Skip to main content
Log in

The field of quantum \(GL(N,\pmb {\mathbb {C}})\) in the C\(^*\)-algebraic setting

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

Given a unital \(*\)-algebra \(\mathscr {A}\) together with a suitable positive filtration of its set of irreducible bounded representations, one can construct a C\(^*\)-algebra \(A_0\) with a dense two-sided ideal \(A_c\) such that \(\mathscr {A}\) maps into the multiplier algebra of \(A_c\). When the filtration is induced from a central element in \(\mathscr {A}\), we say that \(\mathscr {A}\) is an s\(^*\)-algebra. We also introduce the notion of \(\mathscr {R}\)-algebra relative to a commutative s\(^*\)-algebra \(\mathscr {R}\), and of Hopf \(\mathscr {R}\)-algebra. We formulate conditions such that the completion of a Hopf \(\mathscr {R}\)-algebra gives rise to a continuous field of Hopf C\(^*\)-algebras over the spectrum of \(R_0\). We apply the general theory to the case of quantum \(GL(N,\mathbb {C})\) as constructed from the FRT-formalism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baaj, S., Julg, P.: Théorie bivariante de Kasparov et opérateurs non bornés dans les C\(^*\)-modules hilbertiens. C. R. Acad. Sci. Paris Sér. I Math. 296(21), 875–878 (1983)

    MathSciNet  MATH  Google Scholar 

  2. Banica, T.: Representations of compact quantum groups and subfactors. J. Reine Angew. Math. 509, 167–198 (1999)

    MathSciNet  MATH  Google Scholar 

  3. Blanchard, E.: Déformations de C\(^*\)-algèbres de Hopf. Bull. S.M.F. 124(1), 141–215 (1996)

    MathSciNet  MATH  Google Scholar 

  4. Baumann, P.: On the center of quantized enveloping algebras. J. Algebra 203(1), 244–260 (1998)

    MathSciNet  MATH  Google Scholar 

  5. Brown, K.A., Goodearl, K.R.: Lectures on Algebraic Quantum Groups Series: Advanced courses in mathematics. CRM Barcelona/Birkhäuser, Basel (2002)

    Google Scholar 

  6. Parshall, B., Wang, J.-P.: Quantum Linear Groups, vol. 439. Memoirs of the American Mathematical Society, Providence (1991)

    MATH  Google Scholar 

  7. De Commer, K., Floré, M.: A field of quantum upper triangular matrices. Int. Math. Res. Not. 2017(16), 5047–5077 (2017)

    MathSciNet  Google Scholar 

  8. Donin, J., Mudrov, A.: Explicit equivariant quantization on coadjoint orbits of \(GL(n, C)\). Lett. Math. Phys. 62(1), 17–32 (2002)

    MathSciNet  MATH  Google Scholar 

  9. Drabant, B., Schlieker, M., Weich, W., Zumino, B.: Complex quantum groups and their quantum universal enveloping algebras. Commun. Math. Phys. 147, 625–633 (1992)

    MATH  Google Scholar 

  10. Drinfel’d, V.G.: Quantum groups. In: Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), vol. 155 (1986). Differentsialnaya Geometriya, Gruppy Li i Mekh. VIII193, 18–49, Translation in J. Soviet Math. 41(2) (1988), 898–915

  11. Faddeev, L.D., Reshetikhin, N.Y., Takhtadzhyan, L.A.: Quantization of Lie groups and Lie algebras. Algebra Anal. 1(1), 178–206 (1989)

    MathSciNet  MATH  Google Scholar 

  12. Gerstenhaber, M., Schaps, M.: Hecke algebras, \(U_q({\mathfrak{sl}}(n))\) and the Donald–Flanigan conjecture for \(S_n\). Trans. AMS 349(8), 3353–3371 (1997)

    MATH  Google Scholar 

  13. Hayashi, T.: Quantum deformations of classical groups. Publ. RIMS Kyoto Univ. 28, 57–81 (1992)

    MathSciNet  MATH  Google Scholar 

  14. Jordan, D., White, N.: The center of the reflection equation algebra via quantum minors. Preprint. arXiv:1709.09149v1

  15. Joseph, A., Letzter, G.: Local finiteness of the adjoint action for quantized enveloping algebras. J. Algebra 153, 289–318 (1992)

    MathSciNet  MATH  Google Scholar 

  16. Koelink, H.T.: On \(*\)-representations of the Hopf \(*\)-algebra associated with the quantum group \(U_q(N)\). Compos. Math. 77, 199–231 (1991)

    MATH  Google Scholar 

  17. Klimyk, A., Schmudgen, K.: Quantum Groups and Their Representations, Texts and Monographs in Physics. Springer, Berlin (1997)

    MATH  Google Scholar 

  18. Kolb, S., Stokman, J.V.: Reflection equation algebras, coideal subalgebras, and their centres. Sel. Math. (N.S.) 15(4), 621–664 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Majid, S.: Examples of braided groups and braided matrices. J. Math. Phys. 32, 3061–3073 (1991)

    MathSciNet  MATH  Google Scholar 

  20. Meyer, R.: Representations of \(*\)-algebras by unbounded operators: C\(^*\)-Hulls, local-global principle, and induction. Doc. Math. 22, 1375–1466 (2017)

    MathSciNet  MATH  Google Scholar 

  21. Monk, A., Voigt, C.: Complex quantum groups and a deformation of the Baum–Connes assembly map. preprint, arXiv:1804.09384

  22. Mudrov, A.: Quantum conjugacy classes of simple matrix groups. Commun. Math. Phys. 272, 635–660 (2007)

    MathSciNet  MATH  Google Scholar 

  23. Mudrov, A.: On quantization of the Semenov–Tian–Shansky Poisson bracket on simple algebraic groups. St. Petersburg Math. J. 18, 797–808 (2007)

    MathSciNet  MATH  Google Scholar 

  24. Nagy, G.: On the Haar measure of quantum \(SU(N)\) groups. Commun. Math. Phys. 153, 217–228 (1993)

    MathSciNet  MATH  Google Scholar 

  25. Nagy, G.: A deformation quantization procedure for C\(^*\)-algebras. J. Oper. Theory 44, 369–411 (2000)

    MathSciNet  MATH  Google Scholar 

  26. Neshveyev, S., Tuset, L.: K-homology class of the Dirac operator on a compact quantum group. Doc. Math. 16, 767–780 (2011)

    MathSciNet  MATH  Google Scholar 

  27. Neshveyev, S., Tuset, L.: Compact Quantum Groups and Their Representation Categories, Cours Spécialisés [Specialized Courses], vol. 20. Société Mathématique de France, Paris (2013)

    MATH  Google Scholar 

  28. Phillips, N.C.: Inverse limits of C\(^*\)-algebras. J. Oper. Theory 19(1), 159–195 (1988)

    MathSciNet  MATH  Google Scholar 

  29. Podleś, P.: Complex quantum groups and their real representations. Publ. RIMS Kyoto Univ. 28, 709–745 (1992)

    MathSciNet  MATH  Google Scholar 

  30. Pyatov, P., Saponov, P.: Characteristic relations for quantum matrices. J. Phys. A 28(15), 4415 (1995)

    MathSciNet  MATH  Google Scholar 

  31. Rieffel, M.: Continuous fields of C\(^*\)-algebras coming from group cocycles and actions. Math. Ann. 283(4), 631–643 (1989)

    MathSciNet  MATH  Google Scholar 

  32. Schmüdgen, K.: Über LMC\(^*\)-algebren. Math. Nachr. 68, 167–182 (1975)

    MathSciNet  MATH  Google Scholar 

  33. Takesaki, M.: Theory of Operator Algebras. II. Springer, Berlin (2003)

    MATH  Google Scholar 

  34. Vaes, S., Van Daele, A.: Hopf C\(^*\)-algebras. Proc. Lond. Math. Soc. 82(2), 337–384 (2001)

    MATH  Google Scholar 

  35. Van Daele, A.: Multiplier Hopf algebras. Trans. Am. Math. Soc. 342(2), 917–932 (1994)

    MathSciNet  MATH  Google Scholar 

  36. Van Daele, A.: An algebraic framework for group duality. Adv. Math. 140(2), 323–366 (1998)

    MathSciNet  MATH  Google Scholar 

  37. Watatani, Y.: Index for C\(^*\)-subalgebras. Mem. Am. Math. Soc. 83(424), 1–117 (1990)

    MathSciNet  MATH  Google Scholar 

  38. Woronowicz, S.L.: C\(^*\)-algebras generated by unbounded elements. Rev. Math. Phys. 7(3), 481–521 (1995)

    MathSciNet  MATH  Google Scholar 

  39. Woronowicz, S.L.: Compact Quantum Groups, Symétries Quantiques (Les Houches, 1995), pp. 845–884. North-Holland, Amsterdam (1998)

    Google Scholar 

  40. Zakrzewski, S.: Realifications of complex quantum groups. In: Gielerak, R., et al. (eds.) Groups and Related Topics, pp. 83–100. Kluwer, Dordrecht (1992)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenny De Commer.

Additional information

Dedicated to the memory of Étienne Blanchard.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work of K. De Commer was supported by the FWO Grant G.0251.15N, and this work is part of the project supported by the Grant H2020-MSCA-RISE-2015-691246-QUANTUM DYNAMICS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Commer, K., Floré, M. The field of quantum \(GL(N,\pmb {\mathbb {C}})\) in the C\(^*\)-algebraic setting. Sel. Math. New Ser. 25, 3 (2019). https://doi.org/10.1007/s00029-019-0456-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s00029-019-0456-0

Keywords

Mathematics Subject Classification

Navigation