Skip to main content
Log in

Elliptic and K-theoretic stable envelopes and Newton polytopes

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

In this paper we consider the cotangent bundles of partial flag varieties. We construct the \(K\)-theoretic stable envelopes for them and also define a version of the elliptic stable envelopes. We expect that our elliptic stable envelopes coincide with the elliptic stable envelopes defined by M. Aganagic and A. Okounkov. We give formulas for the \(K\)-theoretic stable envelopes and our elliptic stable envelopes. We show that the \(K\)-theoretic stable envelopes are suitable limits of our elliptic stable envelopes. That phenomenon was predicted by M. Aganagic and A. Okounkov. Our stable envelopes are constructed in terms of the elliptic and trigonometric weight functions which originally appeared in the theory of integral representations of solutions of qKZ equations twenty years ago. (More precisely, the elliptic weight functions had appeared earlier only for the \({\mathfrak {gl}}_2\) case.) We prove new properties of the trigonometric weight functions. Namely, we consider certain evaluations of the trigonometric weight functions, which are multivariable Laurent polynomials, and show that the Newton polytopes of the evaluations are embedded in the Newton polytopes of the corresponding diagonal evaluations. That property implies the fact that the trigonometric weight functions project to the \(K\)-theoretic stable envelopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aganagic, M., Okounkov, A.: Elliptic stable envelopes. Preprint (2016). arXiv:1604.00423

  2. Chriss, N., Ginzburg, V.: Representation Theory and Complex Geometry, Modern Birkhäuser Classics. Birkhäuser Inc., Boston, MA (2010)

    MATH  Google Scholar 

  3. Felder, G.: Elliptic quantum groups. In: Iagolnitzer, D. (ed.) Proceedings of the ICMP, Paris 1994, pp. 211–218. Intern. Press, Cambridge, MA (1995)

  4. Feher, L., Rimanyi, R.: Calculation of Thom polynomials and other cohomological obstructions for group actions. Gaffney, T., Ruas, M. (ed.) Real and Complex Singularities (Sao Carlos, 2002) Contemporary Mathematics,#354, pp. 69–93. American Mathematical Society, Providence, RI, (2004)

  5. Felder, G., Rimanyi, R., Varchenko, A.: Elliptic dynamical quantum groups and equivariant elliptic cohomology. SIGMA 14(2018), 41 (2018)

    MathSciNet  MATH  Google Scholar 

  6. Felder, G., Tarasov, V., Varchenko, A.: Solutions of the elliptic QKZB equations and Bethe ansatz I. In: Topics in Singularity Theory, V.I.Arnold’s 60th Anniversary Collection, Advances in the Mathematical Sciences, AMS Translations, Series 2, vol. 180, pp. 45–76 (1997)

  7. Felder, G., Tarasov, V., Varchenko, A.: Monodromy of solutions of the elliptic quantum Knizhnik–Zamolodchikov–Bernard difference equations. Int. J. Math. 10, 943–975 (1999)

    MathSciNet  MATH  Google Scholar 

  8. Fulton, W., Pragacz, P.: Schubert Varieties and Degeneracy Loci, Appendix J by the authors in collaboration with I. Ciocan-Fontanine, Lecture Notes in Mathematics 1689, pp. 1–148 (1998)

  9. Ganter, N.: The elliptic Weyl character formula. Compos. Math. 150(7), 1196–1234 (2014)

    MathSciNet  MATH  Google Scholar 

  10. Ginzburg, V., Kapranov, M., Vasserot, E.: Elliptic Algebras and Equivariant Elliptic Cohomology I. arXiv:q-alg/9505012

  11. Gorbounov, V., Rimányi, R., Tarasov, V., Varchenko, A.: Cohomology of the cotangent bundle of a flag variety as a Yangian Bethe algebra. J. Geom. Phys. 74, 56–86 (2013)

    MathSciNet  MATH  Google Scholar 

  12. Goresky, M., Kottwitz, R., MacPherson, R.: Equivariant cohomology, Koszul duality, and the localization theorem. Invent. Math. 131(1), 25–83 (1998)

    MathSciNet  MATH  Google Scholar 

  13. Grojnowski, I.: Delocalized equivariant elliptic cohomology, (preprint 1994). In: Elliptic Cohomology, London Mathematical Society, Lecture Note Series, vol. 342, pp. 114–121. Cambridge University Press, Cambridge (2007)

  14. Maulik, D., Okounkov, A.: Quantum groups and quantum cohomology. Preprint, pp. 1–276 (2012). arXiv:1211.1287

  15. Maulik, D., Okounkov, A.: in preparation (2015)

  16. Mukhin, E., Tarasov, V., Varchenko, A.: Bethe eigenvectors of higher transfer matrices. J. Stat. Mech. (8), P08002, 1–44 (2006)

  17. Mumford, D.: Abelian Varieties. Tata Institute of Fundamental Research Studies in Mathematics, No. 5. Oxford University Press, London (1970)

  18. Okounkov, A., Lectures on K-theoretic computations in enumerative geometry. Geometry of moduli spaces and representation theory. IAS/Park City Math. Ser., vol. 24, pp. 251–380. American Mathematical Society, Providence, RI (2017)

  19. Okounkov, A., Smirnov, A.: Quantum difference equation for Nakajima varieties. Preprint (2016). arXiv:1602.09007

  20. Pushkar, P.P., Smirnov, A., Zeitlin, A.M.: Baxter Q-operator from quantum \(K\)-theory. Preprint (2016). arXiv:1612.08723

  21. Rimányi, R., Tarasov, V., Varchenko, A.: Partial flag varieties, stable envelopes and weight functions. Quantum Topol. 6(2), 333–364 (2015). https://doi.org/10.4171/QT/65

    MathSciNet  MATH  Google Scholar 

  22. Rimanyi, R., Tarasov, V., Varchenko, A.: Trigonometric weight functions as \(K\)-theoretic stable envelope maps for the cotangent bundle of a flag variety. J. Geom. Phys. 94, 81–119 (2015). https://doi.org/10.1016/j.geomphys.2015.04.002. arXiv:1411.0478

    MathSciNet  MATH  Google Scholar 

  23. Rimanyi, R., Varchenko, A.: Dynamical Gelfand–Zetlin algebra and equivariant cohomology of Grassmannians. J. Knot Theory Ramif. 25(12) (2016). https://doi.org/10.1142/S021821651642013X. arXiv:1510.03625

  24. Rimanyi, R., Varchenko, A.: Equivariant Chern-SchwartzMacPherson classes in partial flag varieties: interpolation and formulae. In: Buczynski, J., Michalek, M., Postingel, E. (eds.) Schubert Varieties, Equivariant Cohomology and Characteristic Classes, IMPANGA2015, EMS, pp. 225–235 (2018)

  25. Rosu, I.: Equivariant K-theory and equivariant cohomology, with an appendix by Allen Knutson and Ioanid Rosu. Math. Z. 243(3), 423–448 (2003)

    MathSciNet  Google Scholar 

  26. Schechtman, V., Varchenko, A.: Arrangements of hyperplanes and lie algebra homology. Invent. Math. 106, 139–194 (1991)

    MathSciNet  MATH  Google Scholar 

  27. Varchenko, A., Tarasov, V.: Jackson integral representations for solutions of the Knizhnik–Zamolodchikov quantum equation. Leningr. Math. J. 6, 275–313 (1994)

    MathSciNet  MATH  Google Scholar 

  28. Tarasov, V., Varchenko, A.: Geometry of \(q\)-hypergeometric functions as a bridge between Yangians and quantum affine algebras. Invent. Math. 128(3), 501–588 (1997)

    MathSciNet  MATH  Google Scholar 

  29. Tarasov, V., Varchenko, A.: Geometry of q-hypergeometric functions, quantum affine algebras and elliptic quantum groups. Asterisque 246, 1–135 (1997)

    MATH  Google Scholar 

  30. Tarasov, V., Varchenko, A.: Combinatorial formulae for nested Bethe vectors. SIGMA 9(048), 1–28 (2013)

    MathSciNet  MATH  Google Scholar 

  31. Varchenko, A.: Quantized KZ equations, quantum YBE, and difference equations for q-hypergeometric functions. Commun. Math. Phys. 162, 499–528 (1994)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Varchenko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

R. Rimányi: supported in part by NSF Grant DMS-1200685. V. Tarasov: supported in part by Simons Foundation Grant 430235. A. Varchenko: supported in part by NSF Grants DMS-1362924, DMS-1665239.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rimányi, R., Tarasov, V. & Varchenko, A. Elliptic and K-theoretic stable envelopes and Newton polytopes. Sel. Math. New Ser. 25, 16 (2019). https://doi.org/10.1007/s00029-019-0451-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s00029-019-0451-5

Mathematics Subject Classification

Navigation