≡ min
{

dG , M16 f (x)−p(x)/ν(x)(log(e + M16 f (x)))−(q(x)+β(x))/ν(x)
}

,

and we have

Uα(·),32 f (x) ≤ C

{
1 + M16 f (x)1−α(x)p(x)/ν(x)(log(e + M16 f (x)))−α(x)(q(x)+β(x))/ν(x)

}

= C

{
1 + M16 f (x)p(x)/p∗(x)(log(e + M16 f (x)))−α(x)(q(x)+β(x))/ν(x)

}
.

Then from (5.3) we find

�(x, Uα(·),32 f (x)) ≤ C
{
1 + M16 f (x)p(x)(log(e + M16 f (x)))q(x)

}

for all x ∈ G. It follows from Theorem 4.1 that

1

μ(B(z, 4r))

∫

B(z,r)

�(x, Uα(·),32 f (x)) dμ(x) ≤ Cr−ν(z)(log(e + 1/r))−β(z)

for all z ∈ G and 0 < r < dG , as required. ��
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6 Trudinger exponential integrability

Based on what we have culminated in the present paper, we shall obtain Trudinger exponen-
tial integrabilities for Uα(·),9 f . We seek to discuss the exponential integrability in Sect. 6,
assuming that

inf
x∈G

(α(x) − ν(x)/p(x)) ≥ 0, (6.1)

or equivalently,

sup
x∈G

(1/p(x) − α(x)/ν(x)) ≤ 0.

Set

�(x, r) ≡ c0
min(2, r)

2

max(2,r)∫

1

(log(e + t))−(q(x)+β(x))/p(x) dt

t

for x ∈ G and r > 0, where we choose a normalization constant c0 so that inf x∈G �(x, 2) = 2.

Note that supx∈G, r≥2
�(x,r2)
�(x,r)

< ∞, since −(q + β)/p is bounded. Let

sx ≡ sup
r≥2

�(x, r) = c0

∞∫

1

(log(e + t))−(q(x)+β(x))/p(x) dt

t
(x ∈ G).

Then 2 ≤ sx ≤ ∞ and �(x, ·) is bijective from [0,∞) to [0, sx ). We denote by �−1(x, ·)
the inverse function of �(x, ·). If sx < ∞, we set �−1(x, r) ≡ ∞ for r ≥ sx . So we always
have

�−1(x, r) = inf({s > 0 : �(x, s) ≥ r} ∪ {∞}) (x ∈ G, r > 0).

Theorem 6.1 (Trudinger type inequality) Suppose that ν− > 0 and assume in addition that
the functions α(·), p(·), ν(·) satisfy (6.1). Let ε be a μ-measurable function on G such that

inf
x∈G

(ν(x)/p(x) − ε(x)) > 0 and 0 < ε− ≤ ε+ < α−. (6.2)

Then there exist constants c1, c2 > 0 such that

1

μ(B(z, 4r))

∫

B(z,r)

�−1
(

x,
|Uα(·),9 f (x)|

c1

)
dμ(x) ≤ c2 rε(z)−ν(z)/p(z) (6.3)

for all z ∈ G, 0 < r < dG and μ-measurable functions f satisfying ‖ f ‖L�,ν,β;2(G) ≤ 1. In
the above |Uα(·),9 f (x)|/c1 < sx for a.e. x ∈ B(z, r).

The aim of this section is to prove Theorem 6.1. Before we go into the detail, let us explain
why Theorem 6.1 deserves its name.

Remark 6.2 Let p, q, β be all constants. Define

c0 ≡ 2

⎛
⎝

2∫

1

(log(e + t))−(q+β)/p dt

t

⎞
⎠

−1
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and

�(r) ≡ c0

r∫

1

(log(e + t))−(q+β)/p dt

t
(r ≥ 2).

(1) If q + β < p, then, for r ≥ 2,

C−1�(r) ≤ (log(e + r))1−(q+β)/p ≤ C�(r) (6.4)

and hence

�−1(C−1r) ≤ exp(r p/(p−q−β)) ≤ �−1(Cr).

Indeed, just observe that, when r ≥ 2,

C−1�(r) ≤
r∫

1

(log(e + t))−(q+β)/p dt

t
<

1

1 − (q + β)/p
(log r)1−(q+β)/p ≤ C�(r),

which proves (6.4).
(2) If q + β = p, then, for r ≥ 2,

C−1�(r) ≤ log(log(e + r)) ≤ C�(r) (6.5)

and

�−1(C−1r) ≤ exp(exp(r)) ≤ �−1(Cr).

Indeed, the proof of (6.5) is a minor modification of (6.4), when r ≥ 4,

C−1�(r) ≤
r∫

1

(log(e + t))−(q+β)/p dt

t
< (e + 1) log log(e + r) ≤ C�(r),

which proves (6.5).

If we combine Theorem 6.1 and Remark 6.2, then we obtain the following result, which
was called the Trudinger inequality.

Corollary 6.3 Let G be bounded. Suppose ν− > 0 and (6.1) holds. Let ε be a μ-measurable
function on G such that

inf
x∈G

(ν(x)/p(x) − ε(x)) > 0 and that 0 < ε− ≤ ε+ < α−. (6.6)

Then there exist constants c1, c2 > 0 such that

(1) in case supx∈G (q(x) + β(x))/p(x) < 1,

1

μ(B(z, 4r))

∫

B(z,r)

exp

(
|Uα(·),9 f (x)|p(x)/(p(x)−q(x)−β(x))

c1

)
dμ(x) ≤ c2rε(z)−ν/p(z);

(6.7)

(2) in case infx∈G (q(x) + β(x))/p(x) ≥ 1,

1

μ(B(z, 4r))

∫

B(z,r)

exp

(
exp

( |Uα(·),9 f (x)|
c1

))
dμ(x) ≤ c2rε(z)−ν/p(z) (6.8)
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for all z ∈ G and 0 < r ≤ dG, whenever f is a μ-measurable function on G satisfying

‖ f ‖L�,ν,β;2(G) ≤ 1. (6.9)

Remark 6.4 When X = Rd , see [21, Corollary 5.3].

To prove Theorem 6.1, we use the following lemmas. The first lemma can be proved with
minor changes of the proof of Lemma 5.4. We begin with investigating the functions from
outside the balls.

Lemma 6.5 Suppose that ν− > 0 and (6.1) holds. Then there exists a constant C > 0 such
that

∫

G\B(x,δ)

d(x, y)α(x) f (y)

μ(B(x, 9d(x, y)))
dμ(y) ≤ C�(x, 1/δ)

for all x ∈ G, 0 < δ < dG and non-negative μ-measurable functions f satisfying
‖ f ‖L�,ν,β;2(G) ≤ 1.

Proof Since
∫

G\B(x,δ)

d(x, y)α(x) f (y)

μ(B(x, 9d(x, y)))
dμ(y) ≤

∫

G\B(x,δ)

d(x, y)α(x) f (y)

μ(B(x, 4d(x, y)))
dμ(y),

we can reexamine and modify the proof of Lemma 5.4. Indeed, we need to estimate I(δ),
where I(δ) is given by (5.8). Assuming (6.1), we have

I(δ) =
2dG∫

δ

tα(x)−ν(x)/p(x)(log(e + 1/t))−(q(x)+β(x))/p(x) dt

t

≤ C

2dG∫

δ

(log(e + 1/t))−(q(x)+β(x))/p(x) dt

t

≤ C

δ−1∫

(2dG )−1

(log(e + t))−(q(x)+β(x))/p(x) dt

t

≤ C�(x, 1/δ).

The proof of Lemma 6.5 is thus complete. ��
To prove Theorem 6.1, we need another lemma. By generalizing the integral kernel, we

are going to prove Theorem 6.1, as is seen from the beginning of the proof. This is where the
number “9” comes into play in Theorem 6.1 [see (6.17) below].

Lemma 6.6 Let ε : G → (0,∞) be a μ-measurable function satisfying (6.2) and let z be a
fixed point in G. Also we write

ρ(z, r) ≡ rε(z)(log(e + 1/r))(q(z)+β(z))/p(z). (6.10)

Define Iρ(z) f (x) by

Iρ(z) f (x) ≡
∫

G

ρ(z, d(x, y))

μ(B(x, 9d(x, y)))
f (y) dμ(y). (6.11)
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Then there exists a constant C > 0 such that

1

μ(B(z, 4r))

∫

B(z,r)

Iρ(z) f (x)dμ(x) ≤ Crε(z)−ν(z)/p(z) (6.12)

for all z ∈ G, 0 < r < dG and non-negative μ-measurable functions f satisfying

‖ f ‖L�,ν,β;2(G) ≤ 1. (6.13)

Proof Let x ∈ X be fixed. Write

Iρ(z) f (x)

=
∫

B(z,2r)

ρ(z, d(x, y))

μ(B(x, 9d(x, y)))
f (y) dμ(y) +

∫

G\B(z,2r)

ρ(z, d(x, y))

μ(B(x, 9d(x, y)))
f (y) dμ(y)

=: I1(x) + I2(x).

As for I1, we integrate I1 over B(z, r) to conclude

∫

B(z,r)

I1(x) dμ(x) =
∫

B(z,2r)

⎛
⎜⎝
∫

B(z,r)

ρ(z, d(x, y))

μ(B(x, 9d(x, y)))
dμ(x)

⎞
⎟⎠ f (y) dμ(y)

≤
∫

B(z,2r)

⎛
⎜⎝

∫

B(y,3r)

ρ(z, d(x, y))

μ(B(x, 9d(x, y)))
dμ(x)

⎞
⎟⎠ f (y) dμ(y).

By Fubini’s theorem, we obtain a crude estimate. The result is
∫

B(z,r)

I1(x) dμ(x)

≤
∫

B(z,2r)

⎛
⎜⎝

∞∑
j=0

∫

B(y,2− j+2r)\B(y,2− j+1r)

ρ(z, d(x, y))

μ(B(x, 9d(x, y)))
dμ(x)

⎞
⎟⎠ f (y) dμ(y)

≤
∫

B(z,2r)

⎛
⎜⎝

∞∑
j=0

∫

B(y,2− j+2r)\B(y,2− j+1r)

ρ(z, 2− j+2r)

μ(B(x, 2− j+4r))
dμ(x)

⎞
⎟⎠ f (y) dμ(y)

≤
∫

B(z,2r)

⎛
⎜⎝

∞∑
j=0

∫

B(y,2− j+2r)\B(y,2− j+1r)

ρ(z, 2− j+2r)

μ(B(y, 2− j+2r))
dμ(x)

⎞
⎟⎠ f (y) dμ(y)

≤
∫

B(z,2r)

⎛
⎝

∞∑
j=0

ρ(z, 2− j+2r)

⎞
⎠ f (y) dμ(y).

Since ε+ < ∞, the functions q, β are bounded, p− ≥ 1 and the function ν is positive, we
have
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∫

B(z,r)

I1(x) dμ(x) ≤ C
∫

B(z,2r)

⎛
⎝

∞∑
j=1

ρ(z, 2− j r)

⎞
⎠ f (y) dμ(y)

≤ C
∫

B(z,2r)

⎛
⎜⎝

∞∑
j=1

2− j+1r∫

2− j r

ρ(z, t)
dt

t

⎞
⎟⎠ f (y) dμ(y)

≤ C
∫

B(z,2r)

⎛
⎝

r∫

0

ρ(z, t)
dt

t

⎞
⎠ f (y) dμ(y).

Since we are assuming (6.6), it follows that
∫

B(z,r)

I1(x) dμ(x) ≤ Cρ(z, r)

∫

B(z,2r)

f (y) dμ(y)

≤ Cρ(z, r)μ(B(z, 4r))(2r)−ν(z)/p(z)(log(e + 1/(2r)))−(q(z)+β(z))/p(z)

≤ Crε(z)−ν(z)/p(z)μ(B(z, 4r)).

In summary, we obtain
∫

B(z,r)

I1(x) dμ(x) ≤ Crε(z)−ν(z)/p(z)μ(B(z, 4r)). (6.14)

For I2, note first that there exists a constant C > 0 such that

C−1 ≤ ρ(z, r)

ρ(z, s)
≤ C (6.15)

for z ∈ G, 1
2 ≤ r

s ≤ 2 in view of the definition of ρ [see (6.10) above].
Next, we claim that x ∈ B(z, r) and y /∈ B(z, 2r) imply that

2

3
d(x, y) ≤ d(y, z) ≤ 2d(x, y) (6.16)

and that

B(x, 9d(x, y)) ⊃ B(z, 4d(z, y)). (6.17)

Indeed, we have d(x, z) ≤ r and d(y, z) > 2r . Hence, it follows that

d(x, y) ≤ d(y, z) + d(x, z) ≤ d(y, z) + 1

2
d(y, z) = 3

2
d(y, z)

and that

d(y, z) ≤ d(x, y) + d(x, z) ≤ d(x, y) + 1

2
d(y, z),

which yields (6.16). Also observe that when w ∈ B(z, 4d(z, y)), we have

d(w, x) ≤ d(z, x) + d(w, z) ≤ d(z, x) + 4d(z, y) ≤ 1

2
d(y, z) + 4d(z, y) = 9

2
d(z, y) ≤ 9d(y, x).
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Consequently it follows from (6.15) through (6.17) that

I2(x) =
∫

G\B(z,2r)

ρ(z, d(x, y))

μ(B(x, 9d(x, y)))
f (y) dμ(y)

≤ C
∫

G\B(z,2r)

ρ(z, d(z, y))

μ(B(z, 4d(z, y)))
f (y) dμ(y) (6.18)

for x ∈ B(z, r). Now we proceed in the same way as the proof of Lemma 5.4. We decompose
(6.18) diadically:

I2(x) ≤ C
∞∑
j=1

∫

B(z,2 j+1r)\B(z,2 j r)

ρ(z, d(z, y))

μ(B(z, 4d(z, y)))
f (y) dμ(y),

where we used a tacit understanding that f vanishes outside G. Hence, we obtain by Lemma
5.2 and (6.6)

I2(x) ≤ C
∞∑
j=1

ρ(z, 2 j+1r)
1

μ(B(z, 2 j+2r))

∫

B(z,2 j+1r)

f (y) dμ(y)

≤ C
∞∑
j=1

(2 j+1r)ε(z)−ν(z)/p(z)

≤ Crε(z)−ν(z)/p(z). (6.19)

Thus, from (6.14) and (6.19), Lemma 6.6 is proved. ��

Proof of Theorem 6.1 If necessary, by replacing f with | f |, we have only to deal with non-
negative f such that ‖ f ‖L�,ν,β;2(G) ≤ 1. By Lemma 6.5 we find

Uα(·),9 f (x)

=
∫

G∩B(x,δ)

d(x, y)α(x) f (y)

μ(B(x, 9d(x, y)))
dμ(y) +

∫

G\B(x,δ)

d(x, y)α(x) f (y)

μ(B(x, 9d(x, y)))
dμ(y)

=
∫

G∩B(x,δ)

d(x, y)α(x)−ε(z)(log(e + 1/d(x, y)))−(q(z)+β(z))/p(z) ρ(z, d(x, y))

μ(B(x, 9d(x, y)))
f (y) dμ(y)

+C�(x, 1/δ)

≤ C
{
δα(x)−ε(z)(log(e + 1/δ))−(q(z)+β(z))/p(z) Iρ(z) f (x) + �(x, 1/δ)

}

for any δ > 0. We now specify δ by

δ ≡ min

⎧⎨
⎩dG ,

(
�(x, Iρ(z) f (x))(log(e + Iρ(z) f (x)))(q(z)+β(z))/p(z)

Iρ(z) f (x)

)1/(α(x)−ε(z))
⎫⎬
⎭

and we have the inequality

Uα(·),9 f (x) ≤ c1 max
{
1, �(x, Iρ(z) f (x))

}
,

123



346 Y. Sawano, T. Shimomura

for some constant c1 > 0. We denote by �−1(x, ·) the inverse function of �(x, ·). Since
1 ≤ �(x, 1) = �(x, 2)/2, we have �−1(x, 1) ≤ 1. Then

1

μ(B(z, 4r))

∫

B(z,r)

�−1
(

x,
Uα(·),9 f (x)

c1

)
dμ(y) ≤ 1

μ(B(z, 4r))

∫

B(z,r)

{
1 + Iρ(z) f (x)

}
dμ(y)

for all z ∈ G and 0 < r < dG . Hence, Lemma 6.6 gives the conclusion. ��

7 Continuity of potential functions

In Sect. 7, we are concerned with continuity for Riesz potentials Uα(·),4 f when

0 ≤ inf
x∈G

(α(x) − ν(x)/p(x)) ≤ sup
x∈G

(α(x) − ν(x)/p(x)) < 1 (7.1)

and the following condition holds: For x ∈ G and r > 0, define

ω(x, r) ≡
r∫

0

tα(x)−ν(x)/p(x)(log(e + 1/t))−(q(x)+β(x))/p(x) dt

t
< ∞.

In this case

ω(x, r) ≤ ω(x, 2r) ≤ Cω(x, r) (7.2)

for some constant C > 0 independent of x ∈ G and 0 < r < ∞. We use ω to measure the
continuity of functions. See [26] for the Lebesgue measure case.

Further, we assume the following Hölmander type condition: There are 0 < θ ≤ 1 and
C > 0 such that
∣∣∣∣∣

d(x, y)α(x)

μ(B(x, 4d(x, y)))
− d(z, y)α(z)

μ(B(z, 4d(z, y)))

∣∣∣∣∣ ≤ C

(
d(x, z)

d(x, y)

)θ d(x, y)α(x)

μ(B(x, 4d(x, y)))
(7.3)

whenever d(x, z) ≤ d(x, y)/2, and

sup
x∈G

(α(x) − ν(x)/p(x)) < θ ≤ 1.

Concerning the continuity of Uα(·),4 f , we have the following result. Lemmas 7.2 and 7.3
justify that the integral defining Uα(·),4 f (x) converges absolutely.

Theorem 7.1 Assume that α(·), ν(·) and p(·) satisfy (7.1)–(7.3) and that β(·) is a bounded
μ-measurable function. Define � = �p(·),q(·) by using p(·) and q(·) satisfying (P1), ( P2),
(Q1) and (Q2) through (1.3). There exists a constant C > 0 such that

|Uα(·),4 f (x) − Uα(·),4 f (z)| ≤ C{ω(x, d(x, z)) + ω(z, d(x, z))} (x, z ∈ G),

whenever f is a non-negative μ-measurable function on G satisfying ‖ f ‖L�,ν,β;2(G) ≤ 1.

To prove Theorem 7.1, we need Lemmas 7.2 and 7.3. Lemmas 7.2 and 7.3 concern an
estimate inside the ball and that outside the ball, respectively.
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Lemma 7.2 Assume p− > 0. Let f be a non-negative μ-measurable function on G such
that ‖ f ‖L�,ν,β;2(G) ≤ 1. Then there exists a constant C > 0 such that

∫

B(x,δ)

d(x, y)α(x)

μ(B(x, 4d(x, y)))
f (y) dμ(y) ≤ Cω(x, δ)

for all x ∈ G and δ > 0.

Proof As usual we start by decomposing B(x, δ) dyadically:

∫

B(x,δ)

d(x, y)α(x) f (y)

μ(B(x, 4d(x, y)))
dμ(y)=

∞∑
j=1

∫

B(x,2− j+1δ)\B(x,2− j δ)

d(x, y)α(x) f (y)

μ(B(x, 4d(x, y)))
dμ(y)

≤
∞∑
j=1

(2− j+1δ)α(x) 1

μ(B(x, 2− j+2δ))

∫

B(x,2− j+1δ)

f (y)dμ(y).

Recall that the functions q, α, β are all bounded, p− > 1 and the function ν is positive. By
Lemma 5.2, we have

∫

B(x,δ)

d(x, y)α(x) f (y)

μ(B(x, 4d(x, y)))
dμ(y) ≤ C

∞∑
j=1

(2− j δ)α(x)−ν(x)/p(x)(log(e + 1/(2− j δ)))−(q(x)+β(x))/p(x)

≤ C

δ∫

0

tα(x)−ν(x)/p(x)(log(e + 1/t))−(q(x)+β(x))/p(x) dt

t

= Cω(x, δ).

��

The following lemma can be proved in the same manner as Lemma 5.4, whose proof we
omit.

Lemma 7.3 Let f be a non-negative μ-measurable function on G such that ‖ f ‖L�,ν,β;2(G) ≤
1. Then there exists a constant C > 0 such that
∫

G\B(x,δ)

d(x, y)α(x)−θ

μ(B(x, 4d(x, y)))
f (y) dμ(y) ≤ Cδα(x)−θ−ν(x)/p(x)(log(e + 1/δ))−(q(x)+β(x))/p(x)

for all x ∈ G and δ > 0. Here the constant θ is from (7.3).

Proof of Theorem 7.1 Let f be a non-negative μ-measurable and ‖ f ‖L�,ν,β;2(G) ≤ 1. Write

Uα(·),4 f (x) − Uα(·),4 f (z)

=
∫

B(x,2d(x,z))

d(x, y)α(x)

μ(B(x, 4d(x, y)))
f (y) dμ(y) −

∫

B(x,2d(x,z))

d(z, y)α(z)

μ(B(z, 4d(z, y)))
f (y) dμ(y)

+
∫

G\B(x,2d(x,z))

(
d(x, y)α(x)

μ(B(x, 4d(x, y)))
− d(z, y)α(z)

μ(B(z, 4d(z, y)))

)
f (y) dμ(y)
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for x, z ∈ G. Using Lemma 7.2 and (7.2), we have
∫

B(x,2d(x,z))

d(x, y)α(x)

μ(B(x, 4d(x, y)))
f (y) dμ(y) ≤ Cω(x, 2d(x, z)) ≤ Cω(x, d(x, z))

and
∫

B(x,2d(x,z))

d(z, y)α(z)

μ(B(z, 4d(z, y)))
f (y) dμ(y) ≤

∫

B(z,3d(x,z))

d(z, y)α(z)

μ(B(z, 4d(z, y)))
f (y) dμ(y)

≤ Cω(z, 3d(x, z)) ≤ Cω(z, d(x, z)).

On the other hand, by (7.2), (7.3) and Lemma 7.2, we have

∫

G\B(x,2d(x,z))

∣∣∣∣∣
d(x, y)α(x)

μ(B(x, 4d(x, y)))
− d(z, y)α(z)

μ(B(z, 4d(z, y)))

∣∣∣∣∣ f (y) dμ(y)

≤ Cd(x, z)θ
∫

G\B(x,2d(x,z))

d(x, y)α(x)−θ

μ(B(x, 4d(x, y)))
f (y) dy

≤ Cd(x, z)θ d(x, z)α(x)−θ−ν(x)/p(x)(log(e + 1/d(x, z)))−(q(x)+β(x))/p(x)

≤ Cd(x, z)α(x)−ν(x)/p(x)(log(e + 1/d(x, z)))−(q(x)+β(x))/p(x)

≤ Cω(x, d(x, z)).

Then we have the conclusion. ��
Theorem 7.1 asserts that Uα(·),4 f is continuous. In view of the result in [21, Section 6],

this can be quantified more precisely.

Remark 7.4 (cf. [21, Section 6]) As r ↓ 0, ω(x, r) → 0 uniformly in x ∈ E (E ⊂ G) if
either

inf
x∈E

(
α(x) − ν(x)

p(x)

)
> 0 (7.4)

or

inf
x∈E

(
α(x) − ν(x)

p(x)

)
= 0 and inf

x∈E

q(x) + β(x)

p(x)
> 1. (7.5)
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