Skip to main content
Log in

Fractal solutions of dispersive partial differential equations on the torus

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We use exponential sums to study the fractal dimension of the graphs of solutions to linear dispersive PDE. Our techniques apply to Schrödinger, Airy, Boussinesq, the fractional Schrödinger, and the gravity and gravity–capillary water wave equations. We also discuss applications to certain nonlinear dispersive equations. In particular, we obtain bounds for the dimension of the graph of the solution to cubic nonlinear Schrödinger and Korteweg–de Vries equations along oblique lines in space–time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berry, M.V.: Quantum fractals in boxes. J. Phys. A Math. Gen. 29, 6617–6629 (1996)

    MathSciNet  MATH  Google Scholar 

  2. Berry, M.V., Klein, S.: Integer, fractional and fractal Talbot effects. J. Mod. Opt. 43, 2139–2164 (1996)

    MathSciNet  MATH  Google Scholar 

  3. Berry, M.V., Lewis, Z.V.: On the Weierstrass–Mandelbrot fractal function. Proc. R. Soc. Lond. A 370, 459–484 (1980)

    MathSciNet  MATH  Google Scholar 

  4. Berry, M.V., Marzoli, I., Schleich, W.: Quantum carpets, carpets of light. Phys. World 14(6), 39–44 (2001)

    Google Scholar 

  5. Bourgain, J.: Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Geom. Funct. Anal. 3, 107–156 (1993)

    MathSciNet  MATH  Google Scholar 

  6. Bourgain, J.: Decoupling, exponential sums and the Riemann zeta function. J. Am. Math. Soc. 30(1), 205–224 (2017)

    MathSciNet  MATH  Google Scholar 

  7. Bourgain, J., Demeter, C., Guth, L.: Proof of the main conjecture in Vinogradov’s mean value theorem for degrees higher than three. Ann. Math. (2) 184(2), 633–682 (2016)

    MathSciNet  MATH  Google Scholar 

  8. Chamizo, F., Cordoba, A.: Differentiability and dimension of some fractal Fourier series. Adv. Math. 142, 335–354 (1999)

    MathSciNet  MATH  Google Scholar 

  9. Chen, G., Olver, P.J.: Dispersion of discontinuous periodic waves. Proc. R. Soc. Lond. A 469, 20120407 (2012)

    MathSciNet  MATH  Google Scholar 

  10. Chen, G., Olver, P.J.: Numerical simulation of nonlinear dispersive quantization. Discrete Contin. Dyn. Syst. 34(3), 991–1008 (2014)

    MathSciNet  MATH  Google Scholar 

  11. Chousionis, V., Erdoğan, M.B., Tzirakis, N.: Fractal solutions of linear and nonlinear dispersive partial differential equations. Proc. Lond. Math. Soc. (3) 110, 543–564 (2015)

    MathSciNet  MATH  Google Scholar 

  12. de la Hoz, F., Vega, L.: Vortex filament equation for a regular polygon. Nonlinearity 27(12), 3031–3057 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Deliu, A., Jawerth, B.: Geometrical dimension versus smoothness. Constr. Approx. 8, 211–222 (1992)

    MathSciNet  MATH  Google Scholar 

  14. Demirbaş, S., Erdoğan, M.B., Tzirakis, N.: Existence and uniqueness theory for the fractional Schrödinger equation on the torus, some topics in harmonic analysis and applications. Advanced Lectures in Mathematics (ALM), vol. 34, pp. 145–162. International Press, Somerville (2016)

  15. Erdoğan, M.B., Gürel, B., Tzirakis, N.: Smoothing for the fractional Schrödinger equation on the torus and the real line. Accepted by Indiana Univ. Math. J

  16. Erdoğan, M.B., Tzirakis, N.: Global smoothing for the periodic KdV evolution. Int. Math. Res. Not. (2012). https://doi.org/10.1093/imrn/rns189

  17. Erdoğan, M.B., Tzirakis, N.: Talbot effect for the cubic nonlinear Schrödinger equation on the torus. Math. Res. Lett. 20(6), 1081–1090 (2013)

    MathSciNet  MATH  Google Scholar 

  18. Erdoğan, M.B., Tzirakis, N.: Dispersive Partial Differential Equations: Wellposedness and Applications, London Mathematical Society Student Texts, vol. 86. Cambridge University Press, Cambridge (2016)

    MATH  Google Scholar 

  19. Graham, S.W., Kolesnik, G.: Van der Corput’s Method of Exponential Sums, London Mathematical Society Lecture Note Series, vol. 126. Cambridge University Press, Cambridge (1991)

    Google Scholar 

  20. Heath-Brown, D.R.: A new k-th derivative estimate for exponential sums via Vinogradov’s mean value, Tr. Mat. Inst. Steklova, Analiticheskaya i Kombinatornaya Teoriya Chisel, vol. 296, pp. 95–110 (2017)

  21. Iwaniec, H., Kowalski, E.: Analytic Number Theory. AMS Colloquium Publications, AMS, Providence (2004)

    MATH  Google Scholar 

  22. Jaffard, S.: The spectrum of singularities of Riemann’s function. Revista Matemátic Iberoamericana 12, 441–460 (1996)

    MathSciNet  MATH  Google Scholar 

  23. Kapitanski, L., Rodnianski, I.: Does a quantum particle knows the time? In: Hejhal, D., Friedman, J., Gutzwiller, M.C., Odlyzko, A.M. (eds.) Emerging Applications of Number Theory, IMA Volumes in Mathematics and Its Applications, vol. 109, pp. 355–371. Springer, New York (1999)

    Google Scholar 

  24. Katznelson, Y.: An Introduction to Harmonic Analysis. Cambridge Mathematical Library, 3rd edn. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  25. Khinchin, A.Y.: Continued fractions. The 3rd Russian edition of 1961 (in Translation). The University of Chicago Press, Chicago (1964)

  26. Lévy, P.: Théorie de l’addition des variables aléatoires. Gauthier-Villars, Paris (1937)

    MATH  Google Scholar 

  27. Olver, P.J.: Dispersive quantization. Am. Math. Mon. 117(7), 599–610 (2010)

    MathSciNet  MATH  Google Scholar 

  28. Olver, P.J., Sheils, N.E.: Dispersive Lamb Systems. Preprint 2017. arXiv:1710.05814v1

  29. Olver, P.J., Tsatis, E.: Points of constancy of the periodic linearized Korteweg–deVries equation. Preprint 2018. arXiv:1802.01213v1

  30. Oskolkov, K.I.: A class of I. M. Vinogradov’s series and its applications in harmonic analysis. In: Gonchar, A.A., Saff, E.B. (eds.) Progress in Approximation Theory (Tampa, FL, 1990), Springer Series in Computational Mathematics, vol. 19, pp. 353–402. Springer, New York (1992)

    Google Scholar 

  31. Oskolkov, K.I.: The Schrödinger Density and the Talbot Effect. Approximation and Probability, Banach Center Publications, 72, pp. 189–219. Institute of Mathematics of Polish Academy of Science, Warsaw (2006)

  32. Oskolkov, K.I., Chakhkiev, M.A.: On the “nondifferentiable” Riemann function and the Schrödinger equation. (Russian) Tr. Mat. Inst. Steklova, Teoriya Funktsii i Differentsialnye Uravneniya, 269, pp. 193–203 (2010); Proc. Steklov Inst. Math. 269, no. 1, pp. 186–196 (2010) (in translation)

  33. Oskolkov, K.I., Chakhkiev, M.A.: Traces of the discrete Hilbert transform with quadratic phase. (Russian) Tr. Mat. Inst. Steklova, Ortogonalnye Ryady, Teoriya Priblizheni i Smezhnye Voprosy, vol. 280, pp. 255–269 (2013); Proc. Steklov Inst. Math. 280, no. 1, pp. 248–262 (2013) (in translation)

  34. Rodnianski, I.: Fractal solutions of the Schrödinger equation. Contemp. Math. 255, 181–187 (2000)

    MathSciNet  MATH  Google Scholar 

  35. Stein, E.M., Shakarchi, R.: Real Analysis. Measure Theory, Integration, and Hilbert Spaces. Princeton University Press, Princeton (2005)

    MATH  Google Scholar 

  36. Talbot, H.F.: Facts related to optical science. Philos. Mag. 9, 401–407 (1836)

    Google Scholar 

  37. Taylor, M.: Tidbits in Harmonic Analysis. Lecture Notes. UNC, Chapel Hill (1998)

    Google Scholar 

  38. Taylor, M.: The Schrödinger equation on spheres. Pac. J. Math. 209, 145–155 (2003)

    MATH  Google Scholar 

  39. Triebel, H.: Theory of Function Spaces. Birkhäuser, Basel (1983)

    MATH  Google Scholar 

  40. Vaughan, R.C.: The Hardy–Littlewood Method, Cambridge Tracts in Mathematics, vol. 80. Cambridge University Press, Cambridge-New York. ISBN: 0-521-23439-5 (1981)

  41. Vega, L.: The dynamics of vortex filaments with corners. Commun. Pure Appl. Anal. 14(4), 1581–1601 (2015)

    MathSciNet  MATH  Google Scholar 

  42. Wooley, T.D.: Nested efficient congruencing and relatives of Vinogradovs mean value theorem. Preprint

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. B. Erdoğan or G. Shakan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

M. B. Erdoğan is partially supported by NSF Grant DMS-1501041. G. Shakan was partially supported by NSF Grant DMS-1501982 and would like to thank Kevin Ford for financial support. The authors would like to thank Luis Vega for useful comments on an earlier version of this manuscript and for pointing out several important references. The authors also thank an anonymous referee for useful suggestions and references.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erdoğan, M.B., Shakan, G. Fractal solutions of dispersive partial differential equations on the torus. Sel. Math. New Ser. 25, 11 (2019). https://doi.org/10.1007/s00029-019-0455-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s00029-019-0455-1

Mathematics Subject Classification

Navigation