Skip to main content
Log in

Fractional derivatives of composite functions and the Cauchy problem for the nonlinear half wave equation

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We show new results of well-posedness for the Cauchy problem for the half wave equation with power-type nonlinear terms. For the purpose, we propose two approaches on the basis of the contraction-mapping argument. One of them relies upon the \(L_t^q L_x^\infty \) Strichartz-type estimate together with the Ginibre–Ozawa–Velo type chain rule of fairly general fractional orders. This chain rule has a significance of its own. Furthermore, in addition to the weighted fractional chain rule established in Hidano et al. (Weighted fractional chain rule and nonlinear wave equations with minimal regularity. Preprint, arXiv:1605.06748v3 [math.AP], 2018), the other approach uses weighted space-time \(L^2\) estimates for the inhomogeneous equation which are recovered from those for the second-order wave equation. In particular, by the latter approach we settle the problem left open in Bellazzini et al. (Math Ann 371(1–2):707–740, 2018) concerning the local well-posedness in \(H^{s}_{\mathrm{rad}}({\mathbb R}^n)\) with \(s>1/2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bahouri, H., Chemin, J.Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 343. Springer, Heidelberg (2011)

    MATH  Google Scholar 

  2. Bellazzini, J., Georgiev, V., Visciglia, N.: Long time dynamics for semirelativistic NLS and half wave in arbitrary dimension. Math. Ann. 371(1–2), 707–740 (2018)

    MathSciNet  MATH  Google Scholar 

  3. Bergh, J., Löfström, J.: Interpolation Spaces: An Introduction. Springer, Berlin (1976). Grundlehren der Mathematischen Wissenschaften, No. 223

    MATH  Google Scholar 

  4. Choffrut, A., Pocovnicu, O.: Ill-posedness of the cubic nonlinear half-wave equation and other fractional NLS on the real line. Int. Math. Res. Not. IMRN 2018(3), 699–738 (2018)

    MathSciNet  Google Scholar 

  5. Christ, M., Colliander, J., Tao, T.: Ill-posedness for nonlinear Schrodinger and wave equations. Preprint, arXiv:math.AP/0311048

  6. Christ, F.M., Weinstein, M.I.: Dispersion of small amplitude solutions of the generalized Korteweg–de Vries equation. J. Funct. Anal. 100(1), 87–109 (1991)

    MathSciNet  MATH  Google Scholar 

  7. Dinh, V.D.: On the Cauchy problem for the nonlinear semi-relativistic equation in Sobolev spaces. Discrete Contin. Dyn. Syst. 38(3), 1127–1143 (2018)

    MathSciNet  MATH  Google Scholar 

  8. Escobedo, M., Vega, L.: A semilinear Dirac equation in \(H^s({ R}^3)\) for \(s>1\). SIAM J. Math. Anal. 28(2), 338–362 (1997)

    MathSciNet  MATH  Google Scholar 

  9. Fang, D., Wang, C.: Local well-posedness and ill-posedness on the equation of type \(\square u=u^k(\partial u)^{\alpha }\). Chin. Ann. Math. Ser. B 26(3), 361–378 (2005)

    MATH  Google Scholar 

  10. Fang, D., Wang, C.: Some remarks on Strichartz estimates for homogeneous wave equation. Nonlinear Anal. 65(3), 697–706 (2006)

    MathSciNet  MATH  Google Scholar 

  11. Fang, D., Wang, C.: Weighted Strichartz estimates with angular regularity and their applications. Forum Math. 23(1), 181–205 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Fujiwara, K., Georgiev, V., Ozawa, T.: On global well-posedness for nonlinear semirelativistic equations in some scaling subcritical and critical cases. Preprint, arXiv:1611.09674 (2016)

  13. Fujiwara, K., Georgiev, V., Ozawa, T.: Blow-up for self-interacting fractional Ginzburg–Landau equation. Dyn. Partial Differ. Equ. 15(3), 175–182 (2018)

    MathSciNet  MATH  Google Scholar 

  14. Georgiev, V., Tzvetkov, N., Visciglia, N.: On the regularity of the flow map associated with the 1D cubic periodic half-wave equation. Differ. Integr. Equ. 29(1–2), 183–200 (2016)

    MathSciNet  MATH  Google Scholar 

  15. Gerard, P., Grellier, S.: Effective integrable dynamics for some nonlinear wave equation. Anal. PDE 5(5), 1139–1155 (2012)

    MathSciNet  MATH  Google Scholar 

  16. Ginibre, J., Ozawa, T., Velo, G.: On the existence of the wave operators for a class of nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Phys. Théor. 60(2), 211–239 (1994)

    MathSciNet  MATH  Google Scholar 

  17. Hidano, K.: Morawetz–Strichartz estimates for spherically symmetric solutions to wave equations and applications to semilinear Cauchy problems. Differ. Integr. Equ. 20(7), 735–754 (2007)

    MathSciNet  MATH  Google Scholar 

  18. Hidano, K., Jiang, J.-C., Lee, S., Wang, C.: Weighted fractional chain rule and nonlinear wave equations with minimal regularity. Preprint, arXiv:1605.06748v3 (2018)

  19. Hidano, K., Wang, C., Yokoyama, K.: The Glassey conjecture with radially symmetric data. J. Math. Pures Appl. (9) 98(5), 518–541 (2012)

    MathSciNet  MATH  Google Scholar 

  20. Hidano, K., Wang, C., Yokoyama, K.: On almost global existence and local well posedness for some 3-D quasi-linear wave equations. Adv. Differ. Equ. 17(3–4), 267–306 (2012)

    MathSciNet  MATH  Google Scholar 

  21. Hidano, K., Yokoyama, K.: Space-time \(L^2\)-estimates and life span of the Klainerman–Machedon radial solutions to some semi-linear wave equations. Differ. Integr. Equ. 19(9), 961–980 (2006)

    MATH  Google Scholar 

  22. Hörmander, L.: Lectures on Nonlinear Hyperbolic Differential Equations, Mathématiques & Applications, vol. 26. Springer, Berlin (1997)

    MATH  Google Scholar 

  23. Hörmander, L.: The Analysis of Linear Partial Differential Operators. II. Differential Operators with Constant Coefficients. Reprint of the 1983 Original, Classics in Mathematics. Springer, Berlin (2005)

    Google Scholar 

  24. Inui, T.: Some nonexistence results for a semirelativistic Schrödinger equation with nongauge power type nonlinearity. Proc. Am. Math. Soc. 144(7), 2901–2909 (2016)

    MATH  Google Scholar 

  25. Kato, T.: On nonlinear Schrödinger equations. II. \(H^s\)-solutions and unconditional well-posedness. J. Anal. Math. 67, 281–306 (1995)

    MathSciNet  MATH  Google Scholar 

  26. Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier–Stokes equations. Commun. Pure Appl. Math. 41(7), 891–907 (1988)

    MathSciNet  MATH  Google Scholar 

  27. Keel, M., Smith, H.F., Sogge, C.D.: Almost global existence for some semilinear wave equations. J. Anal. Math. 87, 265–279 (2002). (dedicated to the memory of Thomas H. Wolff)

    MathSciNet  MATH  Google Scholar 

  28. Killip, R., Visan, M.: Nonlinear Schrödinger equations at critical regularity. In: Evolution Equations, vol. 17 of Clay Mathematics Proceedings, pp. 325–437. American Mathematical Society, Providence, RI (2013)

  29. Klainerman, S.: On the regularity of classical field theories in Minkowski space-time \({\bf R}^{3+1}\). In: Nonlinear partial differential equations in geometry and physics (Knoxville, TN, 1995), vol. 29, Progress in Nonlinear Differential Equations and their Applications, pp. 29–69. Birkhäuser, Basel (1997)

  30. Klainerman, S., Machedon, M.: On the algebraic properties of the \(H_{n/2,1/2}\) spaces. Int. Math. Res. Not. 15, 765–774 (1998)

    MATH  Google Scholar 

  31. Krieger, J., Lenzmann, E., Raphaël, P.: Nondispersive solutions to the \(L^2\)-critical half-wave equation. Arch. Ration. Mech. Anal. 209(1), 61–129 (2013)

    MathSciNet  MATH  Google Scholar 

  32. Lindblad, H.: A sharp counterexample to the local existence of low-regularity solutions to nonlinear wave equations. Duke Math. J. 72(2), 503–539 (1993)

    MathSciNet  MATH  Google Scholar 

  33. Lindblad, H., Metcalfe, J., Sogge, C.D., Tohaneanu, M., Wang, C.: The Strauss conjecture on Kerr black hole backgrounds. Math. Ann. 359(3–4), 637–661 (2014)

    MathSciNet  MATH  Google Scholar 

  34. Metcalfe, J., Sogge, C.D.: Long-time existence of quasilinear wave equations exterior to star-shaped obstacles via energy methods. SIAM J. Math. Anal. 38(1), 188–209 (2006)

    MathSciNet  MATH  Google Scholar 

  35. Metcalfe, J., Tataru, D.: Global parametrices and dispersive estimates for variable coefficient wave equations. Math. Ann. 353(4), 1183–1237 (2012)

    MathSciNet  MATH  Google Scholar 

  36. Nakamura, M., Ozawa, T.: Low energy scattering for nonlinear Schrödinger equations in fractional order Sobolev spaces. Rev. Math. Phys. 9(3), 397–410 (1997)

    MathSciNet  MATH  Google Scholar 

  37. Pocovnicu, O.: First and second order approximations for a nonlinear wave equation. J. Dyn. Differ. Equ. 25(2), 305–333 (2013)

    MathSciNet  MATH  Google Scholar 

  38. Runst, T., Sickel, W.: Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations. De Gruyter Series in Nonlinear Analysis and Applications, vol. 3. Walter de Gruyter & Co., Berlin (1996)

    MATH  Google Scholar 

  39. Staffilani, G.: The initial value problem for some dispersive differential equations. Dissertation, University of Chicago (1995)

  40. Tao, T.: Nonlinear dispersive equations. Local and global analysis. CBMS Regional Conference Series in Mathematics, 106. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI (2006)

  41. Taylor, M.E.: Tools for PDE, Mathematical Surveys and Monographs, vol. 81. American Mathematical Society, Providence, RI (2000)

    Google Scholar 

  42. Wang, C.: The Glassey conjecture for nontrapping obstacles. J. Differ. Equ. 259(2), 510–530 (2015)

    MathSciNet  MATH  Google Scholar 

  43. Wang, C.: The Glassey conjecture on asymptotically flat manifolds. Trans. Am. Math. Soc. 367(10), 7429–7451 (2015)

    MathSciNet  MATH  Google Scholar 

  44. Yordanov, B.T., Zhang, Q.S.: Finite time blow up for critical wave equations in high dimensions. J. Funct. Anal. 231(2), 361–374 (2006)

    MathSciNet  MATH  Google Scholar 

  45. Zhou, Y.: Blow up of solutions to the Cauchy problem for nonlinear wave equations. Chin. Ann. Math. Ser. B 22(3), 275–280 (2001)

    MathSciNet  MATH  Google Scholar 

  46. Zhou, Y., Han, W.: Blow-up of solutions to semilinear wave equations with variable coefficients and boundary. J. Math. Anal. Appl. 374(2), 585–601 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The second author,Chengbo Wang is grateful to Professor Yoshio Tsutsumi for helpful discussion and valuable comments on the fractional chain rule. The authors thank Professors Piero D’Ancona and Kiyoshi Mochizuki for helpful discussions on the resolvent and smoothing estimates. Thanks also goes to the referee for pointing out [23, Theorem 14.3.2]. Kunio Hidano was supported in part by JSPS KAKENHI Grant Nos. JP15K04955 and JP18K03365. Chengbo Wang was supported in part by National Support Program for Young Top-Notch Talents.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengbo Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hidano, K., Wang, C. Fractional derivatives of composite functions and the Cauchy problem for the nonlinear half wave equation. Sel. Math. New Ser. 25, 2 (2019). https://doi.org/10.1007/s00029-019-0460-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s00029-019-0460-4

Keywords

Mathematics Subject Classification

Navigation