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Abstract In this paper, by asymptotic center techniques, we shown that the set of fixed
points of a uniformly k-lipschitzian semigroup (one-parameter or left reversible semi-
topological) in a uniformly convex Banach space is a retract of the domain if k is close
to 1. The results presented in this paper includes (among others, in the discrete situation)
many known results as special cases.
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1 Introduction

We will consider a Banach spaces E over the real field. Our notation and terminology are
standard. Let C be a nonempty bounded closed convex subset of E . We say that a mapping
T : C → C is nonexpansive if

‖T x − T y‖ � ‖x − y‖ for every x, y ∈ C.

The result of Bruck [2] asserts that if a nonexpansive mapping T : C → C has a fixed
point in every nonempty closed convex subset of C which is invariant under T and if C is
convex and weakly compact, then F(T ) = {x ∈ C : T x = x}, the set of fixed points, is a
nonexpansive retract of C (that is, there exists a nonexpansive mapping R : C → F(T ) such
that R|F(T ) = I ). A few years ago, the Bruck result was extended by Domínguez Benavides
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334 J. Górnicki

and Lorenzo Ramírez [4] to the case of asymptotically nonexpansive mappings if the space
E was sufficiently regular.

On the other hand it is known, the set of fixed points of k-lipschitzian mapping can be
very irregular for any k > 1.

Example 1 ([11]) Let F be a nonempty closed subset of C . Fix z ∈ F, 0 < ε < 1 and put

T x = x + ε · dist (x, F) · (z − x), x ∈ C.

It is not difficult to see that F(T ) = F and the Lipschitz constant of T tends to 1 if ε ↓ 0.

In 1973, Goebel and Kirk [5] introduced the class of uniformly k-lipschitzian mappings
and stated a relationship between the existence of fixed point for uniformly k-lipschitzian
mappings and the Clarkson modulus of convexity δE . Recall that a mapping T : C → C is
uniformly k-lipschitzian, k � 0, if

‖T n x − T n y‖ � k‖x − y‖ for every x, y ∈ C and n ∈ N.

Theorem 2 Let E be a uniformly convex Banach space with modulus of convexity δE and
let C be a nonempty bounded closed convex subset of E. Suppose T : C → C is uniformly
k-lipschitzian map and k < γ , where γ > 1 is the unique solution of the equation

γ

(
1 − δE

(
1

γ

))
= 1. (1)

Then F(T ) �= ∅ (note that in a Hilbert space, k < γ = 1
2

√
5, in L p-spaces (2 � p <

∞), k < γ = (1 + 2−p)
1
p ), and F(T ) is not only connected but even a retract of C

(see [11]).

In this paper we establish some results on the structure of fixed point sets for one-parame-
ter uniformly k-lipschitzian semigroups and semi-topological uniformly k-lipschitzian semi-
groups in uniformly convex Banach spaces when k is less than a constant bigger than the
constant from Theorem 2.

2 Uniformly convex Banach spaces

Recall that the modulus of convexity δE is the function δE : [0, 2] → [0, 1] defined by

δE (ε) = inf

{
1 − 1

2
‖x + y‖ : ‖x‖ � 1, ‖y‖ � 1, ‖x − y‖ � ε

}

and that the space E is uniformly convex if δE (ε) > 0 for ε > 0. A Hilbert space H is uni-
formly convex. This fact is a direct consequence of parallelogram identity. It is well known
that δE is continuous on [0, 2) and strictly increasing in uniformly convex Banach spaces
[6, Lemma 5.1].

Recall the concept and the notion of asymptotic center due to Edelstein, see [1,6]. Let C
be a nonempty closed convex subset of a Banach space E , and G an unbounded subset of
[0,+∞) such that t + h ∈ G for all t, h ∈ G and t − h ∈ G for all t, h ∈ G with t � h
(i.e., G = [0,+∞), G = [0,+∞) ∩ Q or G = N0, the set of nonnegative integers), and
let {xt : t ∈ G} be a bounded family of elements of E . Then the asymptotic radius and
asymptotic center of {xt }t∈G with respect to C are the number

r(C, {xt }) := inf
y∈C

(
lim sup
G
t→∞

‖y − xt‖
)
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The structure of fixed-point sets of uniformly lipschitzian semigroups 335

and the (possibly empty) set

A(C, {xt }) :=
{

y ∈ C : lim sup
G
t→∞

‖y − xt‖ = r (C, {xt })
}

,

respectively. It is well known that if E is reflexive, then A(C, {xt }) is bounded closed convex
and nonempty, and if E is uniformly convex, then A(C, {xt }) consist only a single point,
{z} = A(C, {xt }), i.e., other words z ∈ C is the unique point which minimizes functional

lim sup
G
t→∞

‖y − xt‖

over y in C .
Suppose F = {Ts : s ∈ G} is a one-parameter uniformly k-lipschitzian semigroup on C ,

i.e., a family of self-mappings on C satisfying the conditions:

1. Ts+h x = Ts Th x for all s, h ∈ G and x ∈ C ,
2. for each x ∈ C , the mapping s → Ts x from G into C is continuous when G has the

relative topology of [0,+∞),
3. for each s ∈ G, ‖Ts x − Ts y‖ � k‖x − y‖ for all x, y ∈ C .

Let A : C → C denote a mapping which associates with a given x ∈ C a unique z ∈
A(C, {Tt x}), that is, z = Ax . Now we generalize to uniformly k-lipschitzian semigroups the
lemma due to Sędłak and Wiśnicki [11]. This lemma is crucial to our results.

Lemma 3 Let E be a uniformly convex Banach space and let C be a nonempty bounded
closed convex subset of E. Then the mapping A : C → C is continuous.

Proof On the contrary, suppose that there exists x0 ∈ C and ε0 > 0 such that:
for all η > 0 there exists x1 ∈ C such that ‖x1 − x0‖ < η and ‖z1 − z0‖ � ε0, where
{z0} = A(C, {Tt x0}), {z1} = A(C, {Tt x1}).

Fix η > 0 and take x1 ∈ C such that

‖x1 − x0‖ < η and ‖z1 − z0‖ � ε0.

Let

R0 = r (C, {Tt x0}) = inf
y∈C

(
lim sup

G
t→+∞
‖y − Tt x0‖

)
,

R1 = r (C, {Tt x1}) = inf
y∈C

(
lim sup

G
t→+∞
‖y − Tt x1‖

)

and

R = lim sup
G
t→+∞

‖z1 − Tt x0‖.

Notice that

R0 < R.

Choose ε > 0. Then exists s(ε) ∈ G that⎧⎨
⎩

‖z1 − Tt x0‖ < R + ε,

‖z0 − Tt x0‖ < R0 + ε < R + ε,

‖z0 − z1‖ � ε0,

(2)

for all t ∈ G and t � s(ε).
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336 J. Górnicki

It follows by (2) and the properties of δE that for G 
 t � s(ε),
∥∥∥Tt x0 − z1 + z0

2

∥∥∥ �
(

1 − δE

(
ε0

R + ε

))
(R + ε)

and hence

R0 < lim sup
G
t→+∞

∥∥∥Tt x0 − z1 + z0

2

∥∥∥ �
(

1 − δE

(
ε0

R + ε

))
(R + ε). (3)

Moreover for t ∈ G, from triangle inequality we have

‖Tt x0 − z1‖ � ‖Tt xo − Tt x1‖ + ‖Tt x1 − z1‖ � k‖x0 − x1‖ + R1 + ε,

and hence

R = lim sup
G
t→+∞

‖Tt x0 − z1‖ � kη + R1 + ε. (4)

Similarly,

R1 < lim sup
G
t→+∞

‖Tt x1 − z0‖ � kη + R1 + ε. (5)

From (4) and (5), we have

R � kη + R1 + ε < 2kη + 2ε + R. (6)

Combining (6) with (3) and applying the monotonicity of δE , we obtain

R0 <

(
1 − δE

(
ε0

2kη + 3ε + R0

))
(2kη + 3ε + R0).

Letting η, ε ↓ 0, and using the continuity of δE , we conclude that

1 �
(

1 − δE

(
ε0

R0

))
< 1.

This contradiction proves the continuity of the mapping A. ��
This result can be extend to left reversible semigroups. Now let J be a semi-topological semi-
group, i.e., J is a semigroup with a Hausdorff topology such that for each a ∈ J the mapping
s → a · s and s → s · a from J to J are continuous. A semi-topological semigroup J is said
to be left reversible if any two closed right ideals have non-void intersection. (This latter is
automatically fulfilled if, for example J is commutative, and in particulary if J = [0,+∞).)
In this case (J, �) is a directed system when the binary relation “�” on J is defined by a � b
if and only if {a} ∪ a J ⊇ {b} ∪ bJ .

Let {xa : a ∈ J } be a bounded net in uniformly convex Banach space E and let C a
nonempty closed convex subset of E . For a fixed p > 1, let us set

r(x) = inf
b∈J

sup
a�b

‖xa − x‖p and r = inf
x∈C

r(x).

Then we have a unique point z ∈ C (called the asymptotic center of the net {xa} in C) such
that r(z) = r .

Let C be a nonempty bounded closed convex subset of a Banach space E , let J be a
left reversible semi-topological semigroup, and let T = {Ts : s ∈ J } be a family of self-
mappings of C into itself. Then T is said to be a left reversible semi-topological uniformly
k-lipschitzian semigroup on C if the following conditions are satisfied:
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The structure of fixed-point sets of uniformly lipschitzian semigroups 337

1′. Tts x = Tt Ts x for all t, s ∈ J and x ∈ C ,
2′. the mapping (s, x) → Ts x from J ×C into C is continuous when J ×C has the product

topology,
3′. for each s ∈ J, ‖Ts x − Ts y‖ � k‖x − y‖ for all x, y ∈ C .

Remark 4 For such a family of mappings Lemma 3 remains true.

Normal structure plays essential role in some problems of metric fixed point theory. Let
C be a nonempty bounded set in a Banach space E . We put

r(C) = inf
x∈C

(
sup
y∈C

‖x − y‖
)

.

This number is called the Chebyshev radius of A.
A Banach space E is said to have uniformly normal structure (UNS) if for some c ∈ (0, 1)

and every bounded closed convex subset C ⊂ E with diamC > 0, it has

r(C) � c · diamC.

The normal structure coefficient (also called the Jung constant) was defined by Bynum
[3] in the following way

N (E) := inf

{
diamC

r(C)

}

where the infimum is taken over all bounded closed convex sets C ⊂ E with diamC > 0.
Clearly, the condition N (E) > 1 characterizes spaces E with UNS. It is well known that all
uniformly convex Banach spaces possess UNS [10, Theorem 5.12]. It is difficult to calculate
the normal structure coefficient in an arbitrary Banach space. However, for a Hilbert space,

N (H) = √
2, and N (l p) = N (L p) = min{2 1

p , 21− 1
p } for 1 < p < ∞, see [1,10].

The following lemma can be proved in exactly the same way as Lim [8, Theorem 1] for
sequences and the proof is thus omitted here.

Lemma 5 Let E be a Banach space with UNS. Then for every bounded family {xt }t∈G of
elements of E there exists y in conv{xt : t ∈ G} such that

lim sup
G
t→+∞

‖y − xt‖ �
1

N (E)
· lim

G
t→+∞(sup{‖xi − x j‖ : t � i, j ∈ G}).

Now we improve the fixed point theorem due to Tan and Xu [12, Theorem 3.5].

Theorem 6 Let E be a uniformly convex Banach space and let C be a nonempty bounded
closed convex subset of E. Suppose F = {Ts : s ∈ G} is a one-parameter uniformly
k-lipschitzian semigroup on C with k < α, where α > 1 is the unique solution of the
equation

α2 · δ−1
E

(
1 − 1

α

)
· 1

N (E)
= 1 (7)

(
in a Hilbert space α = (

√
3 − 1)− 1

2 > 1
2

√
5
)
. Then

F(F) = {x ∈ C : Ts x = x for all s ∈ G} �= ∅

and F(F) is a retract of C.
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338 J. Górnicki

Suppose E is uniformly convex Banach space and α > 1 is the unique solution of Eq. (7).
Then γ < α, where γ > 1 is the unique solution of Eq. (1), see [12, Lemma 3.3].

Proof The proof of existence z in C such that Ts z = z for all s ∈ G, based on the Lemma 5,
is given in [12, Theorem 3.5] or in [7, Theorem 4]. In this proof by induction we define a
sequence {xn}n=0,1,2,... in C in the following manner

x0 = x and xn+1 = A(C, {Tt xn}) = An+1x, n = 0, 1, . . .

(z = limn→+∞ xn). Thus by the inequalities

d(xn) = sup
t∈G

‖Tt xn − xn‖ � d(xn−1) � Bnd(x),

‖xn+1 − xn‖ �
(

k

N (E)
+ 1

)
Bnd(x) → 0 as n → +∞,

where B = k2

N (E)
δ−1

E

(
1 − 1

k

)
< 1, we have

‖An+1x − An x‖ �
(

k

N (E)
+ 1

)
Bnd(x) �

(
k

N (E)
+ 1

)
BndiamC

for n = 1, 2, . . . So

sup
x∈C

‖Ai x − Am x‖ �
(

k

N (E)
+ 1

)
Bm

1 − B
diamC → 0 if i, m → +∞,

which implies that the sequence {Am x}m=1,2,... converges uniformly to a function

Rx = lim
m→∞ Am x, x ∈ C.

It follows from Lemma 3, that R : C → C is continuous. Moreover,

‖Rx − Ts Rx‖
� ‖Rx − Am x‖ + ‖Am x − Ts+h Am x‖ + ‖Ts+h Am x − Ts Am x‖ + ‖Ts Am x − Ts Rx‖
� (1 + k)‖Rx − Am x‖ + ‖Am x − Ts+h Am x‖ + k‖Th Am x − Am x‖
� (1 + k)‖Rx − Am x‖ + (1 + k) · d(Am x)

� (1 + k)‖Rx − Am x‖ + (1 + k) · Bm · diamC → 0 as m → +∞
and Rx = Ts Rx for all s ∈ G and x ∈ C . Thus R is a retraction of C onto F(F). ��
This result can be sharpened in some uniformly convex Banach spaces, for example in a
Hilbert space and in L p-spaces (1 < p < ∞).

3 p-Uniformly convex Banach spaces

Let p > 1 be a real number. A Banach space E is said to be p-uniformly convex (or E is
said to have the modulus of convexity of power type p) if there exists a constant d > 0
such that the modulus of convexity δE (ε) � d · ε p for 0 � ε � 2. We note that a Hilbert

space is 2-uniformly convex (indeed, δH (ε) = 1 −
√

1 − ( ε
2 )2 � 1

8ε2) and an L p-space

(1 < p < ∞) is max{p, 2}-uniformly convex.
In [9,14] the following result was proved.
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The structure of fixed-point sets of uniformly lipschitzian semigroups 339

Theorem 7 Let p > 1 be a real number and let E be a p-uniformly convex Banach space.
Then there exists a constant cp > 0 such that

‖λx + (1 − λ)y‖p � λ‖x‖p + (1 − λ)‖y‖p − cp · Wp(λ) · ‖x − y‖p

for all x, y ∈ E, 0 � λ � 1, where Wp(λ) = λ(1 − λ)p + λp(1 − λ).

Let H be a Hilbert space, then

‖λx + (1 − λ)y‖2 = λ‖x‖2 + (1 − λ)‖y‖2 − λ(1 − λ)‖x − y‖2

for all x, y ∈ H, 0 � λ � 1.
When E is an L p-space, we have the following

Theorem 8 Suppose E is an L p-space.

(a) If 1 < p � 2, then

‖λx + (1 − λ)y‖2 � λ‖x‖2 + (1 − λ)‖y‖2 − (p − 1) · λ · (1 − λ) · ‖x − y‖2

for all x, y ∈ E and 0 � λ � 1 (cp = p − 1);
(b) If 2 < p < ∞, then

‖λx + (1 − λ)y‖p � λ‖x‖p + (1 − λ)‖y‖p − cp · Wp(λ) · ‖x − y‖p

for all x, y ∈ E, 0 � λ � 1, where Wp(λ) = λ(1 − λ)p + λp(1 − λ) and

cp = 1 + t p−1
p

(1 + tp)p−1 = (p − 1)(1 + tp)
2−p

with tp being the unique solution of the equation

(p − 2)t p−1 + (p − 1)t p−2 − 1 = 0, 0 < t < 1.

All constant appeared in the above inequalities are the best possible.
In the following theorem we improve the fixed point theorem due to Xu [14] from point

of view of the structure of the set of fixed points.

Theorem 9 Let p > 1 be a real number and let E be a p-uniformly convex Banach space,
C a nonempty bounded closed convex subset of E. Suppose F = {Ts : s ∈ G} is a one-
parameter uniformly k-lipschitzian semigroup on C with k < kp, where kp > 1 is the unique
solution of the equation

(t p)2 − t p − [N (E)]p · cp = 0, t ∈ (0,+∞),

i.e., kp = [ 1
2

(
1 + √

1 + 4 · cp · [N (E)]p
)] 1

p . Then F(F) �= ∅ and F(F) is a retract of C.

Proof We may assume that k � 1 since if k < 1, the well known Banach Contraction Principle
guarantees a fixed point of F .

For an x = x0 ∈ C , we can inductively define a sequence {xm}m=1,2,... in C in the fol-
lowing way: xm+1 is the asymptotic center of the sequence {Tt xm}t∈G , that is, xm+1 is the
unique point in C that minimizes the functional

lim sup
G
t→+∞

‖y − Tt xm‖
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340 J. Górnicki

over y in C . For each m � 0, we set

rm = lim sup
G
t→+∞

‖xm+1 − Tt xm‖ and d(xm) = sup
t∈G

‖xm − Tt xm‖.

Then by Lemma 5, we have

rm �
1

N (E)
· lim

G
t→+∞ (sup{‖Ts+h xm − Ts xm‖ : t � s ∈ G and h ∈ G})

�
k

N (E)
· sup

t∈G
‖Tt xm − xm‖ = k

N (E)
· d(xm) (8)

for m = 0, 1, 2, . . .

Now from Theorem 7 for each fixed m � 0 and s, h ∈ G, we have

‖λxm+1 + (1 − λ)Ts xm+1 − Ts+h xm‖p + cp · Wp(λ) · ‖xm+1 − Ts xm+1‖p

� λ‖xm+1 − Ts+h xm‖p + (1 − λ)‖Ts+h xm − Ts xm+1‖p

� λ‖xm+1 − Ts+h xm‖p + (1 − λ) · k p · ‖Th xm − xm+1‖p.

Taking the limit superior as G ∈ h → +∞ and nothing that xm+1 is the asymptotic center
of the sequence {Tt xm}t∈G , we obtain for each s ∈ G,

r p
m + cp · Wp(λ) · ‖xm+1 − Ts xm+1‖p � [λ + (1 − λ) · k p] · r p

m,

and

‖xm+1 − Ts xm+1‖p �
(1 − λ)(k p − 1)

cp · Wp(λ)
· r p

m .

It then follows that

[d(xm+1)]p �
(1 − λ)(k p − 1)

cp · Wp(λ)
· r p

m �
(1 − λ)(k p − 1)

cp · Wp(λ)
· k p

[N (E)]p
· [d(xm)]p.

Letting λ ↑ 1, we get

[d(xm+1)]p �
k p(k p − 1)

cp · [N (E)]p
· [d(xm)]p,

and

d(xm+1) �
(

k p(k p − 1)

cp · [N (E)]p

) 1
p · d(xm) = Bp · d(xm), m = 0, 1, 2, . . . ,

where Bp =
(

k p(k p−1)
cp ·[N (E)]p

) 1
p

< 1 by assumption of the theorem. In a similar way, we obtain

d(xm+1) � Bp · d(xm) � · · · � (Bp)
m+1 · d(x). (9)

Since

‖xm+1 − xm‖ � ‖xm+1 − Tt xm‖ + ‖Tt xm − xm‖,
so taking the limit superior as G 
 t → +∞, we get by (8), (9),

‖xm+1 − xm‖ � rm + d(xm) �
(

k

N (E)
+ 1

)
d(xm)

�
(

k

N (E)
+ 1

)
· (Bp)

m+1 · d(x) → 0 as m → +∞,
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The structure of fixed-point sets of uniformly lipschitzian semigroups 341

and we see that {xm} is norm Cauchy and hence strong convergent. Let z = limm→∞ xm .
Then we have

‖Ts z − z‖ � ‖Ts z − Ts xm‖ + ‖Ts xm − xm‖ + ‖xm − z‖
� (1 + k)‖xm − z‖ + d(xm)

� (1 + k)‖xm − z‖ + (Bp)
m · d(x) → 0 as m → +∞,

and Ts z = z for all s ∈ G.
The proof of the retraction R : C → F(F) can be proved in exactly the same way as in

the proof of Theorem 6. ��
Corollary 10 Let H be a Hilbert space, C a nonempty bounded closed convex subset of H
and F = {Ts : s ∈ G} be a one-parameter uniformly k-lipschitzian semigroup on C with
k <

√
2. Then F(F) �= ∅ and F(F) is a retract of C.

Corollary 11 Let C be a nonempty bounded closed convex subset of L p-space (1 < p < ∞)

and F = {Ts : s ∈ G} be a one-parameter uniformly k-lipschitzian semigroup on C. Suppose

k <

√
1
2 + 1

2

√
1 + (p − 1)42− 1

p if 1 < p � 2 (in particular, in L2-space, k <
√

2) and

k <
( 1

2 + 1
2

√
1 + 8 · cp

) 1
p if 2 < p < +∞ (here cp is as in Theorem 8(b)). Then F(F) �= ∅

and F(F) is a retract of C.

For left reversible semi-topological semigroup we have the following [13, Lemma 3].

Lemma 12 Let E be p-uniformly convex Banach space for some p > 1, C a nonempty
bounded closed convex subset of E. Let J be a left reversible semi-topological semigroup
and {xa : a ∈ J } be a net in C. Let us set

r(x) = inf
b∈J

sup
a�b

‖xa − x‖p and r = inf
x∈C

r(x).

Then we have a unique point z ∈ C (called the asymptotic center of the net {xa} in C) such
that r(z) = r and

r(z) � r(x) − cp‖x − z‖p

for all x ∈ C, where the constant cp is as in Theorem 7.

Theorem 13 Let p > 1 be a real number and let E be p-uniformly convex Banach space, C
a nonempty bounded closed convex subset of E. Suppose T = {Ts : s ∈ J } is a left reversible

semi-topological uniformly k-lipschitzian semigroup on C with k < (1 + cp)
1
p , where the

constant cp is as in Theorem 7. Then

F(T ) = {x ∈ C : Ts x = x for all s ∈ J } �= ∅

and F(T ) is a retract of C.

Proof We may assume that k � 1 since if k < 1, the well known Banach Contraction
Principle guarantees a fixed point of T .

Define a sequence {xn} ⊂ C in the following way: xn+1 is the asymptotic center of the
net {Ts xn}s∈J in C . Then, by Lemma 12, we have for x ∈ C and n = 1, 2, . . .

cp‖x − xn+1‖p � inf
s

sup
t�s

‖Tt xn − x‖p − inf
s

sup
t�s

‖Tt xn − xn+1‖p. (10)
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Noting the inequality

inf
s

sup
t�s

‖Tt y − x‖p � inf
s

sup
t�s

‖Tat y − x‖p

is valid for all x, y ∈ C and every a ∈ J . Putting x = Ta xn+1 into (10) we get

cp‖Ta xn+1 − xn+1‖p � inf
s

sup
t�s

‖Tt xn − Ta xn+1‖p − inf
s

sup
t�s

‖Tt xn − xn+1‖p

� inf
s

sup
t�s

‖Tat xn − Ta xn+1‖p − inf
s

sup
t�s

‖Tt xn − xn+1‖p

� (k p − 1) inf
s

sup
t�s

‖Tt xn − xn+1‖p

� (k p − 1) inf
s

sup
t�s

‖Tt xn − xn‖p

and hence

‖Ta xn+1 − xn+1‖p �
k p − 1

cp
inf

s
sup
t�s

‖Tt xn − xn‖p

� Mn+1 inf
s

sup
t�s

‖Tt x0 − x0‖p, (11)

where M = k p−1
cp

< 1 by assumption of the theorem. Inserting x = Ta xn−1 into (10) and in
a similar way to above, we obtain

‖Ta xn − xn+1‖p �
k p

cp
inf

s
sup
t�s

‖Tt xn − xn‖p. (12)

Combining (11) and (12) it follows that

‖xn+1 − xn‖p � (‖xn+1 − Ta xn‖ + ‖Ta xn − xn‖)p

� 2p−1(‖xn+1 − Ta xn‖p + ‖Ta xn − xn‖p)

� 2p−1 · Mn ·
(

k p

cp
+ 1

)
· inf

s
sup
t�s

‖Tt x0 − x0‖p, (13)

which shows that {xn} is Cauchy. Let z = limn→+∞ xn . Then for each a ∈ J we have

‖z − Taz‖p � (‖z − xn‖ + ‖xn − Ta xn‖ + ‖Ta xn − Taz‖)p

� ((1 + k)‖z − xn‖ + ‖xn − Ta xn‖)p

� 2p−1[(1 + k)p‖z − xn‖p + ‖xn − Ta xn‖p]
� 2p−1[(1 + k)p‖z − xn‖p + Mn · inf

s
sup
t�s

‖Tt x0 − x0‖p] → 0

as n → +∞. Therefore Taz = z for all a ∈ J .
Note that if x0 = x is a arbitrary point in C , then xm = Am x for m = 1, 2, . . . and by (13)

‖Am+1x − Am x‖ � 2p−1 · Mm ·
(

k p

cp
+ 1

)
· inf

s
sup
t�s

‖Tt x − x‖p

� 2p−1 · Mm ·
(

k p

cp
+ 1

)
· (diamC)p

for m = 1, 2, . . . Thus

sup
x∈C

‖Ai x − Am x‖ � 2p−1 · Mm

1 − M
·
(

k p

cp
+ 1

)
· (diamC)p → 0
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if i, m → +∞, which implies that the sequence {Am x} converges uniformly to a function

Rx = lim
m→+∞ Am x, x ∈ C.

It follows from Lemma 3 and Remark 4 that R : C → C is continuous. Moreover

‖Rx − Ta Rx‖p � (‖Rx − Am x‖ + ‖Am x − Ta Am x‖ + ‖Ta Am x − Ta Rx‖)p

� ((1 + k)‖Rx − Am x‖ + ‖Am x − Ta Am x‖)p

� 2p−1[(1 + k)p · ‖Rx − Am x‖p + ‖Am x − Ta Am x‖p]
� 2p−1[(1 + k)p · ‖Rx − Am x‖p + Mm · inf

s
sup
t�s

‖Tt x − x‖p] → 0

as m → +∞, and Rx = Ta Rx for all a ∈ J and x ∈ C . Thus R is a retraction C onto F(T ).
��

Corollary 14 Let H be a Hilbert space, C a nonempty bounded closed convex subset of
H and T = {Ts : s ∈ J } be a left reversible semi-topological uniformly k-lipschitzian
semigroup on C with k <

√
2. Then F(T ) �= ∅ and F(T ) is a retract of C.

Corollary 15 Let C be a nonempty bounded closed convex subset of L p-space (1 < p < ∞)

and T = {Ts : s ∈ J } be a left reversible semi-topological uniformly k-lipschitzian semi-

group on C. Suppose k <
√

p if 1 < p � 2, and k < (1 + cp)
1
p if 2 < p < +∞ (here cp is

as in Theorem 8(b)). Then F(T ) �= ∅ and F(T ) is a retract of C.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.
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