
REVISTA DE LA
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QHWM OF THE ORTHOGONAL AND SYMPLECTIC TYPES
LIE SUBALGEBRAS OF THE LIE ALGEBRA OF THE MATRIX

QUANTUM PSEUDO-DIFFERENTIAL OPERATORS

KARINA BATISTELLI AND CARINA BOYALLIAN

Abstract. In this paper we classify the irreducible quasifinite highest weight
modules over the orthogonal and symplectic types Lie subalgebras of the Lie
algebra of the matrix quantum pseudo-differential operators. We also realize
them in terms of the irreducible quasifinite highest weight modules of the
Lie algebras of infinite matrices with finitely many nonzero diagonals and its
classical Lie subalgebras of types B, C and D.

1. Introduction

The study of W -infinity algebras has its origins in various physical theories,
such as conformal field theory, the theory of quantum Hall effect, etc. The most
important of these algebras is W1+∞, which is the central extension of the Lie
algebra D of differential operators on the circle.

The dificulty when studying the representation theory of these algebras lies in
the fact that, although they admit a Z-gradation and a triangular decomposition,
each of the graded subspaces is still infinite dimensional. As a consequence, the
study of highest weight modules that satisfy the quasifinite condition —namely,
that graded subspaces are finite dimensional— becomes a nontrivial problem.

The representations of the Lie algebra W1+∞ were first studied in [KR1], where
its irreducible quasifinite highest weight modules were characterized and it was
shown that they can be realized in terms of the irreducible highest weight repre-
sentations of the Lie algebra of infinite matrices. At the end of that article, similar
results were found for the central extension of the Lie algebra of quantum pseudo-
differential operators Sq, which contains as a subalgebra the q-analogue of the Lie
algebra D̂, the algebra of all regular difference operators on C×.

This study for D̂ was continued in [FKRW], [KL] and [KR2] in the framework
of vertex algebra theory and in [BKLY] for the matrix case. In [KL], V. Kac and
J. Liberati also gave some general results on the characterization of quasifinite
representations of any Z-graded Lie algebra, which will be used in this paper.
In [KWY], a classification was given of the irreducible quasifinite highest weight
modules of the central extension of the Lie subalgebras of D fixed by minus the
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anti-involutions preserving the principal gradation. These results were extended in
[BL1] to the algebra DN of the N ×N -matrix differential operators on the circle.

An analogous study was carried out for the Lie algebra of quantum pseudo-
differential operators. In [BL3] it was shown that there is a family of anti-involutions
on Sq, up to conjugation, preserving the principal gradation. Their irreducible
quasifinite highest weight modules were classified and realized in terms of irre-
ducible highest weight representations of the Lie algebra of infinite matrices with
finitely many nonzero diagonals g`[m]

∞ and its classical Lie subalgebras of B, C and
D types. Similarly, in [BL2], the quasifinite highest weight modules over the central
extension of the Lie algebra of N ×N matrix quantum pseudo-differential opera-
tors, denoted Ŝq,N , were classified and characterized in terms of the representation
theory of the Lie algebra of infinite matrices with finitely many nonzero diagonals.

Making use of the the description of Lie subalgebras of Ŝq,N fixed by minus the
anti-involutions preserving the principal gradation given in [BB], we classify the
irreducible highest weight modules of some of the subalgebras found, particularly
the orthogonal and symplectic types. This paper is organized as follows.

In Section 2 we begin describing the objects of study by giving preliminary
definitions and Lemmas. The main result of this section is Proposition 2.7, that
characterizes properties of Sq,N and its non degenerated parabolic subalgebras. In
Section 3 we study the irreducible quasifinite highest weight modules of Ŝσ,Nq,N , the
main result is Theorem 3.3, which characterizes them in terms of the existence of
(quasi)polynomials satisfying certain equations. In Section 4 an interplay between
Ŝσ,Nq,N and the infinite rank classical Lie algebras of types A, B, C and D is estab-
lished. Propositions 4.1 to 4.5 give the existence of a Lie algebra homomorphism
between the holomorphic extension of Ŝσ,Nq,N and the direct sum of infinite rank clas-
sical Lie algebras. Section 5 is quite technical. We make use of the homomorphisms
of Section 4 to realize the irreducible quasifinite highest weight modules of Ŝσ,Nq,N
in terms of the modules of the infinite rank classical Lie algebras. This is accom-
plished by studying the different cases involved in the homomorphism of Section 4,
and it is described in Theorem 5.3 and Propositions 5.4 to 5.7. The main result of
this section, which is also the main result of the paper, is Theorem 5.8, which states
that an irreducible quasifinite highest weight modules of Ŝσ,Nq,N is a tensor product
of irreducible quasifinite highest weight modules of the infinite rank classical Lie
algebras, regarded as Ŝσ,Nq,N -modules via the homomorphism of Section 4.

2. Preliminaries

2.1. The Lie algebra ĝ`
[m]
∞ and its classical Lie subalgebras. In this section

we will give a description of the Lie algebra of infinite matrices with finitely many
nonzero diagonals g`[m]

∞ and its classical Lie subalgebras of B, C and D types. We
will follow the notation in [KWY, Section 1].

Denote Rm = C[u]/(um+1) the quotient algebra of the polynomial algebra C[u]
by the ideal generated by um+1 (m ∈ Z≥0). Let 1 be the identity element in Rm.
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Denote by g`[m]
∞ the complex Lie algebra of all infinite matrices (ai,j)i,j∈Z with

only finitely many nonzero diagonals with entries in Rm. Denote Ei,j the infinite
matrix with 1 at (i, j)-entry and 0 elsewhere. There is a natural automorphism ν

of g`[m]
∞ given by

ν(Ei,j) = Ei+1,j+1. (2.1)

Let the weight of Ei,j be j − i. This defines the principal Z-gradation g`[m]
∞ =

⊕j∈Z(g`[m]
∞ )j . Denote by ĝ`

[m]
∞ = g`[m]

∞ ⊕ Rm the central extension of g`[m]
∞ given

by the following 2-cocycle with values in Rm:

C(A,B) = Tr([J,A]B), (2.2)

where J =
∑
i≤0Ei,i. The Z-gradation of the Lie algebra g`[m]

∞ extends to ĝ`
[m]
∞ by

putting the weight of Rm to be 0. In particular, we have the triangular decompo-
sition,

ĝ`
[m]
∞ = (ĝ`

[m]
∞ )− ⊕ (ĝ`

[m]
∞ )0 ⊕ (ĝ`

[m]
∞ )+,

where
(ĝ`

[m]
∞ )± = ⊕j∈N(ĝ`

[m]
∞ )±j and (ĝ`

[m]
∞ )0 = (g`[m]

∞ )0 ⊕Rm.

Given λ ∈ (ĝ`
[m]
∞ )∗0, we let

ci = λ(ui),
aλ

(i)
j = λ(uiEj,j),

aH
(i)
j = uiEj,j − uiEj+1,j+1 + δj,0ci,

ah
(i)
j = aλ

(i)
j −

aλ
(i)
j+1 + δj,0ci,

(2.3)

where j ∈ Z and 0 ≤ i ≤ m. Let L(ĝ`
[m]
∞ , λ) be the irreducible highest weight ĝ`

[m]
∞ -

module with highest weight λ. The aλ
(i)
j are called labels and ci are the central

charges of L(ĝ`
[m]
∞ , λ).

Consider the vector space Rm[t, t−1] and take the basis vi = t−i, i ∈ Z over Rm.
Now consider the following C-bilinear form on Rm[t, t−1]:

B±(unvi, ulvj) = un(−u)l(±1)iδi,−j .

Denote by b̄
−[m]
∞ (resp. b̄+[m]

∞ ) the Lie subalgebra of g`[m]
∞ which preserves the bi-

linear form B−(·, ·) (resp. B+(·, ·)). We have

b̄+[m]
∞ = {(ai,j(u))i,j∈Z ∈ g`[m]

∞ : ai,j(u) = −a−j,−i(−u), u ∈ Rm},

b̄−[m]
∞ = {(ai,j(u))i,j∈Z ∈ g`[m]

∞ : ai,j(u) = (−1)1+i+ja−j,−i(−u), u ∈ Rm}.

Denote by b
[m]
∞ = b̄

−[m]
∞ ⊕ Rm (resp. b̃[m]

∞ = b̄
+[m]
∞ ⊕ Rm) the central extension of

b̄
−[m]
∞ (resp. b̄+[m]

∞ ) given by the restriction of the 2-cocycle (2.2), defined in g`[m]
∞ .
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The subalgebra b[m]
∞ (resp. b̃[m]

∞ ) inherits from ĝ`
[m]
∞ the principal Z-gradation and

the triangular decomposition (see [KR2] and [FKRW] for notation),

b[m]
∞ = ⊕j∈Z(b[m]

∞ )j , b[m]
∞ = (b[m]

∞ )+ ⊕ (b[m]
∞ )0 ⊕ (b[m]

∞ )−,

b̃[m]
∞ = ⊕j∈Z(b̃[m]

∞ )j , b̃[m]
∞ = (b̃[m]

∞ )+ ⊕ (b̃[m]
∞ )0 ⊕ (b̃[m]

∞ )−

Note that the Lie algebra b̃[m]
∞ is isomorphic to b[m]

∞ via the isomorphism that sends
the elements ukEi,j − (−u)kE−j,−i to ukEi,j + (−1)1+i+j(−u)kE−j,−i, i, j ∈ Z,
k ∈ Z+, u ∈ Rm. Their Cartan subalgebra coincides. In particular, when m = 0,
we have the usual Lie subalgebra of g`∞, denoted b∞ (see [K]) (resp. b̃∞, see [W]).
Given λ ∈ (b[m]

∞ )∗0, denote L(b[m]
∞ , λ) the irreducible highest weight module over b[m]

∞
with highest weight λ.

For each λ ∈ (b[m]
∞ )∗0, we let

ci = λ(ui),
bλ

(j)
0 = λ(2ujE0,0) (j odd),

bλ
(j)
i = λ(ujEi,i − (−u)jE−i,−i),

bH
(j)
i = ujEi,i − ujEi+1,i+1 + (−u)jE−i−1,−i−1 − (−u)jE−i,−i,

bH
(j)
0 = 2(ujE0,0 − ujE−1,−1 − ujE1,1) + uj , (j even),

bH
(j)
0 = (2ujE0,0 − ujE−1,−1 − ujE1,1) + uj , (j odd),

bh
(j)
i = λ(bH(j)

i ) = bλ
(j)
i −

bλ
(j)
i+1,

bh
(j)
0 = λ(bH(j)

0 ) = −2 bλ
(j)
1 + 2cj (j even),

bh
(j)
0 = λ(bH(j)

0 ) = bλ
(j)
0 − bλ

(j)
1 + cj (j odd),

(2.4)

where i ∈ N and 0 ≤ j ≤ m, u ∈ Rm. The bλ
(i)
j are called the labels and ci are the

central charges of L(b[m]
∞ , λ) or L(b̃[m]

∞ , λ).
Now consider the following C-bilinear form on Rm[t, t−1]:

C(unvi, ulvj) = un(−u)l(−1)iδi,1−j .

Denote by c̄[m]
∞ the Lie subalgebra of g`[m]

∞ which preserves the bilinear form C( , ).
We have

c̄[m]
∞ =

{
(aij(u))i,j∈Z ∈ g`[m]

∞ | aij(u) = (−1)i+j+1a1−j,1−i(−u) , u ∈ Rm
}
.

Denote by c[m]
∞ = c̄

[m]
∞ ⊕Rm the central extension of c̄[m]

∞ given by the restriction
of the 2-cocycle (2.2), defined in g`

[m]
∞ . This subalgebra inherits from ĝ`

[m]
∞ the

principal Z-gradation and the triangular decomposition (see [KWY] and [K] for
notation)

c[m]
∞ = ⊕j∈Z(c[m]

∞ )j c[m]
∞ = (c[m]

∞ )+ ⊕ (c[m]
∞ )0 ⊕ (c[m]

∞ )−.
In particular, when m = 0 we have the usual Lie subalgebra of g`∞, denoted by
c∞.
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Given λ ∈ (c[m]
∞ )∗0, denote by L(c[m]

∞ ;λ) the irreducible highest weight module
over c[m]

∞ with highest weight λ. For each λ ∈ (c[m]
∞ )∗0, we let:

ci = λ(ui),
cλ

(i)
j = λ(uiEj,j − (−u)iE1−j,1−j),

cH
(i)
j = uiEj,j − ujEj+1,j+1 + (−u)iE−j,−j − (−u)iE1−j,1−j ,

cH
(i)
0 = (uiE0,0 − uiE1,1) + ui, (i even)

ch
(i)
j = cλ

(i)
j −

cλ
(i)
1+j ,

ch
(i)
0 = cλ

(i)
1 + ci (i even),

where j ∈ N and 0 ≤ i ≤ m, u ∈ Rm. For later use, it is convenient to put ch(i)
0 = ci

(i odd), i = 0, . . . ,m.
The cλ

(i)
j are called the labels and ci are the central charges of L(c[m]

∞ , λ).

Now consider the following C-bilinear form on Rm[t, t−1]:

D(unvi, ulvj) = un(−u)lδi,1−j .

Denote by d[m]
∞ the Lie subalgebra of g`[m]

∞ which preserves the bilinear form D(·, ·).
We have

d̄[m]
∞ =

{
(ai,j(u))i,j∈Z ∈ g`[m]

∞ | ai,j(u) = −a1−j,1−i(−u), u ∈ Rm
}
.

Denote by d[m]
∞ = d̄

[m]
∞ ⊕ Rm the central extension of d̄[m]

∞ given by the restriction
of the 2-cocycle (2.2), defined in g`[m]

∞ . This subalgebra inherits from ĝ`
[m]
∞ the

principal Z-gradation and the triangular decomposition (see [KR2] and [FKRW]
for notation),

d[m]
∞ = ⊕j∈Z(d[m]

∞ )j , d[m]
∞ = (d[m]

∞ )+ ⊕ (d[m]
∞ )0 ⊕ (d[m]

∞ )−.

Given λ ∈ (d[m]
∞ )∗0, denote L(d[m]

∞ , λ) the irreducible highest weight module over
d

[m]
∞ with highest weight λ.

For each λ ∈ (d[m]
∞ )∗0, we let

ci = λ(ui),
dλ

(j)
i = λ(ujEi,i − (−u)jE1−i,1−i),

dH
(j)
i = ujEi,i − ujEi+1,i+1 + (−u)jE−i,−i − (−u)jE1−i,1−i,

dH
(j)
0 = ((−u)jE0,0 + (−u)jE−1,−1 − ujE2,2 − ujE1,1) + 2uj ,

dh
(j)
i = λ(dH(j)

i ) = dλ
(j)
i −

dλ
(j)
i+1,

dh
(j)
0 = λ(dH(j)

0 ) = −dλ(j)
1 − dλ

(j)
2 + 2cj ,

(2.5)
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where i ∈ N and 0 ≤ j ≤ m, u ∈ Rm. The dλ
(i)
j are called the labels and ci are

the central charges of L(d[m]
∞ , λ). In particular, when m = 0 we have the usual

d̄∞ = d̄
[0]
∞ , d∞ = d

[0]
∞ , cf. [K]. In this case, we drop the superscript [0].

2.2. The Lie algebra Sq,N . Consider C[z, z−1] the Laurent polynomial algebra in
one variable. We denote Saq the associative algebra of quantum pseudo-differential
operators. Explicitly, let Tq denote the operator on C[z, z−1] given by

Tqf(z) = f(qz),

where q ∈ C× = C\{0}. From now on, T 0
q will denote the identity operator and

T−1
q the inverse operator of Tq. An element of Saq can be written as a linear

combination of operators of the form zkf(Tq), where f is a Laurent polynomial in
Tq. The product in Saq is given by

(zmf(Tq))(zkg(Tq)) = zm+kf(qkTq)g(Tq).

Denote Sq the Lie algebra obtained from Saq by taking the usual commutator.
Take S ′q := [Sq,Sq]. It follows that

Sq = S ′q ⊕ CT 0
q (direct sum of ideals).

Let N be a positive integer. As of this point, we shall denote by MatNA the
associative algebra of all N ×N matrices over an algebra A and Eij the standard
basis of MatNC.

Let Saq,N = Saq⊗MatNC be the associative algebra of all quantum matrix pseudo-
differential operators, namely the operators on CN [z, z−1] of the form

E = ek(z)T kq + ek−1(z)T k−1
q + · · ·+ e0(z), where ek(z) ∈ MatNC[z, z−1].

In a more useful notation, we write the matrix of pseudo-differential operators
as linear combinations of elements of the form zkf(Tq)A, where f is a Laurent
polynomial, k ∈ Z and A ∈ MatNC. The product in Saq,N is given by

(zmf(Tq)A)(zkg(Tq)B) = zm+kf(qkTq)g(Tq)AB.

Let Sq,N denote the Lie algebra obtained from Saq,N with the bracket given by
the commutator, namely:

[zmf(Tq)A, zkg(Tq)B] = zm+k(f(qkTq)g(Tq)AB − f(Tq)g(qmTq)BA).

Taking the trace form tr0(
∑
j cjw

j) = c0, and denoting by tr the usual trace in
MatMC, we obtain, by a general construction (cf. [KR1, Sec. 1.3]), the following
2-cocycle in Sq,N ,

ψ(zmf(Tq)A, zkg(Tq)B) = δm,−km tr0(f(q−mTq)g(Tq)) tr(AB), (2.6)

where r, s ∈ Z, f(w), g(w) ∈ C[w,w−1], A, B ∈ MatNZ. Let

Ŝq,N = S ′q,N ⊕ CC
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denote the central extension of S ′q,N by a one-dimensional center CC corresponding
to the two-cocycle ψ. The bracket in Ŝq,N is given by

[zmf(Tq)A, zkg(Tq)B] = zm+k(f(qkTq)g(Tq)AB − f(Tq)g(qmTq)BA)
+ ψ(zmf(Tq)A, zkg(Tq)B)C.

The elements zkTmq Eij (k ∈ Z, m ∈ Z, i, j ∈ {1, . . . , N}) form a basis of Sq,N .
We define the weight on Sq,N by

wtzkf(Tq)Eij = kN + i− j.

This gives the principal Z-gradation of Saq,N , Sq,N and Ŝq,N ,

Saq,N = ⊕j∈Z(Sq,N )j , Ŝq,N = ⊕j∈Z(Ŝq,N )j .
An anti-involution σ of Saq,N is an involutive anti-automorphism of Saq,N , i.e.,

σ2 = Id, σ(ax + by) = aσ(x) + bσ(y) and σ(xy) = σ(y)σ(x), for all a, b ∈ C and
x, y ∈ Saq,N . From now on we will assume that |q| 6= 1.

The following Lemma was proved in [BB].

Lemma 2.1. Let σ = σα,β,c,r,N be given by
σ(Eii) = EN+1−i,N+1−i

σ(TqEii) = βT−1
q EN+1−i,N+1−i

σ(zEii) = zαT rqEN+1−i,N+1−i

σ(z−1Eii) = α−1qrz−1T−rq EN+1−i,N+1−i

σ(Eij) =
{
ci,jEN+1−j,N+1−i if i > j

c−1
j,i EN+1−j,N+1−i if i < j,

where α, β, ci,j , r ∈ C, α2(βq−1)r = 1, and ci,j satisfy the following relations:
cij = ci,i−1ci−1,i−2 · · · cj+1,j (2.7a){

ci,jcN+1−j,N+1−i = 1 if i ≤ n or j > n

ci,jc
−1
N+1−i,N+1−j = ±1 if i > n and j ≤ n.

(2.7b)

Then σ = σα,β,c,r,N extends to an anti-involution on Saq,N which preserves the
principal Z-gradation.

Remark 2.2. (a) For each n < N , a Z-gradation preserving anti-involution
can be constructed in a similar way. In [BB] all anti-involutions of Saq,N
preserving the Z-gradation were classified.

(b) Because of (2.7a), all coefficients ci,j are completely determined by
ci := ci+1,i, i = 1, . . . , N − 1.

Moreover, combining equations (2.7a) and (2.7b) has further consequences.
Let N = t + n. If n (respectively, t) is even, we have (cn/2)2 = 1 (respec-
tively, (cn+(t/2))2 = 1). The coefficient cn/2 (respectively, cn+(t/2)) will be
called a fixed point. A more detailed study of this can be found in [BB].
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Let Sα,β,c,r,Nq,N denote the Lie subalgebra of Sq,N fixed by minus σα,β,c,r,N , namely

Sα,β,c,r,Nq,N = {a ∈ Sq,N | σα,β,c,r,N (a) = −a},
where σα,β,c,r,N is the anti-involution given by Lemma 2.1.

Lemma 2.3. The Lie algebras Sα,β,c,r,Nq,N for arbitrary choices of α, β and c are
isomorphic to Sε,q,1,r,Nq,N , where ε is 1 or −1, and 1 is the matrix c with ci = 1
except for the fixed points that are 1 or −1, which keep their sign.

Thus, the anti-involution is of the following form:
σε,r,N (zkh(Tq)Ei,j) = (ε)kqk(k−1)r/2zkh(q1−kT−1

q )T krq EN+i−j,N+1−i, (2.8)

where ε = ±1, r ∈ C×. For simplicity, denote Sσ,Nq,N the Lie subalgebras of Sq,N
fixed by minus σε,r,N .

We will denote

δm,even =
{

1 if m is even,
0 otherwise.

Sσ,Nq,N inherits a Z-gradation from Sq,N since σ preserves the principal Z-gradation
of Saq,N . Thus Sσ,Nq,N = ⊕j∈Z(Sσ,Nq,N )j . We can now give a description of (Sσ,Nq,N )j . By
the division algorithm, let j = kN + p with 0 ≤ p ≤ N − 1. Thus:

If p 6= 0,
(Sσ,Nq,N )j = {zk(q(k−1)/2Tq)rk/2

(
f(q(k−1)/2Tq)Ei,i−p

− (ε)kf((q(k−1)/2Tq)−1)EN+1−i+p,N+1−i
)

: f(w) ∈ C[w,w−1],
1 + p ≤ i ≤ N, i 6= (N + 1 + p)/2}⋃

δN+p,odd{zk(q(k−1)/2Tq)rk/2g(q(k−1)/2Tq)E(N+1+p)/2,(N+1−p)/2 :

g(w) ∈ C[w,w−1]ε,k}⋃
{zk+1(qk/2Tq)r(k+1)/2(h(qk/2Tq)Ei,N−p+i

− (ε)k+1h(q−k/2T−1
q )Ep+1−i,N+1−i

)
: h(w) ∈ C[w,w−1], 1 ≤ i ≤ p,

i 6= (1 + p)/2}⋃
δp,odd{zk+1(qk/2Tq)r(k+1)/2g̃(qk/2Tq)E(p+1)/2,(2N+1−p)/2 :

g̃(w) ∈ C[w,w−1]ε,k+1},
and for p = 0,

(Sσ,Nq,N )j = {zk(q(k−1)/2Tq)rk/2(f(q(k−1)/2Tq)Ei,i
− (ε)kf((q(k−1)/2Tq)−1)EN+1−i,N+1−i) : f(w) ∈ C[w,w−1],
1 ≤ i ≤ [N/2]}⋃

δN,odd{z−k(q(−k−1)/2Tq)−rk/2g(q(−k−1)/2Tq)E(N+1)/2,(N+1)/2 :

g(w) ∈ C[w,w−1]ε,k},
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where C[w,w−1]ε,k denotes the set of Laurent polynomials such that f(w−1) =
−(ε)kf(w).

We denote again ψ the restriction of the 2-cocycle in (2.6) to Sσ,Nq,N . Denote by

Ŝσ,Nq,N the central extension of Sσ,Nq,N by CC corresponding to the 2-cocycle ψ. Ŝσ,Nq,N
is a Lie subalgebra of Ŝq,N by definition.

2.3. Parabolic subalgebras of Sσ,Nq,N . In order to characterize the quasifiniteness

of the highest weight modules (HWMs) of Ŝσ,Nq,N we will study the structure of its
parabolic subalgebras and apply general results for quasifinite representations of
Z-graded Lie algebras obtained in [KL]. We refer to [KL] for proofs and details.
Let g be a Z-graded Lie algebra over C,

g =
⊕
j∈Z

gj , [gi, gj ] ⊂ gi+j ,

where gi is not necessarily of finite dimension. Let g± = ⊕j>0g±j . A subalgebra p
of g is called parabolic if it contains g0 ⊕ g+ as a proper subalgebra, that is

p =
⊕
j∈Z

pj , where pj = gj for j ≥ 0, and pj 6= 0 for some j < 0.

Following [KL], we assume the following properties of g:
(P1) g0 is commutative,
(P2) if a ∈ g−k (k > 0) and [a, g1] = 0, then a = 0.
Given a ∈ g−1, a 6= 0, we define pa = ⊕j∈Zpj , where paj = gj for all j ≥ 0, and

pa−1 =
∑

[. . . [[a, g0], g0], . . . ], pa−k−1 = [pa−1, p
a
−k].

Lemma 2.4.
(a) For any parabolic subalgebra p of g, p−k 6= 0, k > 0, implies

p−k+1 6= 0.
(b) pa is the minimal parabolic subalgebra containing a.
(c) ga0 := [pa, pa] ∩ g0 = [a, g1].

Proof. Cf. [KL, Lemmas 2.1 and 2.2]. �

In [BKLY], for the case of the central extension of the Lie algebra of matrix
differential operators on the circle, the existence of some parabolic subalgebras p
such that p−j = 0 for j � 0 was observed. Having in mind that example, they give
the following definition.

Definition 2.5. (a) A parabolic subalgebra p is called nondegenerate if p−j
has finite codimension in g−j , for all j > 0.

(b) An element a ∈ g−1 is called nondegenerate if pa is nondegenerate.

We will also require the following condition on g.
(P3) If p is a nondegenerate parabolic subalgebra of g, then there exists an

nondegenerate element a such that pa ⊆ p.
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Now take a parabolic subalgebra p of Ŝσ,Nq,N . Observe that for each j ∈ N,
j = kN + p with 0 ≤ p ≤ N − 1, we have

p−j = {z−k(q(−k−1)/2Tq)−rk/2(f(q(−k−1)/2Tq)Ei,i+p
− (ε)kf(q(k+1)/2T−1

q )EN+1−i−p,N+1−i) | f(w) ∈ Ii−j , 1 ≤ i ≤ N − p,
i 6= (N + 1− p)/2}⋃
δN−p,odd{z−k(q(−k−1)/2Tq)−rk/2g(q(−k−1)/2Tq)E(N+1−p)/2,(N+1+p)/2

| g(w) ∈ I(N+1−p)/2
−j }⋃

{z−k−1(q−1−k/2Tq)−r(k+1)/2(h(q−1−k/2Tq)Ei,i−N+p

− (ε)(k+1)h((q−1−k/2Tq)−1)E2N+1−i−p,N+1−i)
| h(w) ∈ Ii−j , N + 1− p ≤ i ≤ N, i 6= (2N + 1− p)/2}⋃
δp,odd{z−k−1(q−1−k/2Tq)−r(k+1)/2g̃(q−1−k/2Tq)E(2N+1−p)/2,(1+p)/2

| g̃(w) ∈ I(2N+1−p)/2
−j },

(2.9)
where Ii−j is a subspace of C[w,w−1], I(N+1−p)/2

−j is a subspace of C[w,w−1]ε,k and
I

(2N+1−p)/2
−j is a subspace of C[w,w−1]ε,k+1.

Let us check conditions (P1), (P2) and (P3) for Ŝσ,Nq,N .

Observe that (P1) is immediate from the definition of (Ŝσ,Nq,N )0. (P2) follows
from computing the bracket

[zl(q(l−1)/2Tq)lr/2
(
f(Tq)Ei,j−(ε)lf(T−1

q )EN+1−j,N+1−i
)
, Ej,j−1 − EN+2−j,N+1−j ]

and the particular case

[zl(q(l−1)/2Tq)lr/2
(
f(Tq)EN/2,N/2 − (ε)lf(T−1

q )EN/2+1,N/2+1
)
,

EN/2,N/2−1 − EN/2+2,N/2+1].

To prove (P3), let f(w), g(w) be Laurent polynomials in the variable w with
f ∈ Ii−j , and let p−j with j = kN+p as in (2.9). Let us first consider 1 ≤ i ≤ N−p.
If p = 0, suppose i 6= (N + 1)/2. We compute the bracket

[z−k(q(−k−1)/2Tq)−rk/2
(
f(q(−k−1)/2Tq)Ei,i−(ε)kf(q(k+1)/2T−1

q )EN+1−i,N+1−i
)
,

g(q−1/2Tq)Ei,i − g(q1/2T−1
q )EN+1−i,N+1−i].

So, Ii−j satisfies

AjI
i
−j ⊆ Ii−j , (2.10)

where Aj = {g(qk/2w)− g(q−k/2w) : g(w) ∈ C[w,w−1]}.
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If p 6= 0, suppose that i 6= N + 1− i. Computing the bracket

[z−k(q(−k−1)/2Tq)−rk/2
(
f(q(−k−1)/2Tq)Ei,i+p

− (ε)kf(q(k+1)/2T−1
q )EN+1−i−p,N+1−i

)
,

g(q−1/2Tq)Ei,i − g(q1/2T−1
q )EN+1−i,N+1−i],

we see that Ii−j satisfies (2.10) for Aj = {g(qk/2w) : g(w) ∈ C[w,w−1]}.
Now, if N + 1− p ≤ i ≤ N , we see by computing

[z−k−1(q−1−k/2Tq)−r(k+1)/2(f(q−1−k/2Tq)Ei,i−N+p

− (ε)k+1f(q1+k/2T−1
q )E2N+1−i−p,N+1−i

)
,

g(q−1/2Tq)Ei,i − g(q1/2T−1
q )EN+1−i,N+1−i]

that Ii−j also satisfies (2.10) for Aj = {g(q(−1−k)/2w) : g(w) ∈ C[w,w−1]}.
Analogous results can be obtained if N − p is odd for I(N+1−p)/2

−j by computing

[z−k(q(−k−1)/2Tq)−kr/2(f(q(−k−1)/2Tq)E(N+1−p)/2,(N+1+p)/2,

g(q−1/2Tq)Ei,i − g(q1/2T−1
q )EN+1−i,N+1−i],

and if p is odd for I(2N+1−p)/2
−j , computing

[z−k−1(q−1−k/2Tq)−r(k+1)/2(f(q−1−k/2Tq)E(2N+1−p)/2,(1+p)/2,

g(q−1/2Tq)Ei,i − g(q1/2T−1
q )EN+1−i,N+1−i].

Thus, since C[w,w−1] is a principal ideal domain, we have proven the following

Lemma 2.6. For j > 0,
(a) Ii−j, I

(N+1−p)/2
−j and I(2N+1−p)/2

−j are ideals;
(b) if Ii−j 6= 0, I(N+1−p)/2

−j 6= 0 and I
(2N+1−p)/2
−j 6= 0, then they have finite

codimension in C[w,w−1].

Let [k] denote the integer part of a number k. Now we have the following
important proposition.

Proposition 2.7.

(a) Any nonzero element d ∈ (Ŝσ,Nq,N )−1 is nondegenerate.

(b) Any parabolic subalgebra of Ŝσ,Nq,N is nondegenerate.

(c) Let d ∈ (Ŝσ,Nq,N )−1,

d =
[N/2]−δN,even∑

i=1
fi(q−1/2Tq)Ei,i+1 − fi(q1/2T−1

q )EN−i,N+1−i

+ δN,even g(q−1/2Tq)EN/2,N/2+1 + z−1(q−1Tq)−r/2h(q−1Tq)EN,1,
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where fi(w), g(w) and h(w) are Laurent polynomials such that g(w−1) =
−g(w) and h(w−1) = −εh(w). Then

(Ŝσ,Nq,N )d0 := [(Ŝσ,Nq,N )1, d]

= span
{
fk−1(q−1/2Tq)(q−1/2Tq)l(Ek−1,k−1 − Ek,k)

+ fk−1(q1/2T−1
q )(q−1/2Tq)−l(EN−k+1,N−k+1 − EN+2−k,N+2−k) :

2 ≤ k ≤ [N/2] + δN,odd, l ∈ Z≥0
}⋃

δN,even
{
g(q−1/2Tq)

(
(q−1/2Tq)n − (q−1/2Tq)−n

)
(EN/2,N/2 − EN/2+1,N/2+1) :

n ∈ Z≥0, g ∈ C[w,w−1]ε,0
}⋃{

h(Tq)(Tmq − εT−mq )EN,N − h(q−1Tq)
(
(q−1Tq)m − ε(q−1Tq)−m

)
E1,1

+ tr0(εh(q1/2w−1)(wm − εw−m))C : m ∈ Z, h ∈ C[w,w−1]ε,1
}
.

Proof. Let 0 6= d ∈ (Ŝσ,Nq,N )−1; by Lemma 2.4, part (a), pd−j 6= 0 for all j ≥ 1. So, by

Lemma 2.6 part (b), part (a) follows. Let p be any parabolic subalgebra of Ŝσ,Nq,N ;
using Lemmas 2.1 and 2.2 in [KL], we get p−1 6= 0. Then using (a) and pd ⊆ p (for
any nonzero d ∈ p−1) we obtain (b). Finally, part (c) follows by computing the
commutators [d, a] with a = (q−1/2Tq)lEk,k−1 − (q−1/2Tq)−lEN+2−k,N+1−k with
2 ≤ k ≤ [N/2] + δN,odd; a = δN,even((q−1/2Tq)n − (q−1/2Tq)−n)EN/2+1,N/2 and
a = zT

r/2
q (Tmq − εT−mq )E1,N , with l, n, m ∈ Z≥0. �

Summarizing, we have proven that the following properties are satisfied by Ŝσ,Nq,N :

(P1) (Ŝσ,Nq,N )0 is commutative;

(P2) if a ∈ (Ŝσ,Nq,N )−j (j > 0) and [a, (Ŝσ,Nq,N )1] = 0, then a = 0;

(P3) if p is a nondegenerate parabolic subalgebra of Ŝσ,Nq,N , then there exists a
nondegenerate element a such that pa ⊆ p.

Observe that (P3) follows from Proposition 2.7, parts (a) and (b).

3. Characterization of quasifinite highest weight modules of Ŝσ,Nq,N
Now, we begin our study of quasifinite representations over the Lie algebras

Ŝσ,Nq,N . Let g be a Z-graded Lie algebra. For a Lie algebra g, a g-module V is
called Z-graded if V = ⊕j∈ZVj and giVj ⊂ Vi+j . A Z-graded g-module V is called
quasifinite if dimVj <∞ for all j.

Given λ ∈ g∗0, a highest weight module is a Z-graded g-module V (g, λ) generated
by a highest weight vector vλ ∈ V (g, λ) which satisfies

hvλ = λ(h)vλ (h ∈ g0), g+vλ = 0.
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A nonzero vector v ∈ V (g, λ) is called singular if g+vλ = 0. The Verma module
over g is defined as usual:

M(g, λ) = U(g)⊗U(g0⊕g+) Cλ,

where Cλ is the one-dimensional (g0 ⊕ g+)-module given by h 7→ λ(h) if h ∈ g0,
g+ 7→ 0, and under the action of g is induced by the left multiplication in U(g). Here
and further U(g) stands for the universal enveloping algebra of the Lie algebra g.
Any highest-weight module V (g, λ) is a quotient module ofM(g, λ). The irreducible
module L(g, λ) is the quotient of M(g, λ) by the maximal proper graded module.
We shall write M(λ) and L(λ) in place of M(g, λ) and L(g, λ) if no ambiguity may
arise.

Consider a parabolic subalgebra p = ⊕j∈Zpj of g and let λ ∈ g∗0 be such that
λ|g0∩[p,p] = 0. Then the (g0 ⊕ g+)-module Cλ extends to a p-module by letting pj
act as 0 for j < 0, and we may construct the highest-weight module

M(g, p, λ) = U ⊗U(p) Cλ,

called the generalized Verma module. Clearly all these highest weight modules are
graded.

From now on we will consider λ ∈ ĝ∗0. By Theorem 2.5 in [K], we have the
following.

Theorem 3.1. The following conditions on λ ∈ g∗0 are equivalent:
(1) M(λ) contains a singular vector a.vλ in M(λ)−1 where a is nondegenerate;
(2) there exists a nondegenerate element a ∈ g−1, such that λ([g1, a]) = 0;
(3) L(λ) is quasifinite;
(4) there exists a nondegenerate element a ∈ g−1 such that L(λ) is the irre-

ducible quotient of the generalized Verma module M(g, pa, λ).

Consider ĝ = Ŝσ,Nq,N . A functional λ ∈ (Ŝσ,Nq,N )∗0 is described by its labels,

4i,l = λ((q−1/2Tq)lEi,i − (q−1/2Tq)−lEN+1−i,N+1−i),
4N,l = λ((T lq + T−lq )EN,N − ((q−1Tq)l + (q−1Tq)−l)E1,1)

with l ∈ Z≥0, 1 < i ≤ [N/2] + δN,even and the central charge c = λ(C). We shall
consider the generating series

4i(x) =
∑
l∈Z

x−l 4i,l 1 < i ≤ [N/2] + δN,even and 4N (x) =
∑
l∈Z

x−l 4N,l .

Recall that a quasipolynomial is a linear combination of functions of the form
p(x)qαx, where p(x) is a polynomial and α ∈ C. That is, it satisfies a nontrivial
linear differential equation with constant coefficients. We also have the following
well-known proposition.

Proposition 3.2. Given a quasipolynomial P and a polynomial B(x) =
∏
i(x −

Ai), take b(x) =
∏
i(x− ai) where ai = eAi ; then b(x)(

∑
n∈Z P (n)x−n) = 0 if and

only if B(d/dx)P (x) = 0.
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If the polynomial B is even we call P an even quasipolynomial. As a result, one
has the following characterization of quasifinite highest weight modules over ĝ.

Theorem 3.3. A Ŝσ,Nq,N -module L(λ) is quasifinite if and only if one of the following
conditions holds:

(1) There exist monic polynomials b1(w), . . . , b[N/2]−δN,even (x), bεN (w) such that
bi(x)(4i+1(x)−4i (x)) = 0 for 1 < i ≤ [N/2]− δN,even and (3.1)

bεN (x)(4N (x) + 2c) = 0 (3.2)
Moreover, if N is even there exists a monic polynomial bN/2(x) such that

bN/2(x)(41+N/2(x)−4N/2(x)) = 0.
(2) There exist quasipolynomials Pi and even quasipolynomials P εN such that

(n ∈ N)
Pi(n) = 4i,n −4i+1,n for 1 < i ≤ [N/2]− δN,even and (3.3)

P εN (n) = 4N,n for n 6= 0 and P εN (0) = −2c. (3.4)
Moreover, if N is even there exists an even quasipolynomial PN/2 such that

PN/2(n) = 4N/2,n −4N/2+1,n. (3.5)

Proof. From Proposition 2.7 part (c) and Theorem 3.1 part (b), we have that L(λ)
is quasifinite if and only if there exist (monic) Laurent polynomials

hε(w) =
p∑
t=0

ct(wt − εw−t), g(w) =
u∑
s=0

ds(ws − w−s), fi(w) =
mi∑

v=−mi

ai,vw
v

for 1 < i ≤ [N/2]− δN,even, such that for each l, n,m ∈ Z≥0, we have

λ(fk−1(q−1/2Tq)(q−1/2Tq)l(Ek−1,k−1 − Ek,k)

+ fk−1(q1/2T−1
q )(q−1/2Tq)−l(EN−k+1,N−k+1 − EN+2−k,N+2−k)) = 0

with 1 < k ≤ [N/2]− δN,even,

λ(h(Tq)(Tmq − εT−mq )EN,N − h(q−1Tq)((q−1Tq)m − ε(q−1Tq)−m)E1,1

+ tr0(εh(q1/2w−1)(wm − εw−m))C) = 0,
and
δN,evenλ(g(q−1/2Tq)((q−1/2Tq)n − (q−1/2Tq)−n)(EN/2,N/2 − EN/2+1,N/2+1)) = 0.

These conditions can be rewritten as follows:

0 =
mi∑

v=−mi

ai,v(4i,v+l −4i+1,v+l) (3.6)

for all 1 < i ≤ [N/2]− δN,even and l ∈ Z≥0, and

0 =
p∑
t=0

ct(4N,t+m − ε4N,t−m) + tr0(εh(q1/2w−1)(wm − εw−m))C) = 0 (3.7)
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with m ∈ N. Finally, if N is even,

0 =
u∑
s=0

ds(4N/2,s+n −4N/2,−s+n +41+N/2,−s+n −41+N/2,s+n) (3.8)

with n ∈ Z≥0. Let
Fk(x) = 4k(x)−4k+1(x)

for 1 < k ≤ [N/2]− δN,even.
Let us first analyze (3.6). Multiplying both sides by x−l and adding over l ∈ Z,

we get

0 =
mi∑

v=−mi

ai,vx
vFi(x) = fi(x)Fi(x).

We construct b̃i(x) = xmifi(x) ∈ C[x]. The equivalence of (1) and (2) for this case
follows from the fact that (3.1) holds since it also holds multiplying both sides of
this formula by xmi with mi ≥ 0. Due to Proposition 3.2, the existence of the
quasipolynomials Pi(x) for 1 < i ≤ [N/2]− δN,even is clear.

Let us now study (3.7). Making use of the definition of tr0 given in Section 2.2
and the fact that 4N,l = 4N,−l, we get

0 =
p∑
t=0

ct(4N,t+m − ε4N,t−m)− 2εcmc.

Multiplying both sides by xm − εx−m and adding over m ∈ Z≥0, we obtain

0 =
p∑
t=0

ct(x−t − εxt)4N (x)−
∑
m∈Z

(xm − εx−m)(2εcmc) = −εhε(x)(4N (x) + 2c).

Once again, (3.2) holds since it also holds multiplying both sides of this formula
by xp with p ≥ 0. Now, bε(x) = xphε(x) ∈ C[x]. Since hε(x−1) = −εhε(x) it is
easy to see that if α 6= 0 is a root of bε(x), then 1/α is also a root of bε(x). Now we
can apply Proposition 3.2 and due to the relationship between the roots of B and
b in this proposition it follows that the Bε(x) corresponding to our bε(x) is an even
polynomial. This implies that the quasipolynomial P εN (x) such that P εN (n) = 4N,n
for n 6= 0 and P (0) = 2c is even, finishing the proof for this case.

Finally, let us analyze (3.8) for the case N even. Proceeding similarly as with
the previous equation, we multiply by (xn − x−n) and add over n ∈ Z≥0. Using
the fact that 41+N/2,l = −4N/2,−l we obtain

0 =
u∑
s=0

ds(xs − x−s)(4N/2(x)−4N/2+1(x)) = g(x)FN/2(x).

Now b̂N/2(x) = xug(x) ∈ C[x]. Making use once again of Proposition 3.2 we
prove that PN/2(x) such that PN/2(n) = 4N/2,n −4N/2+1,n for n ∈ Z is an even
quasipolynomial. �
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Given a quasifinite irreducible highest weight Ŝσ,Nq,N -module V by Theorem 3.3,
we have that there exist quasipolynomials Pi(x) (for 1 ≤ i ≤ [N/2] − δN,even)
satisfying (3.3), and even quasipolynomials P εN (x) satisfying (3.4), and if N is
even, PN/2(x) satisfying (3.5). We will write

Pi(x) =
∑
e∈C

pe,i(x)qeix,

P εN (x) =
∑
j∈C

pεj,N (x) coshq(e+
j x) +

∑
j∈C

qεj,N (x) sinhq(e−j x),

PN/2(x) =
∑
j∈C

pj,N/2(x) coshq(e+
j x) +

∑
j∈C

qj,N/2(x) sinhq(e−j x),

(3.9)

with pj,N (x) and pj,N/2(x) (respectively, qj,N (x) and qj,N/2(x)) even (respectively,
odd) polynomials, pe,i(x) a polynomial, e, e+

j and e−j distinct complex numbers.
Also, coshq(x) = qx+q−x

2 and sinhq = qx−q−x
2 . The last two expressions in (3.9)

are unique up to a sign of e+
j or a simultaneous change of signs of e−j and the

respective qj(x). We call e+
j (respectively, e−j ), even type (respectively odd type)

exponents of V with multiplicities pj(x) (respectively, qj(x)). As in [KWY], we
denote e+ the set of even type exponents e+

j with multiplicity pj(x) and by e− the
set of odd type exponents e−j with multiplicity qj(x). Therefore, the pair (e+; e−)
uniquely determines V . Analogously for the first formula, we call ei the exponents
of V with multiplicities pe,i(x), and we denote e the set of exponents ei with
multiplicity pe,i(x). We will denote this module by L(Ŝσ,Nq,N ; e; e+; e−).

4. Interplay between Ŝσ,Nq,N and the infinite rank classical Lie
algebras

In this section we will discuss the connection between Ŝσ,Nq,N and the Lie algebra
of infinite matrices with finitely many nonzero diagonals over the algebra of trun-
cated polynomials and its classical Lie subalgebras. Let O be the algebra of all
holomorphic functions on C× with the topology of uniform convergence on compact
sets, and denote

Oε,j = {f ∈ O | f(w) = −εjf(w−1)}.
Let R be an associative algebra over C; denote R∞ a free R-module with a fixed

basis {vj}j∈Z and denote Rm = C[t]/(tm+1), where m ∈ Z+.
We consider the vector space SOaq,N spanned by the quantum pseudo-differential

operators (of infinite order) of the form zkf(Tq)Ei,j , where f ∈ O. The bracket in
Sq,N extends to (Sq,N )O. In a similar fashion, we define a completion (Sσ,Nq,N )O of
Sσ,Nq,N consisting of all pseudo-differential operators of the form

{zk(q(k−1)/2Tq)rk/2(f(q(k−1)/2Tq)Ei,j − (ε)kf((q(k−1)/2Tq)−1)EN+1−j,N+1−i) :
k ∈ Z, 1 ≤ i < j ≤ N, f ∈ O},
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and the opposite diagonal
{zk(q(k−1)/2Tq)rk/2(f(q(k−1)/2Tq)Ei,N+1−i : k ∈ Z, 1 ≤ i ≤ N, f ∈ Oε,k}.

Then the 2-cocycle ψ on Sσ,Nq,N extends to a 2-cocycle ψ on (Sσ,Nq,N )O. Recall that S ′q,N
denotes the derived algebra of Sq,N . Let ŜOq,N = SO′q,N + CC be the corresponding
central extension.

Given s ∈ C, we have (cf. [BL2, (3.2)]) the embedding ϕ
[m]
s : Sq,N −→ g`[m]

∞
(ϕ[m]
s : (Sq,N )O −→ g`[m]

∞ ) given by

ϕ[m]
s (zkf(Tq)Ei,j) =

∑
l∈Z

f(sq−l+t)E(l−k)N−i+1,lN−j+1

which are Lie algebra homomorphisms. A restriction of these homomorphisms
of Lie algebras to Sσ,Nq,N gives a family of homomorphisms of Lie algebras ϕ[m]

s :
Sσ,Nq,N −→ g`[m]

∞ (ϕ[m]
s : (Sσ,Nq,N )O −→ g`[m]

∞ ).
For each s ∈ C and k ∈ Z, set

I
[m]
s,k =

{
f ∈ O : f (i)(sq(k−1)/2+n) = 0 and

f (i)(s−1q−(k−1)/2−n) = 0, ∀n ∈ Z, 0 ≤ i ≤ m
}

and
Ĩ

[m]
s,k,ε = {f ∈ Oε,j : f (i)(sq(k−1)/2+n) = 0, ∀n ∈ Z, 0 ≤ i ≤ m}.

Let
J [m],r,ε
s = ⊕k∈Z{zk(q(k−1)/2Tq)rk/2

(
f(q(k−1)/2Tq)Ei,j

− (ε)kf((q(k−1)/2Tq)−1)EN+1−j,N+1−i
)

: 1 ≤ i < j ≤ N, f ∈ I [m]
s,k }

⊕ ⊕k∈Z{zk(q(k−1)/2Tq)rk/2(f(q(k−1)/2Tq)Ei,N+1−i : 1 ≤ i ≤ N,

f ∈ Ĩ [m]
s,k,ε}.

Using the Taylor formula on ϕ
[m]
s : Sσ,Nq,N −→ g`[m]

∞ , it follows that

kerϕ[m]
s = J [m],r,ε

s . (4.1)
Choose a branch of log q. Let τ = log q/2πi. Then any s ∈ C× is uniquely

written as s = qa, with a ∈ C/τ−1Z. Fix ~s = (s1, . . . , sM ) ∈ CM such that if each
si = qai , we have

ai − aj /∈ Z + τ−1Z for i 6= j, (4.2)
and ~m = (m1, . . . ,mM ) ∈ ZM≥0. Let g`[~m]

∞ = ⊕Mi=1g`
[mi]
∞ . Consider the homomor-

phism
ϕ[~m]
s = ⊕Mi=1ϕ

[mi]
si : (Sσ,Nq,N )O −→ g`[~m]

∞ .

Proposition 4.1. Given ~s and ~m as above, we have the exact sequence of Z-graded
Lie algebras, provided that |q| 6= 1:

0→ J [~m],r,ε
s → (Sσ,Nq,N )O → g`[~m]

∞ → 0,

where J [~m],r,ε
s = ∩Mi=1J

[mi],r,ε
si .
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Proof. The injectivity part is clear from (4.1). For the sake of simplicity, we will
prove the surjectivity of ϕ[~m]

s for the case M = 1, ~m = m and ~s = s = qa. We will
make use of the well-known fact that for every discrete sequence of points of C and
a non-negative integer m there exists f(w) ∈ O having prescribed values of its first
m derivatives at these points. By conditions (4.2) and |q| 6= 1 and since a /∈ Z/2 we
have that {q(n−1)/2+j+a} and {q−(n−1)/2−j−a} are discrete and disjoint sequences
of points in C. Therefore we can find f ∈ O such that every element tjEa,b is in
the image, finishing the proof. �

We now intend to extend the homomorphism ϕ
[m]
s to a homomorphism between

the central extensions of the corresponding Lie algebras.

Proposition 4.2. The C-linear map ϕ̂[m]
s : Ŝσ,Nq,N → ĝ`

[m]
∞ defined by (s = qa),

ϕ̂[m]
s |(Ŝσ,N

q,N
)j

= ϕ[m]
s |(Sσ,N

q,N
)j if j 6= 0,

ϕ̂[m]
s (q−n/2Tnq Ei,i − qn/2T−nq EN+1−i,N+1−i)

= ϕ[m]
s (q−n/2Tnq Ei,i − qn/2T−nq EN+1−i,N+1−i)

−
m∑
j=1

q(a−1)n + (−1)jq(−a+1)n

qn/2 − q−n/2
(n log q)j t

j

j! (n 6= 0),

ϕ̂[m]
s (C) = 1 ∈ Rm,

is a Lie algebra homomorphism over C.

Proof. It is a straightforward computation restricting the formula ϕ̂
[m]
s in [BL2,

(3.2)], to Ŝσ,Nq,N . �

The homomorphism ϕ
[m]
s is defined for any s ∈ C. However, for a ∈ Z/2, it is

no longer surjective. These cases are described by the following propositions.

Proposition 4.3. For a = 1, we have the following exact sequence of Lie algebras:

0→ J [m],k,ε
s → (Sσ,Nq,N )O → g→ 0

where g ' d̄[m]
∞ if ε = 1 and g ' c̄[m]

∞ if ε = −1.

Proof. We will first prove the case ε = 1. The homomorphism ϕ
[m]
s : Sq,N → g`[m]

∞
introduced in [BL2] is surjective. The anti-involution of Sq,N defined in (2.8)
transfers, via ϕ[m]

s , to an anti-involution ω : g`[m]
∞ → g`[m]

∞ as follows:

ω(ukEi,j) = (−u)kE1−j,1−i.

Therefore, the Lie algebra of −σ fixed points in Sq,N , explicitly, Sσ,Nq,N , maps sur-
jectively to the Lie algebra of −ω fixed points in g`[m]

∞ , explicitly, d̄[m]
∞ . If ε = −1,

the anti-involution ω is as follows:
ω(ukEi,j) = (−1)qj−qi(−u)kE1−j,1−i,
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where i = qiN + ri and j = qjN + rj , with 1 ≤ ri ≤ N and 1 ≤ rj ≤ N . As a
result of the surjectivity described, it is enough to show that ω is conjugated by
an automorphism T ′ of g`[m]

∞ to the anti-involution defining c̄[m]
∞ . To that end, we

define

T ′(umEa,b − εqb−qa(−u)mE1−b,1−a) = umEa,b − εa+b(−u)mE1−b,1−a, (4.3)

where a = qaN + ra and b = qbN + rb, with 0 ≤ ra ≤ N − 1 and 0 ≤ rb ≤ N − 1.
It is easy to see that ω is conjugated by T ′ to the anti-involution defining c̄[m]

∞ . �

Proposition 4.4. If a = 1/2 and N is odd, we have the following exact sequence
of Lie algebras:

0→ J [m],k,ε
s → (Sσ,Nq,N )O → g→ 0,

where g ' b̄+[m]
∞ if ε = 1 and g ' b̄−[m]

∞ if ε = −1.

Proof. If ε = 1, replace in the proof of the last proposition ω by

ω(ukEi,j) = (−u)kE−N+1−j,−N+1−i.

Therefore, the Lie algebra of −σ fixed points in Sq,N , explicitly, Sσ,Nq,N , maps sur-
jectively to the Lie algebra of −ω fixed points in g`[m]

∞ . Consequently, it is enough
to see that ω is conjugated by an automorphism T of g`[m]

∞ to the anti-involution
defining b̄+[m]

∞ . So, we define

T (urEi,j) = urE(−N+1)/2+i,(−N+1)/2+j . (4.4)

It is easy to check that this extends to an automorphism of the algebra g`[m]
∞ that

conjugates ω to the anti-involution defining b̄+[m]
∞ . If ε = −1, ω is as follows:

ω(ukEi,j) = (−1)qi−qj (−u)kE−N+1−j,−N+1−i,

where i = qiN + ri and j = qjN + rj , with 1 ≤ ri ≤ N and 1 ≤ rj ≤ N . The
automorphism of g`[m]

∞ for this case is D = T ◦ T ′, where T is the same as in the
previous case and we have

T ′(umEa,b − εqb−qa(−u)mE−b,−a) = umEa,b − εa+b(−u)mE−b,−a, (4.5)

with a = qaN + ra and b = qbN + rb, for 0 ≤ ra ≤ N − 1 and 0 ≤ rb ≤ N − 1. It is
easy to see that ω is conjugated by D to the anti-involution defining b̄−[m]

∞ . �

Proposition 4.5. If a = 1/2 and N is even, we have the following exact sequence
of Lie algebras:

0→ J [m],k,ε
s → (Sσ,Nq,N )O → d̄[m]

∞ → 0.

Proof. This proof follows the same steps as the last proposition. If ε = 1, because
ω is the same as before, it is enough to replace T by

T (urEi,j) = urE−N/2+i,−N/2+j . (4.6)
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The rest of the proof is the same for this case. If ε = −1, ω is the same formula as
in the last proposition, so it is enough to replace T ′ by

T ′(umEa,b − εqb−qa(−u)mE1−b,1−a) = umEa,b − (−u)mE1−b,1−a, (4.7)

where a = qaN+ra and b = qbN+rb, with 0 ≤ ra ≤ N−1 and 0 ≤ rb ≤ N−1. �

Remark 4.6.
(a) By an abuse of notation, for a = 1 and a = 1/2, in view of Propositions 4.3

to 4.5, we will denote again ϕ
[m]
s the surjective homomorphism from Sσ,Nq,N

onto c̄[m]
∞ , b̄[m]

∞ and d̄[m]
∞ , respectively, given by the old ϕ[m]

s composed with
the corresponding isomorphisms introduced in the proof of the proposition
above.

(b) Recall that ν was defined in (2.1). If ε = 1, for arbitrary a ∈ Z, the image
of Sσ,Nq,N under the homomorphism ϕ

[m]
qa is νa(d[m]

∞ ). Similarly, if a ∈ Z+1/2,
the image of Sσ,Nq,N under the homomorphism ϕ

[m]
qa is νa(d[m]

∞ ) if N is even
and νa(b[m]

∞ ) if N is odd. As a consequence, it is enough to study the cases
a = 1 and a = 1/2. The same conclusions can be obtained for ε = −1.
Therefore, we will only consider a = 1 and a = 1/2 throughout this paper.

Given vectors ~s = (s1, . . . , sM ) = (qa1 , . . . , qaM ) ∈ CM and ~m = (m1, . . . ,mM ) ∈
ZM such that if ai ∈ Z, then ai = 1; if ai ∈ Z + 1/2 then ai = 1/2; and
ai − aj /∈ Z + τ−1Z for i 6= j. Combining this with Propositions 4.1 to 4.5,
we obtain a surjective Lie algebra homomorphism

ϕ
[~m]
~s = ⊕ni=1ϕ

[mi]
si : ̂(Sσ,Nq,N )O −→ g[~m] :=

n∑
i=1

g[mi], (4.8)

where if ε = 1

g[mi] =


ĝ`

[mi]
∞ if ai /∈ Z/2,

b̃
[mi]
∞ if ai = 1/2 and N is odd,
d

[mi]
∞ if ai = 1/2 and N is even or ai = 1,

and if ε = −1

g[mi] =


ĝ`

[mi]
∞ if ai /∈ Z/2,

b
[mi]
∞ if ai = 1/2 and N is odd,
d

[mi]
∞ if ai = 1/2 and N is even,
c
[m]
∞ if ai = 1.

5. Realization of quasifinite highest weight modules of Ŝσ,Nq,N
In this section, we will make use of the surjective Lie algebra homomorphism

ϕ
[~m]
~s to realize the irreducible quasifinite highest weight modules of Ŝσ,Nq,N modules

in terms of the modules of the classical Lie algebras.
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In this section g[m] will be ĝ`
[m]
∞ or one of its classical subalgebras. The proof of

the following proposition is standard (cf. [K]).

Proposition 5.1. The g[m]-module L(g[m], λ) is quasifinite if and only if all but
finitely many of the †h(i)

j are zero, where † represents a, b, c or d depending on

whether g[m] is ĝ`
[m]
∞ , b

[m]
∞ , c

[m]
∞ or d[m]

∞ .

Given ~m = (m1, . . . ,mM ) ∈ ZM≥0, take a quasifinite λi ∈ (g[mi])∗0 for each 1 ≤ i ≤
M , and let L(g[mi], λi) be the corresponding g[mi]-module. Let ~λ = (λ1, . . . , λM ).
Then the tensor product

L(g[m], λ) = ⊗Mi=L(g[mi], λi)

is an irreducible g[~m]-module, with g[~m] = ⊕Mi=1g
[mi]. The module L(g[~m], ~λ) can

be regarded as a Ŝσ,Nq,N -module via the homomorphism ϕ
[~m]
~s and will be denoted by

L
[~m]
~s (~λ). We shall need the following results.

Proposition 5.2. Let V be a quasifinite Ŝσ,Nq,N -module. Then the action of Ŝσ,Nq,N
on V naturally extends to the action of (Ŝσ,Nq,N )Ou on V , for any u 6= 0.

Proof. The proof is similar to the proof of Proposition 4.3 in [KL], replacing B =
adD2 − k2 by the following:

• If i 6= j, i 6= N + 1− j, i 6= N + 1− i and j 6= N + 1− j,

B = 1
2qk (ad(Tq)Ei,i − ad(qkTq)Ej,j)

+ 1
2(ad(qT−1

q )EN+1−j,N+1−j − ad(q−k+1Tq)EN+1−i,N+1−i).

• If i = j,

B = 1
qk − 1adTqEi,i + q−k+1

q−k − 1adT−1
q EN+1−i,N+1−i.

• If i = N + 1− j,

B = 1
qk

adTqEi,i − q−k+1adT−1
q EN+1−i,N+1−i.

�

Theorem 5.3. Let V be a quasifinite g[~m]-module, which is regarded as a Ŝσ,Nq,N -

module via the homomorphism ϕ
[~m]
~s . Then any Ŝσ,Nq,N -submodule of V is also a

g[~m]-submodule. In particular, the Ŝσ,Nq,N -module L
[~m],k,ε
~s (~λ) is irreducible if ~s =

(s1, . . . , sM ), with si = qai , is such that ai ∈ Z implies ai = 1, ai ∈ Z+ 1/2 implies
ai = 1/2, and ai − aj /∈ Z + τ−1Z for i 6= j.
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Proof. Let W be a Ŝσ,Nq,N -submodule of V . Due to the fact that W is a quasifinite

Ŝσ,Nq,N -module as well, by Proposition 5.2 it can be extended to (Ŝσ,Nq,N )Ou for u 6= 0.

As a result of (4.8), the map ϕ[~m]
~s : (Ŝσ,Nq,N )Ou −→ (g[~m])u is surjective for any u 6= 0.

Therefore, W is invariant with respect to all members of the principal gradation of
(g[~m])u with u 6= 0. Since g[~m] coincides with its derived algebra, this proves the
theorem. �

Now, we will proceed to show that all the irreducible quasifinite Ŝσ,Nq,N -modules
can be realized as some L[~m],k,ε

~s (~λ), for some ~m ∈ ZM≥0 and ~s ∈ CM , with si = qai

such that ai − aj /∈ Z + τ−1Z for i 6= j. For simplicity, we will consider the case
M = 1 to calculate the generating series 4εm,s,λ,i(x) =

∑
n∈Z(4εm,s,λ,i)n x−n of the

highest weight and central charge c of the Ŝσ,Nq,N -module L[m],k,ε
s (λ).

We will introduce the following notation:

ηi(α, β) = qαβ + (−1)iq−αβ

qβ/2 − q−β/2
(β log q)i

i! .

Making use of Theorem 3.3, take an irreducible quasifinite weight Ŝσ,Nq,N -module
V with central charge c and generating series 4i(x), P εN (x) an even quasipolyno-
mial such that

P εN (n) = 4N,n for n 6= 0 and P εN (0) = −2c, (5.1)

Pi(x) a quasipolynomial such that
Pi(n) = 4i,n −4i+1,n

for 1 < i ≤ [N/2]− δN,even are quasipolynomials, and when N is even, PN/2(x) an
even quasipolynomial such that

PN/2(n) = 4N/2,n −4N/2+1,n.

We write
Pi(x) =

∑
s∈C

ps,i(x)qsix, for 1 < i ≤ [N/2]− δN,even,

P εN (x) =
∑
j∈Z

pεj,N (x) coshq(e+
j x) +

∑
j∈Z

qεj,N (x) sinhq(e−j x), and

PN/2(x) =
∑
j∈Z

pj,N/2(x) coshq(e+
j x) +

∑
j∈Z

qj,N/2(x) sinhq(e−j x),

(5.2)

where pj,N (x) and pj,N/2(x) (respectively, qj,N (x) and qj,N/2(x)) are even (respec-
tively, odd) polynomials and pe,i(x) is a polynomial. Let L[~m]

~s (g[~m], ~λ) be a rep-

resentation of g[~m] considered as a representation of Ŝσ,Nq,N via ϕ̂
[~m]
s , where g[m] is

g`[m]
∞ or one of its classical subalgebras. Then

(4εm,a,λ,i)n = −λ(ϕ̂[m]
s ((q−1/2Tq)nEi,i − (q1/2Tq)−nEN+1−i,N+1−i), (5.3)
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with 1 < i ≤ [N/2] + δN,even, and

(4εm,a,λ,N )n = −λ(ϕ̂[m]
s ((Tnq + T−nq )EN,N − ((q−1Tq)n + (q−1Tq)−n)E1,1), (5.4)

where ϕ̂[m]
s is the embedding given by Proposition 4.2 composed accordingly with

the isomorphisms defined in Propositions 4.3 to 4.5.
We will now proceed to prove several propositions which have similar statements

and proofs. Their difference, however, lies in the classical Lie algebra that g[m]

represents, according to the homomorphism ϕ̂
[m]
s : Ŝσ,Nq,N −→ g[m] and the different

cases for the values of a and N .

Proposition 5.4. Take the embedding ϕ̂
[m]
s : Ŝσ,Nq,N −→ ĝ`

[m]
∞ with s = qa and

a /∈ Z/2. The ĝ`
[m]
∞ -module L(ĝ`

[m]
∞ , λ) regarded as a Ŝσ,Nq,N -module is isomorphic to

L(Ŝσ,Nq,N ; e; e+; e−), where
(a) The exponents e are −1/2 + a − l and 1/2 − a + l, with l ∈ Z, and their

respective multiplicities are

p1/2−a+l,i(x) =
m∑
u=0

(x log q)u

u!
ah

(u)
(l−1)N+i and

p−1/2+a−l,i(x) =
m∑
u=0

(−x log q)u

u!
ah

(u)
lN−i,

for 1 < i ≤ [N/2]− δN,even.
(b) The exponents are e+ = e− = a− l, with l ∈ Z, with multiplicities

pεa−l,N (x) =
m∑

u=0,u even

aĥ
(u)
(l−1)N

xu

u! and qεa−l,N (x) =
m∑

u=0,u odd

ah̃
(u)
(l−1)N

xu

u! ,

where
aĥ

(u)
(l−1)N = 2(log q)u(ah(u)

(l−1)N + δl,1(cu − δu,0c0)) and
ah̃

(u)
(l−1)N = 2(log q)u(ah(u)

(l−1)N + δl,1cu),

and P εl,N (0) = −2c0 for i = N .
(c) Moreover, if N is even, we have the exponents e+ = e− = 1/2− a+ l with

l ∈ Z and their multiplicities are

p1/2−a+l,N/2(x) =
m∑

u=0,u even

(x log q)u

u!
ah

(u)
(l−1/2)N and

q1/2−a+l,N/2(x) =
m∑

u=0,u odd

−(x log q)u

u!
ah

(u)
(l−1/2)N ,

for i = N/2.
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Proof. If 1 < i ≤ [N/2] − δN,even, combining the formulas of Proposition 4.2 with
(2.3) and (5.3), we have that

(4εm,a,λ,i)n =
∑
l∈Z

m∑
u=0

(
−(n log q)u

u! qn(−1/2+a−l) aλ
(u)
lN+1−i

+ (−n log q)u

u! q−n(−1/2+a−l) aλ
(u)
(l−1)N+i

)
+

m∑
u=1

ηu(a− 1, n)cu.

Then,

(4εm,a,λ,i)n − (4εm,a,λ,i+1)n =
∑
l∈Z

m∑
u=0

(−n log q)u

u!
ah

(u)
(l−1)N+iq

−n(−1/2+a−l)

+ (n log q)u

u!
ah

(u)
lN−iq

n(−1/2+a−l).

Making use of the definitions of multiplicities and exponents for the quasipolyno-
mial Pi(x) in (5.2), we complete the proof of (a).

If i = N , as before, considering (5.4) and (2.3), we obtain

(4εm,a,λ,N )n =
∑
l∈Z

m∑
u=0

(
ηu(−1 + a− l, n)2 sinhq(n/2) aλ(u)

lN

− ηu(a− l, n)2 sinhq(n/2) aλ(u)
(l−1)N+1

)
+

m∑
u=1

2 sinhq(n/2)ηu(a− 1, n)cu.

Shifting the index l to l − 1 in the first sum, we get

(4εm,a,λ,N )n =
∑
l∈Z

m∑
u=0

2 sinhq(n/2)ηu(a− l, n)(ah(u)
(l−1)N + δl,1cr − c0).

Since

2 sinhq(n/2)ηu(a− l, n) = (n log q)u

u! (qn(a−l) + (−1)uq−n(a−l))

and making use of the definitions of multiplicities and exponents for the quasipoly-
nomials P εN (x) in (5.2), we finish the proof of (b).

If N is even, following the same steps as in the proof of (a) we have

(4εm,a,λ,N/2)n − (4εm,a,λ,N/2+1)n

=
∑
l∈Z

m∑
u=0

(n log q)u

u!
ah

(u)
(l−1/2)N (q−n(1/2−a+l) + (−1)uqn(1/2−a+l)).

Then, splitting the sums according to the parity of u, we get the multiplicities and
exponents expected. �
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Proposition 5.5. Let s = qa with a = 1/2 and N even. Take the embedding
ϕ̂

[m]
s : Ŝσ,Nq,N −→ d

[m]
∞ . The d

[m]
∞ -module L(d[m]

∞ , λ) regarded as a Ŝσ,Nq,N -module is

isomorphic to L(Ŝσ,Nq,N ; e; e+; e−), where
(a) If 1 < i ≤ [N/2] − δN,even, the exponents are e = l with l ∈ Z and their

multiplicities are

pl,i(x) =
m∑
u=0

(−x log q)u

u!
dh

(u)
(l−1/2)N+i if l > 0 and

pl,i(x) =
m∑
u=0

(x log q)u

u!
dh

(u)
(l−1/2)N−i if l ≤ 0

(b) If i = N , the exponents e+ and e− are 1/2 − l with l ≥ 1 and their
multiplicities are

pε1/2−l,N (x) =
m∑

u=0,u even

dĥ
(u)
(l−1/2)N

xu

u! and

qε1/2−l,N (x) =
m∑

u=0,u odd

dh̃
(u)
(l−1/2)N

xu

u! ,

where
dĥ

(u)
(l−1/2)N = 2(log q)u(dh(u)

(l−1/2)N + δl,1(cu − δu,0c0)) and
dh̃

(u)
(l−1/2)N = 2(log q)u(dh(u)

(l−1/2)N + δl,1cu)

and P εl,N (0) = −2c0.
(c) Moreover, if N is even, for i = N/2 the exponents e+ and e− are l ≥ 0

and their multiplicities are, if l ≥ 1,

pl,N/2(x) =
m∑

u=0,u even
2(x log q)u

u!
dh

(u)
lN and

ql,N/2(x) =
m∑

u=0,u odd
−2(x log q)u

u!
dh

(u)
lN

and if l = 0

p0,N/2(x) =
m∑

u=0,u even
2(x log q)u

u!
dλ

(u)
1 and q0,N/2(x) = 0.

Proof. Consider first the case ε = 1. By Remark 4.6, part (a), we have that the
embedding ϕ̂[m]

s : Ŝσ,Nq,N −→ d
[m]
∞ is in fact the embedding given by Proposition 4.2

composed by T−1, where T is the automorphism of g`[m]
∞ defined in (4.6).
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If 1 < i ≤ [N/2]− δN,even, using (5.3) for the embedding in this case, we get

(4εm,1/2,λ,i)n = λ

(∑
l∈Z

m∑
u=0
− (n log q)u

u! q−nltrE(l+1/2)N+1−i,(l+1/2)N+1−i

+
∑
l∈Z

m∑
u=0

(−n log q)u

u! qnltrE(l−1/2)N+i,(l−1/2)N+i

)
+

m∑
u=1

ηu(−1/2, n)cu.

Making an adequate change of variables in l and using (2.5), we get

(4εm,1/2,λ,i)n − (4εm,1/2,λ,i+1)n

=
∑
l≥1

m∑
u=0

(n log q)u

u!
(
(−1)uqnl dh(l−1/2)N+i + qn(−l+1) dh(l−1/2)N−i

)
.

Making use of the definitions of multiplicities and exponents for the quasipolyno-
mial Pi(x) in (5.2), we finish the proof of (a).

Using (5.4) for the embedding in this case, we get

(4εm,1/2,λ,N )n

= λ

(∑
l∈Z

m∑
u=0

(n log q)u

u! tu
(
(−qn(1/2−l) − (−1)uq−n(1/2−l))E(l−1/2)N+1,(l−1/2)N+1

+
∑
l∈Z

m∑
u=0

(n log q)u

u! tu(q−n(1/2+l) + (−1)uqn(1/2+l))E(l+1/2)N,(l+1/2)N
))

+
m∑
u=1

2 sinhq(n/2)ηu(−1/2, n)cu.

Once again, making an adequate change of variables in l, using (2.5), and taking
into account the fact that

2ηu(−1/2, n) sinhq(n/2) = (qn/2 + (−1)uq−n/2)(n log q)u

u! ,

we have

(4εm,1/2,λ,N )n =
∑
l≥1

dh
(u)
(l−1/2)N (n)(qn(1/2−l) + (−1)uq−n(1/2−l))

+
m∑
u=0

(n log q)u

u! (qn/2 + (−1)uq−n/2)(cu − δu,0c0).

In order to complete the proof, we study the parity of u and split the sums
accordingly. As a result of the definitions of multiplicities and exponents for the
quasipolynomials P εN (x) in (5.2), we find the exponents and multiplicities expected
for (b).
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For i = N/2, we follow the same steps as in (a), but with an adequate change
of variables in l. This way, we get

(4εm,1/2,λ,N/2)n − (4εm,1/2,λ,N/2+1)n

=
∑
l≥1

m∑
u=0

(n log q)u

u! (q−n(l−1) + (−1)uqn(l−1))dh(u)
(l−1)N

+
m∑
u=0

(n log q)u

u! (1 + (−1)u) dλ(u)
1 .

Lastly, by splitting these sums according to the parity of u, we find the exponents
and multiplicities expected, finishing the proof for this case.

Consider now ε = −1. The embedding ϕ̂[m]
s : Ŝσ,Nq,N −→ d

[m]
∞ is in this case the

embedding given by Proposition 4.2 composed by D = T ◦ T ′, where T ′ is the
automorphism of g`[m]

∞ defined in (4.7). The results for this embedding are the
same as for ε = 1. �

Proposition 5.6. Let s = qa with a = 1/2 and N odd and take the embedding
ϕ̂

[m]
s : Ŝσ,Nq,N −→ g[m], where g[m] = b̃

[m]
∞ if ε = 1 and g[m] = b

[m]
∞ if ε = −1. The g[m]-

module L(g[m], λ) regarded as a Ŝσ,Nq,N -module is isomorphic to L(Ŝσ,Nq,N ; e; e+; e−),
where

(a) The exponents e are l ∈ Z and their multiplicities are

pl,i(x) =
m∑
u=0

(−x log q)u

u!
bh

(u)
(l−1/2)N+i−1/2 if l > 0 and

pl,i(x) =
m∑
u=0

(x log q)u

u!
bh

(u)
(l−1/2)N−i−1/2 if l ≤ 0,

for 1 < i ≤ [N/2]− δN,even.
(b) The exponents are e+ = e− = 1/2 − l with l ≥ 0 and their respective

multiplicities are, for l ≤ 1,

pε1/2−l,N (x) =
m∑

u=0,u even
2(log q)u bh(u)

(l−1/2)N−1/2
xu

u! and

qε1/2−l,N (x) =
m∑

u=0,u odd
2(log q)u bh(u)

(l−1/2)N−1/2
xu

u! ,

and for l = 0,

pε1/2,N (x) =
m∑

u=0,u even
2(log q)ux

u

u! (cu − δu,0c0) and

qε1/2,N (x) =
m∑

u=0,u odd
2(log q)ux

u

u! cu,
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and P εl,N (0) = −2c0 for i = N .

Proof. Consider first ε = 1. By Remark 4.6, part (a), we have that the embedding
ϕ̂

[m]
s : Ŝσ,Nq,N −→ b

[m]
∞ is in fact the embedding given by Proposition 4.2 composed

by T−1, where T is the automorphism of g`[m]
∞ defined in (4.4). Using (5.3) for the

embedding for this case, we have

(4m,1/2,λ,i)n = λ

(∑
l∈Z

m∑
u=0
− (n log q)u

u! q−nltrE(l−1/2)N−i+1/2,(l−1/2)N−i+1/2

+
∑
l∈Z

m∑
u=0

(−n log q)u

u! qnltrE((l−1/2)N+i−1/2,(l−1/2)N+i−1/2

)

+
m∑
u=1

ηu(−1/2, n)cu.

Making an adequate change of variables in l and using (2.4), we have

(4m,1/2,λ,i)n

=
∑
l≥1

m∑
u=0

(n log q)u

u! (dλ(u)
(l−1/2)N+i−1/2(−1)uqnl − dλ

(u)
(l−1/2)N−i+1/2q

−n(l−1))

+
m∑
u=1

ηu(−1/2, n)cu.

Then,

(4m,1/2,λ,i)n − (4m,1/2,λ,i+1)n

=
∑
l≥1

m∑
u=0

(n log q)u

u! ((−1)uqnl bh(u)
(l−1/2)N+i−1/2 + q−n(l−1) bh

(u)
(l−1/2)N−i−1/2).

Making use of the definitions of multiplicities and exponents for the quasipolyno-
mial Pi(x) in (5.2), we finish the proof of (a).

Using (5.4) for the embedding in this case, we have

(4m,1/2,λ,N )n

= λ

(∑
l∈Z

m∑
u=0

(n log q)u

u! tu
(
(−qn(1/2−l) − (−1)uq−n(1/2−l))E(l−1/2)N+1/2,(l−1/2)N+1/2

+
∑
l∈Z

m∑
u=0

(n log q)u

u! tu(q−n(1/2+l) + (−1)uqn(1/2+l))E(l+1/2)N−1/2,(l+1/2)N−1/2
))

+
m∑
u=1

2 sinhq(n/2)ηu(−1/2, n)cu.
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Once again, making an adequate change of variables in l, using (2.4) and the fact
that

2ηu(−1/2, n) sinhq(n/2) = (qn/2 + (−1)uq−n/2)(n log q)u

u! ,

we obtain

(4m,1/2,λ,N )n =
∑
l≥1

m∑
u=0

(n log q)u

u!
dh

(u)
(l−1/2)N−1/2(qn(1/2−l) + (−1)uq−n(1/2−l))

+
m∑
u=0

(n log q)u

u! (qn/2 + (−1)uq−n/2)(cu − δu,0c0).

To complete the proof, we study the parity of u and split the sums accordingly. As
a result of the definitions of multiplicities and exponents for the quasipolynomials
P εN (x) in (5.2), we find the exponents and multiplicities expected.

Consider now ε = −1. The embedding ϕ̂[m]
s : Ŝσ,Nq,N −→ d

[m]
∞ is in this case the

embedding given by Proposition 4.2 composed by D = T ◦ T ′, where T ′ is the
automorphism of g`[m]

∞ defined in (4.5). Proceeding in an analogous way as for the
case ε = 1, we get the expected results. �

Proposition 5.7. Let s = qa with a = 1 and let the embedding ϕ̂[m]
s : Ŝσ,Nq,N −→

g[m], where g[m] = d
[m]
∞ if ε = 1 and g[m] = c

[m]
∞ if ε = −1. The g[m]-module

L(g[m], λ) regarded as a Ŝσ,Nq,N -module is isomorphic to L(Ŝσ,Nq,N ; e; e+; e−), where
(a) If 1 < i ≤ [N/2]− δN,even, the exponents e are 1/2− l with l ∈ Z and their

multiplicities are

p1/2−l,i(x) =
m∑
u=0

(x log q)u

u!
†h

(u)
lN−i with l > 0 and

p1/2−l,i(x) =
m∑
u=0

(−x log q)u

u!
†h

(u)
(l−1)N+i, with l ≤ 0,

where † represents c or d depending on whether g[m] is c[m]
∞ or d[m]

∞ .
(b) If i = N , the exponents e+ and e− are l− 1 with l ≤ 1 and their multiplic-

ities are

pεl−1,N (x) =
m∑

u=0,u even

†ĥ
(u)
(l−1)N

xu

u! and qεl−1,N (x) =
m∑

u=0,u odd

†h̃
(u)
(l−1)N

xu

u! ,

with
†ĥ

(u)
(l−1)N = 2(log q)u(†h(u)

(l−1)N + δl,1(cu + †λ
(u)
1 − δu,0c0)) and

†h̃
(u)
(l−1)N = −2(log q)u †h(u)

(l−1)N ,

where † represents c or d depending on whether g[m] is c[m]
∞ or d[m]

∞ and
P εi,N (0) = −2c0.
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(c) Moreover, if N is even, for i = N/2 the exponents e+ and e− are l − 1/2
with l ≥ 1 and their multiplicities are

pl−1/2,N/2(x) =
m∑

u=0,u even
2(x log q)u

u!
†h

(u)
(l−1/2)N and

ql−1/2,N/2(x) =
m∑

u=0,u odd
−2(x log q)u

u!
†h

(u)
(l−1/2)N ,

where † represents c or d depending on whether g[m] is c[m]
∞ or d[m]

∞ .

Proof. By Remark 4.6, part (a), we have that the embedding ϕ̂[m]
s : Ŝσ,Nq,N −→ d

[m]
∞

is in fact the embedding given by Proposition 4.2 composed by T−1, where T is
the automorphism of g`[m]

∞ defined in (4.6).
If 1 < i ≤ [N/2]− δN,even, using (5.3) for the embedding in this case, we have

(4m,1,λ,i)n = λ

(∑
l∈Z

m∑
u=0
− (n log q)u

u! qn(1/2−l)trElN+1−i,lN+1−i

+
∑
l∈Z

m∑
u=0

(−n log q)u

u! qn(−1/2+l)trE(l−1)N+i,(l−1)N+i

)

+
m∑
u=1

ηu(0, n)cu.

Making an adequate change of variable in l and using (2.5), we have

(4m,1,λ,i)n =
∑
l∈Z

m∑
u=0

(n log q)u

u!
(
− dλ

(u)
lN+1−iq

n(1/2−l)

+ (−1)r dλ(u)
(l−1)N+iq

n(−1/2+l))+
m∑
u=1

ηu(0, n)cu.

Then,

(4m,1,λ,i)n − (4m,1,λ,i+1)n

=
∑
l≥1

m∑
u=0

(n log q)u

u! (dh(u)
lN−i q

n(1/2−l) + (−1)u qn(l−1/2) dh
(u)
(l−1)N+i).

Making use of the definitions of multiplicities and exponents for the quasipoly-
nomial Pi(x) in (5.2), we finish the proof of (a).

Rev. Un. Mat. Argentina, Vol. 59, No. 2 (2018)



QHWM OF ORTHOGONAL AND SYMPLECTIC TYPE LIE SUBALGEBRAS 235

Using (5.4) for the embedding in this case, we obtain

(4m,1,λ,N )n

= λ

(∑
l∈Z

m∑
u=0

(n log q)u

u! tu
(
(−qn(1−l) − (−1)uq−n(1−l))E(l−1)N+1,(l−1)N+1

+
∑
l∈Z

m∑
u=0

(n log q)u

u! tu(q−nl + (−1)uqnl)ElN,lN
))

+
m∑
u=1

2 sinhq(n/2)ηu(0, n)cu.

We make a change of variables in l. Using (2.5) and the fact that

2ηu(0, n) sinhq(n/2) = (1 + (−1)u)(n log q)u

u! and

2η0(0, n) sinhq(n/2) = 2(n log q)u

u! ,

we have
(4m,1,λ,N )n

=
∑
l≥1

m∑
u=0

(n log q)u

u!
(
(q−n(l−1) + (−1)uqn(l−1)) dh(l−1)N + (1 + (−1)u) dλ(u)

1
)

+
m∑
u=0

(1 + (−1)u)(n log q)u

u! cu − 2c0.

In order to finish the proof, we study the parity of u and split the sums ac-
cordingly. As a result of the definitions of multiplicities and exponents for the
quasipolynomials P εN (x) in (5.2), we find the exponents and multiplicities expected
for (b).

For i = N/2, following the same steps as in the proof of (a), we have
(4m,1/2,λ,N/2)n − (4m,1/2,λ,N/2+1)n

=
∑
l≥1

m∑
u=0

λ

(
− (n log q)u

u! tu(qn(1/2−l) + (−1)uqn(−1/2+l))E(l−1/2)N+1,(l−1/2)N+1

+ (n log q)u

u! tu(qn(1/2−l) + (−1)uqn(−1/2+l))E(l−1/2)N,(l−1/2)N

)
.

Making a change of variables in l and using (2.5), we get
(4m,1/2,λ,N/2)n − (4m,1/2,λ,N/2+1)n

=
∑
l≥1

m∑
u=0

(n log q)u

u! (qn(1/2−l) + (−1)uqn(−1/2+l))dh(u)
(l−1/2)N .

Studying the parity of u and splitting the sums accordingly, we find the exponents
and multiplicities expected for this case, finishing the proof.

Consider now ε = −1. The embedding ϕ̂[m]
s : Ŝσ,Nq,N −→ c

[m]
∞ is in this case the

embedding given by Proposition 4.2 composed by D = T ◦ T ′, where T ′ is the
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automorphism of g`[m]
∞ defined in (4.3). Proceeding in an analogous way as for case

ε = 1, we obtain the expected results. �

Consider an irreducible quasifinite highest weight Ŝσ,Nq,N -module V with central
charge c and generating series 4i(x) such that

Pi(n) = 4i,n −4i+1,n for 1 < i ≤ [N/2]− δN,even and
P εN (n) = 4N,n for n 6= 0 and P εN (0) = −2c,

where Pi(x) are quasipolynomials and P εN (x) are even quasipolynomials. Moreover,
if N is even, there exists an even quasipolynomial PN/2(x) such that

PN/2(n) = 4N/2,n −4N/2+1,n.

Using the notation introduced in (5.2), decompose the set A = {s ∈ C | ps,i 6=
0 for some i}∪{s ∈ C | pεs,N 6= 0}∪{s ∈ C | ps,N/2 6= 0}∪{s ∈ C | qεs,N 6= 0}∪{s ∈
C | qs,N/2 6= 0} into a disjoint union of equivalence classes under the condition

s = qa ∼ qa
′

= s′ ⇔ a− a′ ∈ Z + τ−1Z.

Pick a representative s in an equivalence class S such that s = q if the equivalence
class lies in Z and s = q1/2 if the equivalence class lies in Z + 1/2. Let S =
{qa, qa+t1 , qa+t2 , . . . } be such an equivalence class. Take t0 = 0 and let m =
maxs∈S{deg ps,i,deg pεs,N ,deg qεs,N ,deg ps,N/2,deg qs,N/2}. It is easy to see that
if a = 1 or a = 1/2, then ti ∈ Z. Now, we will associate S to a g[m]-module
L

[m]
s (λS) in one of the following ways.
• If a /∈ Z/2, for 1 < i ≤ [N/2]− δN,even let

ah
(u)
(tj−1)N+i = 1

(log q)u

(
d

dx

)u
p1/2−a+tj ,i(0) and

ah
(u)
tjN−i =

(
−1

log q

)u(
d

dx

)u
p−1/2+a−tj ,i(0),

and let

ah
(u)
(tj−1)N + δtj ,1(cu − δu,0c0) = 1

2(log q)u

(
d

dx

)u
pεtj ,N (0) if u even and

ah
(u)
(tj−1)N + δtj ,1cu = 1

2(log q)u

(
d

dx

)u
qεtj ,N (0) if u odd,

and if N is even,

ah
(u)
(tj−1/2)N = 1

(log q)u

(
d

dx

)u
ptj ,N/2(0) if u even and

ah
(u)
(tj−1/2)N = − 1

(log q)u

(
d

dx

)u
qtj ,N/2(0) if u odd,
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for u = 0, . . . ,m. We associate S to the ĝ`
[m]
∞ -module L[m]

s (λS) with central
charges

cu =
∑
i

∑
tj

(ah(u)
(tj−1)N+i + ah

(u)
tjN−i) +

∑
tj

(ah(u)
(tj−1)N + δN, even

ah
(u)
(tj−1/2)N )

and labels
aλ

(u)
l =

∑
(tj−1)N+i≥l

aḣ
(u)
(tj−1)N+i +

∑
tjN−i≥l

aḣ
(u)
tjN−i

+
∑

(tj−1)N≥l

aḣ
(u)
(tj−1)N + δN, even

∑
(tj−1/2)N≥l

aḣ
(u)
(tj−1/2)N ,

with aḣ
(u)
t = ah

(u)
t − δt,0cu.

• If a = 1/2 and N is even, for 1 < i ≤ [N/2]− δN,even let

dh
(u)
(tj−1/2)N+i =

(
−1

log q

)u(
d

dx

)u
ptj ,i(0) if tj > 0,

dh
(u)
(tj−1/2)N−i = 1

(log q)u

(
d

dx

)u
ptj ,i(0) if tj ≤ 0,

and let

dh
(u)
(tj−1/2)N + δtj ,1(cu − δu,0c0) = 1

2(log q)u

(
d

dx

)u
pε1/2−tj ,N (0) if u even and

dh
(u)
(tj−1/2)N + δtj ,1cu = 1

2(log q)u

(
d

dx

)u
qε1/2−tj ,N (0) if u odd,

and if N is even

dh
(u)
tjN

= 1
2(log q)u

(
d

dx

)u
ptj ,N/2(0) if u even and

dh
(u)
tjN

= − 1
2(log q)u

(
d

dx

)u
qtj ,N/2(0) if u odd,

for u = 0, . . . ,m. We associate S to the d[m]
∞ -module L[m]

s (λS) with central
charges

cu =
∑
i

∑
tj

(dh(u)
(tj−1/2)N+i + dh

(u)
(tj−1/2)N−i) +

∑
tj

(dh(u)
(tj−1/2)N + δN, even

dh
(u)
tjN

)

and labels
dλ

(u)
l =

∑
(tj−1/2)N+i≥l

dh
(u)
(tj−1/2)N+i +

∑
(tj−1/2)N−i≥l

dh
(u)
(tj−1/2)N−i

+
∑

(tj−1/2)N≥l

dh
(u)
(tj−1/2)N + δN, even

∑
tjN≥l

dh
(u)
tjN

.
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• If a = 1/2, N is odd for 1 < i ≤ [N/2]− δN,even let

bh
(u)
(tj−1/2)N+i−1/2 =

(
−1

log q

)u(
d

dx

)u
ptj ,i(0) if tj > 0

bh
(u)
(tj−1/2)N−i−1/2 = 1

(log q)u

(
d

dx

)u
ptj ,i(0) if tj ≤ 0,

and let

bh
(u)
(tj−1/2)N−1/2 + δtj ,1(cu − δu,0c0) = 1

2(log q)u

(
d

dx

)u
pε1/2−tj ,N (0) if u even and

bh
(u)
(tj−1/2)N−1/2 + δtj ,1cu = 1

2(log q)u

(
d

dx

)u
qε1/2−tj ,N (0) if u odd,

for u = 0, . . . ,m. We associate S to the g[m]-module L[m]
s (λS) with central

charges

cu =
∑
i

∑
tj

(bh(u)
(tj−1/2)N+i−1/2 + bh

(u)
(tj−1/2)N−i−1/2) +

∑
tj

bh
(u)
(tj−1/2)N−1/2

and labels
bλ

(u)
l =

∑
(tj−1/2)N+i−1/2≥l

bh
(u)
(tj−1/2)N+i−1/2 +

∑
(tj−1/2)N−i−1/2≥l

bh
(u)
(tj−1/2)N−i−1/2

+
∑

(tj−1/2)N−1/2≥l

bh
(u)
(tj−1/2)N−1/2,

with g[m] = b̃
[m]
∞ if ε = 1 and g[m] = b

[m]
∞ if ε = −1.

• If a = 1, for 1 < i ≤ [N/2]− δN,even, let

†h
(u)
tjN−i = 1

(log q)u

(
d

dx

)u
p1/2−tj ,i(0) if tj > 0

†h
(u)
(tj−1)N+i =

(
−1

log q

)u(
d

dx

)u
p1/2−tj ,i(0) if tj ≤ 0,

and let

†h
(u)
(tj−1)N + δtj ,1(cu + †λ(u)

1 − δu,0c0) = 1
2(log q)u

(
d

dx

)u
pεtj ,N (0) if u even and

†h
(u)
(tj−1)N = − 1

2(log q)u

(
d

dx

)u
qεtj ,N (0) if u odd,

and if N is even

†h
(u)
(tj−1/2)N = 1

2(log q)u

(
d

dx

)u
ptj−1/2,N/2(0) if u even and

†h
(u)
(tj−1/2)N = − 1

2(log q)u

(
d

dx

)u
qtj−1/2,N/2(0) if u odd,
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for u = 0, . . . ,m, where † represents d if ε = 1 and c if ε = −1. We associate
S to the g[m]-module L[m]

s (λS) with central charges

cu =
∑
i

∑
tj

(†h(u)
tjN+i + †h(u)

tjN−i) +
∑
tj

(†h(u)
(tj−1)N + δN, even

†h
(u)
(tj−1/2)N )

and labels
†λ

(u)
l =

∑
tjN+i≥l

†h
(u)
tjN+i +

∑
tjN−i≥l

†h
(u)
tjN−i

+
∑

(tj−1)N≥l

†h
(u)
(tj−1)N + δN, even

∑
(tj−1/2)N≥l

†h
(u)
(tj−1/2)N ,

where g[m] = d
[m]
∞ and † = d if ε = 1 and g[m] = c

[m]
∞ with † = c if ε = −1.

Denote {s1, s2, . . . } with si = qai a set of representatives of equivalence classes
of the set A. By Theorem 5.3, the Ŝσ,Nq,N -module L

[~m]
~s (λ) is irreducible for ~s =

(s1, s2, . . . ) such that ai ∈ Z implies that ai = 1 and ai ∈ Z/2 implies that ai = 1/2.
Then, as consequence of the discussion above, Theorem 5.3 and Propositions 5.4-
5.7, we have proved the following.

Theorem 5.8. Let V be an irreducible quasifinite highest weight Ŝσ,Nq,N -module with
central charge c and let Pi(x), P εN (x) and, if N is even, PN/2(x) be the quasipoly-
nomials given by Theorem 3.3 written in the form (5.2). Then, V is isomorphic to
the tensor product of the modules L[m]

s (λS) with distinct equivalence classes S.

Remark 5.9. A different choice of representative s = qa with a /∈ Z/2 in the
equivalence class S has the effect of shifting ĝ`

[m]
∞ via the automorphism νi for

some i. It is not difficult to see that any irreducible quasifinite highest weight
module L(Ŝσ,Nq,N , ξ) can be obtained as above in an essentially unique way, up to
this shift.
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