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QHWM OF THE ORTHOGONAL AND SYMPLECTIC TYPES
LIE SUBALGEBRAS OF THE LIE ALGEBRA OF THE MATRIX
QUANTUM PSEUDO-DIFFERENTIAL OPERATORS

KARINA BATISTELLI AND CARINA BOYALLIAN

ABSTRACT. In this paper we classify the irreducible quasifinite highest weight
modules over the orthogonal and symplectic types Lie subalgebras of the Lie
algebra of the matrix quantum pseudo-differential operators. We also realize
them in terms of the irreducible quasifinite highest weight modules of the
Lie algebras of infinite matrices with finitely many nonzero diagonals and its
classical Lie subalgebras of types B, C and D.

1. INTRODUCTION

The study of W-infinity algebras has its origins in various physical theories,
such as conformal field theory, the theory of quantum Hall effect, etc. The most
important of these algebras is Wi4oo, which is the central extension of the Lie
algebra D of differential operators on the circle.

The dificulty when studying the representation theory of these algebras lies in
the fact that, although they admit a Z-gradation and a triangular decomposition,
each of the graded subspaces is still infinite dimensional. As a consequence, the
study of highest weight modules that satisfy the quasifinite condition —namely,
that graded subspaces are finite dimensional— becomes a nontrivial problem.

The representations of the Lie algebra Wy, were first studied in [KR1], where
its irreducible quasifinite highest weight modules were characterized and it was
shown that they can be realized in terms of the irreducible highest weight repre-
sentations of the Lie algebra of infinite matrices. At the end of that article, similar
results were found for the central extension of the Lie algebra of quantum pseudo-
differential operators S;, which contains as a subalgebra the g-analogue of the Lie
algebra ZA), the algebra of all regular difference operators on C*.

This study for D was continued in [FKRW], [KI] and [KR2] in the framework
of vertex algebra theory and in [BKLY] for the matrix case. In [KL], V. Kac and
J. Liberati also gave some general results on the characterization of quasifinite
representations of any Z-graded Lie algebra, which will be used in this paper.
In [KWY], a classification was given of the irreducible quasifinite highest weight
modules of the central extension of the Lie subalgebras of D fixed by minus the
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anti-involutions preserving the principal gradation. These results were extended in
[BLI] to the algebra DY of the N x N-matrix differential operators on the circle.

An analogous study was carried out for the Lie algebra of quantum pseudo-
differential operators. In [BL3]| it was shown that there is a family of anti-involutions
on Sy, up to conjugation, preserving the principal gradation. Their irreducible
quasifinite highest weight modules were classified and realized in terms of irre-
ducible highest weight representations of the Lie algebra of infinite matrices with
finitely many nonzero diagonals gﬂgg] and its classical Lie subalgebras of B, C and
D types. Similarly, in [BL2], the quasifinite highest weight modules over the central
extension of the Lie algebra of N x N matrix quantum pseudo-differential opera-
tors, denoted S/q;\/, were classified and characterized in terms of the representation
theory of the Lie algebra of infinite matrices with finitely many nonzero diagonals.

Making use of the the description of Lie subalgebras of ‘qu—;v fixed by minus the
anti-involutions preserving the principal gradation given in [BB|, we classify the
irreducible highest weight modules of some of the subalgebras found, particularly
the orthogonal and symplectic types. This paper is organized as follows.

In Section 2 we begin describing the objects of study by giving preliminary
definitions and Lemmas. The main result of this section is Proposition that
characterizes properties of S, y and its non degenerated parabolic subalgebras. In

Section 3 we study the irreducible quasifinite highest weight modules of S;’]]VV , the
main result is Theorem [3.3] which characterizes them in terms of the existence of
(quasi)polynomials satisfying certain equations. In Section 4 an interplay between

Sq v and the infinite rank classical Lie algebras of types A, B, C and D is estab-
lished. Propositions [4.1] to [4.5] give the existence of a Lie algebra homomorphism

between the holomorphic extension of SU and the direct sum of infinite rank clas-
sical Lie algebras. Section 5 is quite techmcal We make use of the homomorphlsms

of Section 4 to realize the irreducible quasifinite highest weight modules of Sf;]]\\,[
in terms of the modules of the infinite rank classical Lie algebras. This is accom-
plished by studying the different cases involved in the homomorphism of Section 4,
and it is described in Theorem [5.3] and Propositions [5.4] to [5.71 The main result of
this section, which is also the main result of the paper, is T heorem- .8, which states

that an irreducible quasifinite highest weight modules of SU 'y 1s a tensor product
of irreducible quasifinite highest weight modules of the 1nﬁn1te rank classical Lie

algebras, regarded as 8;'1]\\,[ -modules via the homomorphism of Section 4.
2. PRELIMINARIES

2.1. The Lie algebra gAeE:] and its classical Lie subalgebras. In this section
we will give a description of the Lie algebra of infinite matrices with finitely many
nonzero diagonals gﬁgg] and its classical Lie subalgebras of B, C and D types. We
will follow the notation in [KWY], Section 1].

Denote R, = C[u]/(u™*) the quotient algebra of the polynomial algebra C|u]
by the ideal generated by u™*! (m € Z>q). Let 1 be the identity element in R,,

Rev. Un. Mat. Argentina, Vol. 59, No. 2 (2018)



QHWM OF ORTHOGONAL AND SYMPLECTIC TYPE LIE SUBALGEBRAS 207

Denote by gf([;l] the complex Lie algebra of all infinite matrices (a; ;)i jez with
only finitely many nonzero diagonals with entries in R,,. Denote E; ; the infinite
matrix with 1 at (i, j)-entry and O elsewhere. There is a natural automorphism v

of gEL’Z}] given by

v(Ei;) = Eit141. (2.1)

Let the weight of E; ; be j — 4. This defines the principal Z-gradation gﬁ[m] =

@jez(gﬂ[ ]) Denote by g€[ - gég] @ R, the central extension of gﬁgg] given
by the following 2-cocycle with values in R,,:

C(A,B) =Tr([J, A]B), (2.2)

where J = Zigo E; ;. The Z-gradation of the Lie algebra gELZL] extends to gAEEZ] by
putting the weight of R,, to be 0. In particular, we have the triangular decompo-
sition,

]

~ [m] ~ [m] ~[m

g = (@& @y @ (g,

where
~ [m] ~ [m] ~ [m] m
(9loe )+ = Djen(glo ) and  (gla, Jo = (g¢Z0)o & Rpn.

Given A € (G0)5, we let

C;, = )\( Z)
N = AW'Ej ),
aqg® —yiE, . —u'E +90; 23)
7 353 j+1,5+1 7,0Ci5
a (1) _a (2) a
hj = /\j — )‘j+1 + (5‘706i,

where j € Zand 0 <i < m. Let L(ﬂz ],/\) be the irreducible highest weight gA&[Z]—
module with highest weight A. The *A{"’ are called labels and ¢; are the central

charges of L(gAﬁ([::],)\).

Consider the vector space Ry,|t, t’l] and take the basis v; =t 7%, i € Z over R,,.
Now consider the following C-bilinear form on R,,[t,t~!]:

BE(u"v;, ulvj) = u™(—u) (£1)'6; ;.

Denote by 5_[m] (resp. E;ro[m]) the Lie subalgebra of gégg] which preserves the bi-
linear form B~ (-,-) (resp. BT (:,-)). We have

b+[m] = {(ai;(u

B;o = {(ai;(u
Denote by bgg - B;o[m] @ Ry, (resp. b[m] me] @ R,,) the central extension of
B;o[’””} (resp. Bj.’o[m]) given by the restriction of the 2-cocycle (12.2), defined in geﬁjg].

(
)ijez € gl < a;j(u) = —a_j_i(~u), u € Ry},
ijez € gl < aij(w) = (—1)""Ha_; _i(~u), u € Ry}
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The subalgebra bLZL ] (resp. ELZL ]) inherits from ﬂg: ] the principal Z-gradation and
the triangular decomposition (see [KR2] and [FKRW] for notation),

b = @;en(0l2);, BT = (011 @ ()o@ (BT -,

M) = @jea(b));, Bz = ()4 @ () @ () -
Note that the Lie algebra BLTQ Vi isomorphic to bgg via the isomorphism that sends
the elements UkEiJ' — (7u)kE_j7_i to ukEm' + (71)1+i+j(7u)kE_j,_i, Z,] € Z,
k € Zy, u € Ry,. Their Cartan subalgebra coincides. In particular, when m = 0,
we have the usual Lie subalgebra of gf.., denoted b, (see [K|) (resp. boo, see [W]).

Given X\ € (b([;g ])0, denote L(bLo], A) the irreducible highest weight module over bl
with highest weight .

For each A € (b))%, we let
i = Au'),

A = N2u/ o) (j odd),
AD = NWIE;,; — (—u) E_; ),
bHi(j) =wWE;; — B i+ (—u) B 1 i1~ (—u)E
"HY) = 2w/ Bgg —wE_y_1 — W Ey1) +ud, (] even), (2.4)
"HY = (W By —wWE_; 1 — W E 1)+, (jodd),
bhz(j) _ )\(bHi(j)) _ b)\z(j) b)‘gi)la
bhéj) = )\(bH(gj)) =-2 b/\?) +2¢; (j even),
bhéj) _ )\(bH(gj)) _ b>\(()j) _ b)\gj) +¢ (jodd),

where i € Nand 0 < j <m, u € R,,,. The b/\é.i) are called the labels and ¢; are the

central charges of L(b([:g], A) or L(ELZL], A).
Now consider the following C-bilinear form on R,,[t,t1]:

C(u™v;, ulvy) = u(—u) (—1)"0;1— ;.

Denote by ELZL I'the Lie subalgebra of g&[:g ] Which preserves the bilinear form C(, ).
We have
ebel = {(aij(w)igez € ¢ | aij(u) = (=)™ arjui(~u), u € Ry}

Denote by CLC] = CL@ | @ R,,, the central extension of ELZL | given by the restriction

of the 2-cocycle (2.2)), defined in g¢I . This subalgebra inherits from gAéz] th
principal Z-gradation and the triangular decomposition (see [KWY] and [K] for
notation)

bl = @jen(c); = (s @ (o @ (2)-.

In particular, when m = 0 we have the usual Lie subalgebra of gf.,, denoted by

Coo-
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Given A € (c EZ;”])O, denote by L(c LZL], A) the irreducible highest weight module
over CLO] with highest weight A. For each A € (¢ LT ])0, we let:

Ci = )\(ui)7
A = ' By — (—u)' Ey_j1_j),
CH](Z) =uEj; —wEji i+ (—u)'E_j_j — (—u)'Ei_j1,
“HY = (W'Eop —u'Er1) +u', (i even)

ep (@) _ ey (i) _ ey (9)
hy = A = Ay

chéz) — C)\(li) + ¢ (Z even),

where 7 € Nand 0 <7 <m, u € R,,. For later use, it is convenient to put Chéi) =g
(iodd),1=0,...,m
The C/\y) are called the labels and c; are the central charges of L(cgg],)\).

Now consider the following C-bilinear form on R,,[t,t~1]:
D(u"v;, ulvj) = u"(—u)léiyl_j.

Denote by d[m] the Lie subalgebra of gﬂgg] which preserves the bilinear form D(-, -).
We have

At = {(as;(u))igen € 905" | ai(w) = —ar—j1-i(—u), u € Ry}

Denote by dL’Z} - cﬁg ] @ R,, the central extension of J[OZL ] given by the restriction

of the 2-cocycle (2.2)), defined in gé[fg]. This subalgebra inherits from gAZE::] the
principal Z-gradation and the triangular decomposition (see [KR2] and [FKRW]
for notation),

dim = ®jez (), d = @)y @ (di)e @ (di)) .

Given \ € (d([fg ])6, denote L(d[;;T ],)\) the irreducible highest weight module over
dLZ’ } with highest weight .
For each A € (dl;?])o, we let
= M),
d)\gj = )\(U El i ( u)jEl,i 1,i)
de-(j) =W E;; —wEiy1i01+ (—u)E_; _; — (—u)Ei_i1-,
HY) = (~uf Eoo + (—u) E_1,—1 — W By — W Ey,) + 247,
W = ACHD) = N d&L,
he” = MHE) = =2 =AY + 2¢;,

(2.5)
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where : € Nand 0 < j < m, u € R,,. The d)\y) are called the labels and c; are

the central charges of L(dgg ],)\). In particular, when m = 0 we have the usual
doo = cﬁg, doo = dg, cf. [K]. In this case, we drop the superscript [0].

2.2. The Lie algebra S, . Consider C[z, z71] the Laurent polynomial algebra in
one variable. We denote Sg the associative algebra of quantum pseudo-differential
operators. Explicitly, let T, denote the operator on C[z,27!] given by

T,f(2) = f(qz),

where ¢ € C* = C\{0}. From now on, Tg will denote the identity operator and
T, ! the inverse operator of T,. An element of 8¢ can be written as a linear
combination of operators of the form z* f(T}), where f is a Laurent polynomial in
T,. The product in S is given by

(" F(T)) (2 g(Ty)) = 2™ F F(d" T )g(T).
Denote S, the Lie algebra obtained from Sy by taking the usual commutator.
Take S; := [S;,Sy]. It follows that
Sy =8, ®CT) (direct sum of ideals).

Let N be a positive integer. As of this point, we shall denote by Maty A the
associative algebra of all N x N matrices over an algebra A and E;; the standard
basis of MatyC.

Let S v = S ®MatnC be the associative algebra of all quantum matrix pseudo-

differential operators, namely the operators on C [z, 27!] of the form
E= ek(z)qu + ek_l(z)Tlf*l + -+ eo(2), where ex(z) € MatyC[z, 27 1].

In a more useful notation, we write the matrix of pseudo-differential operators
as linear combinations of elements of the form 2" f(T,)A, where f is a Laurent
polynomial, k € Z and A € MatyC. The product in S7 y is given by

(=" f(T)A) (" 9(Ty)B) = 2" f(¢*Ty)9(T,) AB.

Let Sy, n denote the Lie algebra obtained from Sg v with the bracket given by
the commutator, namely:

(2" F(T)A, 25 g(Ty)B] = 2™ (£(¢"Ty)g(Ty) AB — £(Ty)g(q™T,) BA).

Taking the trace form tro(}_; cjw?) = cg, and denoting by tr the usual trace in
Mat,C, we obtain, by a general construction (cf. [KR1, Sec. 1.3]), the following
2-cocycle in Sy n,

(" F(T)A, 25g(Ty) B) = S, m tro(f (g~ Ty)9(Ty)) tr(AB), (2.6)
where 7, s € Z, f(w), g(w) € Clw,w™?], A, B € MatyZ. Let

—

Syn =8, yDCC
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denote the central extension of S (’17 ~ by a one-dimensional center CC' corresponding
to the two-cocycle 1. The bracket in S/,I’\N is given by
[ (T A, 2*g(Ty) B) = 2" (f(¢"T,)9(T)AB — f(Ty)g(¢™T,) BA)
+ (2" f(Ty) A, 2*9(T,) B)C.

The elements sz;”Eij (keZ,meZ, ije{l,...,N}) form a basis of S; v.
We define the weight on Sy n by

wtz* f(T,)Eyj = kN +i — j.
This gives the principal Z-gradation of Sg y, Sgn and S/q;\z,
aN = Diez(FgN)i  Sqn = Bjen(Fg,N);-

An anti-involution o of Sy n 1s an involutive anti-automorphism of Sy v, i.e.,

=1Id, o(azx + by) = ao(x) n bo(y) and o(zy) = o(y)o(x), for all a, b € C and
z,y € S“N From now on we will assume that |q| # 1.
The following Lemma was proved in [BB].

Lemma 2.1. Let 0 = 04 8,cr,.N be given by

0(Eii) = ENgt1—i,N+1—i

O’(TQE“) BT EN+1 i, N+1—1
o(zEy;) = zaTy EN+1 i, N+1—i
o(z'Ey) =o' q 2 T " Eng1—i N1 —i

o(E;j) = CijEny1—jNy1—i  if 1>
1] - 1 X . ;
i Envi—j N1 if 1<,

where a, B,¢; j,7 € C, a?(Bg )" =1, and ci,j satisfy the following relations:

Cij = Ci,i—1Ci—1,i—2 """ Cj+1,j (2.7a)
CijCN+1—j,N+1—i = 1 ifi<norj>n (2.7h)
-1 . i )

CijCN41—iN+1—; = T1 ifi>nand j <n.

Then o = 0q,8,cr,n extends to an anti-involution on Sy N which preserves the

principal Z-gradation.

Remark 2.2. (a) For each n < N, a Z-gradation preserving anti-involution
can be constructed in a similar way. In [BB] all anti-involutions of Sy v
preserving the Z-gradation were classified.

(b) Because of (2.7a)), all coefficients ¢; ; are completely determined by
Ci ‘= Ci41,4, iZl,...,N—l.
Moreover, combining equations (2.7a)) and (2.7b]) has further consequences.
Let N =t + n. If n (respectively, t) is even, we have (Cn/2>2 =1 (respec-
tively, (cn+(t/2))2 = 1). The coefficient ¢, /5 (respectively, ¢, /2y) will be
called a fixed point. A more detailed study of this can be found in [BBJ.
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Let S;’I\B,’C’T’N denote the Lie subalgebra of S, x fixed by minus o4 g ¢ r, N, namely
N
SN ={a € 8yn | 0apern(a) = —a},

where 04, g, n is the anti-involution given by Lemma
Lemma 2.3. The Lie algebras S;’]e’c’r’N for arbitrary choices of o, B and c are
isomorphic to S;;?\}l’T’N, where € is 1 or —1, and 1 is the matriz ¢ with ¢; = 1
except for the fixed points that are 1 or —1, which keep their sign.

Thus, the anti-involution is of the following form:

O'E,T,N(Zkh(Tq)Ei,j> = (G)qu(k_l)r/QZkh(ql_kTq_l)TJWEN+Z’,]"N+1,¢, (28)

where € = 1, r € C*. For simplicity, denote ng\,v the Lie subalgebras of S, n
fixed by minus oc ., n.
We will denote

1 if m is even,
6m,even = .
0 otherwise.

S;’]Qf inherits a Z-gradation from S, y since o preserves the principal Z-gradation
of 8¢ . Thus S;’JI\,V = @jeZ(S;’IJVV)j. We can now give a description of (S;’]]\\,])j. By
the division algorithm, let j = kN + p with 0 < p < N — 1. Thus:
If p #0,
(Syw )i = (@I (F (VT By
— (O F((@*VPT) M ENpa—ippni14) : f(w) € Clw,w™],
1+p<i<N,i#(N+1+p)/2}
U 5N+p,odd{2k(q(k_1)/2Tq)rk/29(q(k_1)/2Tq)E(N+1+p)/2,(N+1—p)/2 :
g(w) € Clw, w™ 1"}
U{ZkJrl (qk/QTq)r(kJrl)/Q (h(qk/QTq)Ei,N—p-i-i
— (" (g T, ) Epra—in41-i) : h(w) € Clw,w™'], 1 < i < p,
i#(1+p)/2}
U5 ,odd{Zk—H(qk/2Tq)T(k-H)/2§(qk/2Tq)E(p+1)/2,(2N+1*P)/2 :
§(w) € Clw,w™"]°*1},
and for p =0,
(Syn)s = {2 (@* 02T (f (g% VT B
— (OFF (" V2T ) ) ENt1-in41-i) : f(w) € Clw,w™,
1<i<[N/2]}
U 5N,odd{27k(q(fkfl)/QTq)7Tk/29(q(7k71)/2Tq)E(N+1)/2,(N+1)/2 :
g(w) € Clw,w™']**},
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QHWM OF ORTHOGONAL AND SYMPLECTIC TYPE LIE SUBALGEBRAS 213

where Clw,w™!]* denotes the set of Laurent polynomials such that f(w™!) =
—(&)* f(w).
We denote again 1 the restriction of the 2-cocycle in (2.6) to S;’]J\Y . Denote by

— —

S;’IJ\\,[ the central extension of S;’fvv by CC corresponding to the 2-cocycle 1. S;’IJ\\,[
is a Lie subalgebra of S, n by definition.

2.3. Parabolic subalgebras of SU’N In order to characterize the quasifiniteness

of the highest weight modules (HWMs) of S N we will study the structure of its
parabolic subalgebras and apply general results for quasifinite representations of
Z-graded Lie algebras obtained in [KL]. We refer to [KL] for proofs and details.
Let g be a Z-graded Lie algebra over C,

g_®gj7 gng ng+j7
JEZ

where g; is not necessarily of finite dimension. Let g4 = ®;>008+;. A subalgebra p
of g is called parabolic if it contains gy & g+ as a proper subalgebra, that is

p= @pj, where p; = g; for j > 0, and p; # 0 for some j < 0.
JEL
Following [KL], we assume the following properties of g:
(P1) go is commutative,
(P2) ifa € g_g (k>0)and [a,g1] =0, then a = 0.
Given a € g, a # 0, we define p® = @jeczp;, where p§ = g; for all j > 0, and

P = [-llasgoligols---1 Py = [P0, P74
Lemma 2.4.

(a) For any parabolic subalgebra p of g, p_ir # 0, k > 0, implies
p—k+1 # 0.

(b) p* is the minimal parabolic subalgebra containing a.
(c) g6 = [p",p*]Ngo = [a, g].
Proof. Cf. [KLl Lemmas 2.1 and 2.2]. O

In [BKLY], for the case of the central extension of the Lie algebra of matrix
differential operators on the circle, the existence of some parabolic subalgebras p
such that p_; = 0 for j > 0 was observed. Having in mind that example, they give
the following definition.

Definition 2.5. (a) A parabolic subalgebra p is called nondegenerate if p_;
has finite codimension in g_;, for all j > 0.
(b) An element a € g_1 is called nondegenerate if p* is nondegenerate.

We will also require the following condition on g.

(P3) If p is a nondegenerate parabolic subalgebra of g, then there exists an
nondegenerate element a such that p* C p.
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Now take a parabolic subalgebra p of S/I‘;’Ev . Observe that for each j € N,
j=kN+pwith0<p<N —1, we have
b—j = {Zik(q(ikil)/QTq)irkﬂ(f(q(ikil)/ZTq)Ei,i-&-p
—(Ff(@" T N En i pny1—i) | fw) €T, 1< i < N —p,
i (N +1-p)/2)
U on—poaafz (g 2T 74 2 g (¢RI RT ) By i1y 2 (v 1) 2

| g(w) € INT7P2)

U{z—k_l(q‘l—’f/2Tq)_T(k+1)/2(h(q_l_mTq)Ei,iwa

- (6)(k+1)h((qilik/2Tq)71)E2N+1—i—p,N+1—i)
|h(w) €T ;, N+1-p<i<N,i#(2N+1-p)/2}
U Spoaa{z ¥ (g AT T D2 TR R T By 1) j2,(14) 2
| 9w) € 17102y,
(2.9)
where Iij is a subspace of C[w,w™!], Ig“fp)ﬂ is a subspace of Cw,w™!]* and
I(,szHip)/z is a subspace of Clw,w=1]&*+1,

Let us check conditions (P1), (P2) and (P3) for S;’]]VV.

Observe that (P1) is immediate from the definition of (S;’]IVV )o. (P2) follows
from computing the bracket

[H (gD 2T, )i/ (f(Tq)Ez',j—(e)lf(thl)ENHfj,NHfi),Ej,jﬂ — ENnjo—jNt1—j]
and the particular case
[} (g 12T/ (f(T)EN/2,N/2 — (e)lf(Tq_l)EN/2+l,N/2+1)a
Enja,nj2-1 — Enjata,n/241)-

To prove (P3), let f(w), g(w) be Laurent polynomials in the variable w with
fe Iij, and let p_; with j = kN +p asin (2.9). Let us first consider 1 < i < N—p.
If p =0, suppose i # (N 4 1)/2. We compute the bracket

[z R (g R RT) R (f(gTF I RPT)E i — (e)F f(g* TV PT Y Enga i),

9(a T Eii — 9(¢" Ty ) Enpa—inga-il-
So, Iij satisfies
A, CT (2.10)

where A; = {g(¢"/?*w) — g(¢7*/?w) : g(w) € Clw,w™]}.
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If p # 0, suppose that i # N + 1 —i. Computing the bracket
[Z—k(q(—k—l)/2Tq)—rk/2 (f(q(_k_l)/QTq)Ei,i+p
- (e)kf(q(k+1)/2Tq71)EN+1fi7p,N+17i),
9(q " PT)Eii — (¢ T, ) Engainga-il,
we sce that I' ; satisfies (2.10) for A; = {g(¢*/*w) : g(w) € Clw,w™']}.
Now, if N+1—p <1i < N, we see by computing
[szfl (qflfk/QTq)fr(kJrl)/Q (f(qilik/2Tq)Ei,i—N+p
- (6)k+1f(q1+k/2T¢;1)E2N+17i7p,N+1fi)7
9 V*T)E;; — 9(¢**T, ) Engr—int1-i]

that I' ; also satisfies ([2.10) for A; = {g(¢='="/2w) : g(u(}) € (C[l)t;,w’l]}.
N+1-p)/2

Analogous results can be obtained if N — p is odd for I_]

by computing

=A@ 2T 2 (AT By v
9(g YT )E; ; — g(ql/QTqil)EN“‘i’N“_i]’

and if p is odd for IEQJNJFPP)/Q, computing

[ g T TR (F (¢ P T) Eon 1 -y 2,1 20
9T Eii — 9(¢"*T; ) Enga—ins1—i).
Thus, since C[w,w™!] is a principal ideal domain, we have proven the following

Lemma 2.6. For j > 0,

(a) T, I(j}lﬂfp)m and IgNH*p)/Q are ideals;

(b) if Iij # 0, I(f}]—kl_p)m # 0 and I(ijH_p)/z # 0, then they have finite
codimension in Clw,w™"].

Let [k] denote the integer part of a number k. Now we have the following
important proposition.

Proposition 2.7.

0-7

(a) Any nonzero element d € (SqJJ\\,[)_l is nondegenerate.

—

(b) Any parabolic subalgebra of S;’]J\\; is mondegenerate.

—

(c) Letd e (S7\)-1,
[N/2]=0N,even
d= Z fila™PT)Erir — fild" T ) En i N1
i=1

+ O even g(q_1/2Tq)EN/2,N/2+1 + Z_l(q_qu)_T/2h(q_1Tq)EN,17
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where f;(w), g(w) and h(w) are Laurent polynomials such that g(w™1) =
—g(w) and h(w™') = —eh(w). Then
(Sen)i = [(Sgn)r.d]
= span {fk—l(qfl/qu)(qfl/QTq)l(Ek—l,k—1 — 1)
+ fkfl(ql/qu_l)(q_l/QTq)_l(Eka+1,N7k+1 — ENto—k N+2-k)
2<k<[N/2]+0noda,l € Z>o}

U5N even{9(a 2T (a7 2T)™ — (¢ Y*T) ") (Enjo.ny2 — Enjosinyzs) -
n € Zxg, g € Clw,w™ EO}

ULr@) (@) — Ty ™) En oy — h(q_qu)((q_qu)m - e(q—lT )—m)EL1
+ tro(eh(¢*w™ ) (w™ — ew™™))C :m € Z, h € Clw etk

Proof. Let 0 #£d € (S;’]]\,V)_l; by Lemma part (a), p‘ij # 0 forall j > 1. So, by

Lemma, part (b), part (a) follows. Let p be any parabolic subalgebra of S(‘;’]J\\,’ ;
using Lemmas 2.1 and 2.2 in [KL], we get p_; # 0. Then using (a) and p? C p (for
any nonzero d € p_1) we obtain (b). Finally, part (c) follows by computing the
commutators [d,a] with a = (q_1/2Tq)lEk,k,1 — (q_1/2Tq)_lEN+2,k’N+1,k with
2<k< [N/2] + 5N,odd§ a = 5N,even((q_1/2Tq)n - (q_1/2Tq)_n)EN/2+1,N/2 and
a= 21,2 (T — €T, ™) By, with [, n, m € Zsq. O

Summarizing, we have proven that the following properties are satisfied by 8;’11\\,’ :

—

(P1) (S;’JJ\\,’)O is commutative;

(P2) ifa € (S;’Ij\\,[)_j ( > 0) and [a, (5;,11\\[7)1] =0, then a = 0;

(P3) if p is a nondegenerate parabolic subalgebra of S;’J]VV , then there exists a
nondegenerate element a such that p® C p.

Observe that (P3) follows from Proposition 2.7} parts (a) and (b).

3. CHARACTERIZATION OF QUASIFINITE HIGHEST WEIGHT MODULES OF S;’IJVV

Now, we begin our study of quasifinite representations over the Lie algebras

S;’]]\,V. Let g be a Z-graded Lie algebra. For a Lie algebra g, a g-module V is
called Z-graded if V = ®;czV; and g,V; C Viy;. A Z-graded g-module V is called
quasifinite if dimV; < oo for all j.

Given \ € gj, a highest weight module is a Z-graded g-module V (g, \) generated
by a highest weight vector vy € V(g, \) which satisfies

hvy = )\(h)?))\ (h € g())7 girvy = 0.
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A nonzero vector v € V(g, ) is called singular if grvy = 0. The Verma module
over g is defined as usual:

M (g, \) =U(9) ®u(gomgs) Ch,

where C, is the one-dimensional (go @ g4 )-module given by h — A(h) if h € go,
g+ — 0, and under the action of g is induced by the left multiplication in /(g). Here
and further U/(g) stands for the universal enveloping algebra of the Lie algebra g.
Any highest-weight module V (g, A) is a quotient module of M (g, ). The irreducible
module L(g, \) is the quotient of M (g, A) by the maximal proper graded module.
We shall write M (\) and L(\) in place of M (g, \) and L(g, A) if no ambiguity may
arise.

Consider a parabolic subalgebra p = @;ezp; of g and let A € g be such that
Algonp,p] = 0. Then the (go @ g4 )-module Cy extends to a p-module by letting p;
act as 0 for j < 0, and we may construct the highest-weight module

M(g,p,\) =U @y (p) Ca,

called the generalized Verma module. Clearly all these highest weight modules are
graded.

From now on we will consider A € gj. By Theorem 2.5 in [K], we have the
following.

Theorem 3.1. The following conditions on \ € g§ are equivalent:

(1) M(X) contains a singular vector a.vy in M(X\)_1 where a is nondegenerate;

(2) there exists a nondegenerate element a € g_1, such that A([g1,a]) = 0;

(3) L()\) is quasifinite;

(4) there exists a nondegenerate element a € g_1 such that L(X\) is the irre-
ducible quotient of the generalized Verma module M (g,p%, \).

— —

Consider g = S;’]J\,V. A functional X € (S;]J\\,])O is described by its labels,
Dig = Mg VPT) Eii — (¢ T ' Engaingai),
Ang = M(Ty+ T, VEny — ((67'T)' + (a7 Ty) ) B

with [ € Z>¢, 1 < i < [N/2] 4 0N even and the central charge ¢ = M\(C'). We shall
consider the generating series

2) =Y a7 Ay 1<i<[N/2]+0yeven and Ay (z) =3 a7 Any.
leZ IEZ

Recall that a quasipolynomial is a linear combination of functions of the form
p(x)g®®, where p(z) is a polynomial and o € C. That is, it satisfies a nontrivial
linear differential equation with constant coefficients. We also have the following
well-known proposition.

Proposition 3.2. Given a quasipolynomial P and a polynomial B(x) = [[,(x —
A;), take b(z) = [[;(z — a;) where a; = e?i; then b(z)(}, ez P(n)2™™) = 0 if and
only if B(d/dx)P(x) = 0.
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If the polynomial B is even we call P an even quasipolynomial. As a result, one
has the following characterization of quasifinite highest weight modules over g.

Theorem 3.3. A 8;’]]\\,[ -module L(\) is quasifinite if and only if one of the following
conditions holds:

(1) There exist monic polynomials by (w), ..., bN/2)-sx ... (T), by (w) such that
bi(x)(Dig1(z)— D () =0 for 1 <i<[N/2] — 0N, even and (3.1)
by (z)(An(x) +2¢) =0 (3.2)

Moreover, if N is even there exists a monic polynomial by o(x) such that

bny2(@) (A1 ny2(x) — Anya(z)) =0.

(2) There exist quasipolynomials P; and even quasipolynomials P§, such that

(neN)
Pi(n) =D n — Diyin for 1 <i<[N/2] = 6N cven and (3.3)
Py(n)=ANnn forn#0 and Px(0)=—2c (3.4)
Moreover, if N is even there exists an even quasipolynomial Py o such that
Pynja(n) = Anjan — Dnj2iim: (3.5)

Proof. From Proposition 2.7 part (c) and Theorem [3.1] part (b), we have that L(\)
is quasifinite if and only if there exist (monic) Laurent polynomials
P

he(w) = th(wt — ew_t), g(w) = st(ws —w™?), filw)= 2 a; "
s=0

t=0

v=—mmy;

for 1 < i < [N/2] — 6N even, such that for each I,n,m € Z>(, we have

A fr-1(q T PT) (Ex-15-1 — Eri)
+ fkfl(q1/2Tq_1)(q_1/2Tq)_l(Eka+1,N7k+1 — Ento—kN+2-k)) =0
with 1 < k < [N/2] = 6 cven,
AT (T = €T, ™ Enon — h(g™ ' Ty) (a7 Ty)™ — (g™ Ty) ") By
+ tro(eh(¢* 2w ) (W™ — ew™™))C) = 0,
and

ONeven Ng(q 2T (a7 2T )™ = (7 V*T) ™) (Enya,ns2 — Enjosi,ny241)) = 0.

These conditions can be rewritten as follows:

0= @iu(Divri— Digro11) (3.6)
for all 1 < i <[N/2] — 0N even and I € Z>p, and
p
0= ¢/(ANitm—€ANt—m) + troleh(¢ w1 ) (w™ — ew™™))C) =0  (3.7)
t=0
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with m € N. Finally, if N is even,

0= Z ds(AN/2,s+n - AN/2,—s+n + A1—0—N/2,—s-‘,—n - A1—}-N/2,s+n) (38)
s=0

with n € Z>q. Let
Fy(z) = Ap(z) — Dpyr(2)
for 1 < k < [N/2] — O .even-

Let us first analyze (3.6). Multiplying both sides by ~! and adding over [ € Z,
we get

0= Y ai,a"Fi(x) = fi(x)F(x).
We construct b;(x) = = f;(x) € C[z]. The equivalence of (1) and (2) for this case
follows from the fact that holds since it also holds multiplying both sides of
this formula by 2™ with m; > 0. Due to Proposition [3.2] the existence of the
quasipolynomials P;(z) for 1 <4 < [N/2] — 6N cven 18 clear.
Let us now study . Making use of the definition of try given in Section
and the fact that Ay; = An,—;, we get

P
0= Z Ct(AN,t-‘rm - GAN,t—m) - 2€CmC.
t=0

Multiplying both sides by 2™ — ex™™ and adding over m € Zx, we obtain

p
0= ci(z7t —ext) Ay (2) — Z (2™ —ex™™)(2ecmc) = —eh®(z)(An(x) + 2¢).
t=0 meEZL

Once again, holds since it also holds multiplying both sides of this formula
by 2P with p > 0. Now, b*(z) = 2Ph(z) € C[z]. Since h¢(xz~!) = —eh®(z) it is
easy to see that if & # 0 is a root of b(z), then 1/« is also a root of b*(x). Now we
can apply Proposition [3.2] and due to the relationship between the roots of B and
b in this proposition it follows that the B€(x) corresponding to our b°(z) is an even
polynomial. This implies that the quasipolynomial Py, () such that Pgy(n) = An,
for n # 0 and P(0) = 2c is even, finishing the proof for this case.

Finally, let us analyze (3.8]) for the case N even. Proceeding similarly as with
the previous equation, we multiply by (¢ — 2x~") and add over n € Z>o. Using
the fact that Ay /o1 = —Any/2,—; We obtain

0=> di(a® — 2 *)(Anya(@) = Anjaia(@) = g(2) Fnja().
s=0

Now BN/Q(x) = z"g(z) € Clz]. Making use once again of Proposition E we
prove that Py/s(z) such that Py/a(n) = Anjon — Anja41,n for n € Z is an even
quasipolynomial. O
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Given a quasifinite irreducible highest weight SU’ -module V' by Theorem
we have that there exist quasipolynomials P;(x) (for 1 <4< [N /2] — 6N7even
satisfying , and even quasipolynomials Pg (z) satisfying (3 , and if N is
even, Py/s(7) satisfying . We will write

.’E) = Zpe,i(x)qeima

ecC
S(z) = ij,N(m) coshq(e;'x) + ZQ;N( ) sinhg(e; @), (3.9)
jec jec

Pyo(x Zp] ~y2(x) coshg ( x +Zq] ny2(x) sinhy (e ),
jeC jec

with p; v (z) and p; y/2(x) (respectively, ¢; n(z) and g; n/2(7)) even (respectively,
odd) polynomials, p.;(z) a polynomial, e, ej‘ and e; distinct complex numbers.

Also, coshy(z) = % and sinh, = 7 —4—. The last two expressions in (3.9)
are unique up to a sign of e;r or a simultaneous change of signs of e; and the

respective g;j(x). We call e;r (respectively, e; ), even type (respectively odd type)
exponents of V with multiplicities p;(x) (respectively, ¢;(x)). As in [KWY], we
denote e the set of even type exponents e;L with multiplicity p;(«) and by e~ the
set of odd type exponents e; with multiplicity g;(x). Therefore, the pair (eT;e™)
uniquely determines V. Analogously for the first formula, we call e; the ezponents
of V with multiplicities p.;(z), and we denote e the set of exponents e; with

—

multiplicity pe ;(z). We will denote this module by L(S;’]]VV; e;etse).

4. INTERPLAY BETWEEN SUN AND THE INFINITE RANK CLASSICAL LIE
ALGEBRAS

In this section we will discuss the connection between SZ’N and the Lie algebra
of infinite matrices with finitely many nonzero diagonals over the algebra of trun-
cated polynomials and its classical Lie subalgebras. Let O be the algebra of all
holomorphic functions on C* with the topology of uniform convergence on compact
sets, and denote

0% ={f€ 0| f(w)=—¢flw™ )}
Let R be an associative algebra over C; denote R* a free R-module with a fixed
basis {v;};ez and denote R,, (C[ ]/(tm‘H) where m € Zy.
We consider the vector space 8 "y spanned by the quantum pseudo-differential
operators (of infinite order) of the form 2* f(T,)E; ;, where f € O. The bracket in
Sy.n extends to (S, x)¢. In a similar fashion, we define a completion (S;’IJ\\,, )© of

S;’,JVV consisting of all pseudo-differential operators of the form

{F (gD PT) ™R (f (g% PT)E; 5 — (€)F F((q% 2T ™) Enimjna1—i) -
keZ, 1<i<j<N,fe0O}
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and the opposite diagonal
(" VPT) ™ 2 (F (" PT)Bins i k€L, 1< < N, f € O9F
Then the 2-cocycle 1) on S”]]\,V extends to a 2- cocycle w on (SU’N)O. Recall that S, v

denotes the derived algebra of S, n. Let S N = S v + CC be the corresponding
central extension.

Given s € C, we have (cf. [BL2l (3.2)]) the embedding @Lm] tSq N — gtlm]
(go[sm] D (Syn)P — g€[m]) given by

oMk p(T, Zf Bk N—it1,iN—j 41
lez

which are Lie algebra homomorphisms. A restriction of these homomorphisms
of Lle algebras to SU’N gives a family of homomorphisms of Lie algebras go[ ml
SN — gl (ol (STN)O — gelmhy.

For each s € C and k € Z, set

I[m] {f cO: f ( q(k_l)/2+”) =0 and

f(i)(s_lq_(k_l)/Q_") =0,VneZ 0<i< m}
and
—{fe(’)” S f O (sqmD/2Hmy — 0, Ve Z, 0 <i<m).
Let
Js[m]m,e _ @kez{zk(q(k—l)/QTq)rk/Q (f(q(k_l)/2Tq)Ei,j
— (OFF (" VPT) N EN 1 jn1i) 1 <i<j< N, f € Ii?;?}
® @pez{z"(qFVPT) ™2 (F (g PT)Ey Ny 1 <i <N,
felll)
Using the Taylor formula on cp[sm] : Sq N — gﬁ[m] it follows that

ker ™l = glmlre, (4.1)
Choose a branch of logg. Let 7 = logq/2mi. Then any s € C* is uniquely
written as s = ¢%, with a € C/77'Z. Fix § = (s1,...,sy) € CM such that if each
s; = q%, we have
ai—a; ¢ Z+7 2 fori#j, (4.2)
and 1M = (mq,...,muy) € ZM. Let gﬂ(@] = @fﬁlgﬁggi]. Consider the homomor-
phism a
Pl = @il (87)C — gl
Proposition 4.1. Given § and m as above, we have the exact sequence of Z-graded
Lie algebras, provided that |q| # 1:
0 — Jire (8710 = gt — 0
where JIMT ﬂMlJS
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Proof. The injectivity part is clear from . For the sake of simplicity, we will
prove the surjectivity of cp[sm] for the case M =1, M =m and § = s = ¢* We will
make use of the well-known fact that for every discrete sequence of points of C and
a non-negative integer m there exists f(w) € O having prescribed values of its first
m derivatives at these points. By conditions and |g| # 1 and since a ¢ Z/2 we
have that {q(»~1)/2+i+e} and {¢~(»~1/27i=a} are discrete and disjoint sequences
of points in C. Therefore we can find f € O such that every element t/E,; is in
the image, finishing the proof. (]

We now intend to extend the homomorphism go[sm] to a homomorphism between
the central extensions of the corresponding Lie algebras.

Proposition 4.2. The C-linear map @Lm] : S;’]]\\; — gAﬁ([::] defined by (s = q%),

slml

Ps | Zony — ‘PLm]|(s;vj\‘]’)j if j #0,

(S9N
gl (q_n/ZanEi,i - qn/2Tq_nEN+1—i,N+1—i)
= Qo[sm](qin/2anEi,i — qn/zT;nEN+l—i,N+1—i)

m o gla=1)n _1)ig(—a+)n J
q +(—1)¢q -t
Y sl (£ 0)
j:
pml(C)=1¢€ R,

1s a Lie algebra homomorphism over C.

Proof. 1t is a straightforward computation restricting the formula ¢[sm] in [BL2,
(3.2)], to ST - 0

[m]

The homomorphism ¢~ is defined for any s € C. However, for a € Z/2, it is
no longer surjective. These cases are described by the following propositions.

Proposition 4.3. Fora =1, we have the following exact sequence of Lie algebras:
0— JimHhe 5 (870 =g —0
whereg:cf[gg] ife=1 andg:égon] ife=—1.

Proof. We will first prove the case ¢ = 1. The homomorphism gp[sm] 1SN — gz!;;”
introduced in [BL2] is surjective. The anti-involution of S; n defined in (2.8)

transfers, via @Lm], to an anti-involution w : gfgg] — gEL’ZZ] as follows:

wuFE; ;) = (—u)*E1_j1-;.

0-7

Therefore, the Lie algebra of —o fixed points in S, v, explicitly, Sq7 ]I\\,[ , maps sur-

jectively to the Lie algebra of —w fixed points in gé([)?], explicitly, JL? N -1,
the anti-involution w is as follows:

WU By ) = (1) (—u)* Erji,
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where i = ¢;N +r;and j = ¢;N +r;, with 1 <r; < Nand 1 <r; < N. As a

result of the surjectivity described, it is enough to show that w is conjugated by

an automorphism 7" of gﬂgg] to the anti-involution defining ELT I, To that end, we

define

T’(umEaJ, — qu_q"’(—u)mEl_b,l_a) = umEa,b — €a+b(—u)mE1_b,1_a, (43)
where a = guN + 1o and b= N + 71, with 0<r, < N—land 0<r, <N — 1.
It is easy to see that w is conjugated by T’ to the anti-involution defining EL’;”. O
Proposition 4.4. If a =1/2 and N is odd, we have the following exact sequence
of Lie algebras:

0= Jimbke o (870 = g =0,
where g ~ bl ife=1andg~ b if e =—1.
Proof. If e = 1, replace in the proof of the last proposition w by
wuFE; ;) = (—u)*E_ni1—j—N+1-i-
Therefore, the Lie algebra of —c¢ fixed points in S, n, explicitly, S;’ZJVV , maps sur-

jectively to the Lie algebra of —w fixed points in gfgg]. Consequently, it is enough

to see that w is conjugated by an automorphism T of gﬁgon] to the anti-involution

defining prml, So, we define

T(u"E; ;) = u"ENi1)/24i,(—N+1)/2+j- (4.4)

It is easy to check that this extends to an automorphism of the algebra ge[{g] that
conjugates w to the anti-involution defining 13;[’”]. If e = —1, w is as follows:

w("E; ;) = (=1)%" % (—u)* E_y 115 _nt1-i,
where i = ¢;N +7r; and j = ¢;N +1rj, with 1 <r; < Nand 1 <r; < N. The

automorphism of géL’Z?] for this case is D = T o T, where T is the same as in the
previous case and we have

T (W Eqyp — P79 (—u)"E_y o) = u™Eup — P (—u)"E_y _,, (4.5)
with a = ¢, N +r, and b= N +71p, for 0<r, < N—1land0<r, <N —1. Itis
easy to see that w is conjugated by D to the anti-involution defining b;o[m]. O

Proposition 4.5. If a =1/2 and N is even, we have the following exact sequence
of Lie algebras:

0 — Jimbke (S;’]J\Y)O —d™ - 0.

Proof. This proof follows the same steps as the last proposition. If € = 1, because
w is the same as before, it is enough to replace T by

T(uW'Ei;) =u E_Nj2ti,—N/2+j- (4.6)
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The rest of the proof is the same for this case. If ¢ = —1, w is the same formula as
in the last proposition, so it is enough to replace 7" by

T/(’u,mEa’b — E%_qa(—u)mElfb’lfa) = umEa,b — (—’U,)mElfb’l,a, (47)
where a = ¢, N+r, and b = ¢ N +1rp, with0 <r, < N—land0<r, < N—-1. O

Remark 4.6.
(a) By an abuse of notation, for a = 1 and a = 1/2, in view of Propositions

to we will denote again go[sm] the surjective homomorphism from S:;’]]\\,[

onto o), b and d, respectively, given by the old o™ composed with

the corresponding isomorphisms introduced in the proof of the proposition
above.

(b) Recall that v was defined in (2.1). If e = 1, for arbitrary a € Z, the image
of S;’]]VV under the homomorphism @&T] is ya(dLZ‘]). Similarly, if a € Z+1/2,
the image of S:;’IJ\}’ under the homomorphism @LT] is ua(dL’? ]) if N is even
and ya(bL’Z} ]) if N is odd. As a consequence, it is enough to study the cases
a =1 and a = 1/2. The same conclusions can be obtained for ¢ = —1.

Therefore, we will only consider a = 1 and a = 1/2 throughout this paper.

Given vectors § = (s1,...,50) = (¢*,...,q*™) € CM andm = (my,...,my) €

ZM such that if a; € Z, then a; = 1; if a; € Z + 1/2 then a; = 1/2; and

ai —a; ¢ Z+ 77 'Z for i # j. Combining this with Propositions to
we obtain a surjective Lie algebra homomorphism

M = @l (S7A)O — gl = gl (48)

=1

where if e =1

aT e ¢z,

glmil = ¢ plmal if a; =1/2 and N is odd,
dL’Q” if a; =1/2 and N is even or a; = 1,
and if e = —1
g e ¢z,
glmid = b@"’] if a; =1/2 and N is odd,
dL’S” if a; =1/2 and N is even,
!l if ;= 1.

5. REALIZATION OF QUASIFINITE HIGHEST WEIGHT MODULES OF S;’]]VV

In this section, we will make use of the surjective Lie algebra homomorphism
cp?] to realize the irreducible quasifinite highest weight modules of S;’]IVV modules

in terms of the modules of the classical Lie algebras.
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In this section g™ will be gAﬁgg] or one of its classical subalgebras. The proof of
the following proposition is standard (cf. [K]).

Proposition 5.1. The g[’”]-module L(gl™, \) is quasifinite if and only if all but
finitely many of the Th D are zero, where 1 represents a, b, ¢ or d depending on

b[m] d[m]

whether g™ is g/\ﬁ coo or

Given m = (my,...,mp) € Z>0, take a quasifinite \; € (gl™)# for each 1 <4 <
M, and let L(gl™ )\;) be the corresponding gl™-module. Let X = (Ayeey A).
Then the tensor product

L(g™, \) = @ L(g!™], \)

is an irreducible gl™-module, with gl™ = @M g™l The module L(g[m],X) can

be regarded as a SZ’N -module via the homomorphism <p[ "] and will be denoted by
L[an] (X). We shall need the following results.

—

Proposition 5.2. Let V be a quasiﬁm’te SU’N—module. Then the action of S;’]J\\;

on V naturally extends to the action of (SZ]]VV) on 'V, for any u # 0.

Proof. The proof is similar to the proof of Proposition 4.3 in [KIL], replacing B =
adD? — k2 by the following:

eIfi#j,iAN+1—j,i#N+1—iandj#N+1—j,

1
B = 5o (0d(T)) By —ad(6T,)E, )

1 _ _
+ §(ad(qTq YEN+1-j N1 — ad(q T ) Engai ng1—i)-

o Ifi=j,

1 —k+1
B= adT alii + ﬁaqu_lENJrlfi,NJrlfi'
q

e Ifi=N+1-7,

1 _ _
B= ?aquEm- —q k“aqu 1EN+171',N+17%"

O
Theorem 5.3. Let V be a quasifinite gl™-module, which is regarded as a S;’]J\Y—
module via the homomorphism cp?]. Then any Sg’jj\}’—submodule of V is also a

gl™ _submodule. In particular, the S;’I]\\,[—module Lgﬁ]’k’e(X) is irreducible if § =
($1,-.-,8Mm), with s; = q*, is such that a; € Z implies a; = 1, a; € Z+1/2 implies
a; =1/2, and a; —aj ¢ Z+ 777 fori # j.
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—

Proof. Let W be a SU’JZ\\,/ -submodule of V. Due to the fact that W is a quasifinite

— /\

Sy fvv module as well, by Proposmon it can be extended to (S,” )O for u # 0.

As a result of (4.8), the map cp[m] (Sgljvv)ff — (gl™),, is surjective for any u # 0.
Therefore, W is invariant with respect to all members of the principal gradation of
(g[m])u with u # 0. Since g™ coincides with its derived algebra, this proves the
theorem. O

Now, we will proceed to show that all the irreducible quasifinite S;’]J\\,[—modules
can be realized as some Lgﬁ]’k’e(X), for some m € ZJ%/[O and § € CM, with s; = ¢%
such that a; —a; ¢ Z + 7717 for i # j. For simplicity, we will consider the case
M =1 to calculate the generating series Ay, .y ;(x) =3, 5(A5, o\ )nz ™" of the

highest weight and central charge c of the S; N -module L[Sm]’k’E(A).
We will introduce the following notation:

(0, 8) = 4% + (=1)'q*’ (Blogq)’
A\ P)= " 872 — g6/ T

Making use of Theorem take an irreducible quasifinite weight S;’]]VV -module
V with central charge ¢ and generating series A;(z), P5(z) an even quasipolyno-
mial such that

Py(n)=ANy, forn#0 and  Py(0) = —2c, (5.1)
P;(z) a quasipolynomial such that
-Pz(n) = Ai,n - Ai+1,n

for 1 <i < [N/2] — 0N cven are quasipolynomials, and when N is even, Py o(z) an
even quasipolynomial such that

Pyja(n) = Anjan — DANj241n-

We write
J}) = Zps,i(x)qSixa for 1 <1 S [N/2] - 5N,even7
seC
r) = ZPE,N( coshy (e x) + Zq] ~(z)sinhg (e z), and (5.2)
JEZ JEZ
Pyo(x ZP; ~y2() coshg( x + qu ~/2(x) sinh ( x),
JEL JEZ

where p; n(x) and p; n/2(x) (vespectively, ¢; n(x) and g; n/2(2)) are even (respec-
tively, odd) polynomials and p. ;(x) is a polynomial. Let L[m] (g™, X) be a rep-
/\ ]

resentation of g™ considered as a representation of Sq,’N via gﬁ[s , where g™ is

gﬁgg] or one of its classical subalgebras. Then

(D anidn = =A@ (V2T By — (¢"°Ty) " Ent1-iN+1-1); (5.3)
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with 1 < ¢ < [N/2] + dn even, and

(Lo ann)n = =G (T + T, Eny — (071 T)" + (a7 Ty) ") Era), (5.4)

[m]

where @5 - is the embedding given by Proposition composed accordingly with
the isomorphisms defined in Propositions [.3] to [£.5

We will now proceed to prove several propositions which have similar statements
and proofs. Their difference, however, lies in the classical Lie algebra that g™

represents, according to the homomorphism @Lm] : S;’J]\y — g™ and the different
cases for the values of ¢ and N.

Proposition 5.4. Take the embedding @Lm] : Sg)’][\\,] — gAEE:] with s = ¢% and
a¢7Z/2. The gAZE:]—module L(g/\ﬁ([z], A) regarded as a S:;’]]\\,[—module is isomorphic to

L(S;’]J\\,];e;eﬂe’), where
(a) The exponents e are —1/2+a—1 and 1/2 —a + 1, with | € Z, and their
respective multiplicities are

log )" (u
(zlogq) ap,(w

ul (~1)N4i  and

NE

P1/2—a+l,i($) =

IS
I
<

(—xlogq)™ ap,(®)
u| IN—1

NE

p71/2+a7l,i(37) =

I
=

u

fO’f' 1< S [N/Q] - 6N,even'
(b) The exponents are et = e~ = a — I, with | € Z, with multiplicities

" u m u
Vo= 3 By end dow@ = 30 Ry
u=0,u even u=0,u odd
where
aﬁEZLL)N = 2(log q)“(“hﬁﬁlw + 61,1(cy — Oy 0c0)) and
aﬁgzﬂl)z\r = 2(log q)“(“hﬁ?ll)N +01,1Cu),

and Pf(0) = —2¢y fori= N.
(¢) Moreover, if N is even, we have the exponents et = e~ =1/2 — a+1 with
l € Z and their multiplicities are

T (xlog @), . (u
P1/2—a+i,n/2(T) = Z 7%&21/2)1\1 and

u!

i —(zlog )", (w)

Q1/2—a+z,N/2($) = u! (1-1/2)N>

fori=N/2.
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Proof. If 1 < i < [N/2] — N even, combining the formulas of Proposition with

(2.3) and (5.3)), we have that
nlogq _ a—l) an (u
Bipanidn = D3 (FOE pcvzenngy

lEZ u=0

(—nlogq) —-n a—l1) ay(u -
R (—1/2+a—1) /\El)l)N+z +Z7Iu(@—1v”)0u

u=1
Then,
€ Tllqu a u n(— a—
( m,a,/\,i)n - (Am a,\ H—l n = Z Z hél )1)N+1q (=1/2e=b)
l€Z u=0
(n IOg Q) ay (U a—l1
T hin_ g™,

Making use of the definitions of multiplicities and exponents for the quasipolyno-
mial P;(z) in (5.2)), we complete the proof of (a).
If i = N, as before, considering (5.4) and (2.3), we obtain

(DfaaNn ZZ <77u —1+a—1,n)2sinhy(n/2) “A) ¥ (u)

lEZ u=0

—nu(a —1,n)2sinhy(n/2) “)\(7)1)]\,+1>

+ Z 2sinhg(n/2)n,(a — 1,n)cy,.
u=1
Shifting the index [ to [ — 1 in the first sum, we get

( ma)\N ZZ2Slnh n/2 nu( - )( hgl)l)N'i_éllcr_CO)
1€Z u=0

Since
1 u
2sinhy (n/2)mu(a — 1,m) = B (e 4 (_1yegnio-b)
and making use of the definitions of multiplicities and exponents for the quasipoly-

nomials Pg (z) in (5.2), we finish the proof of (b).
If N is even, following the same steps as in the proof of (a) we have

( ;w,a,)\,N/2) _(A:naAN/Q-i-l)
nlogq ay (u —n(l1/2—a u n(1/2—a
=y OBy g  (Cayegntiamas),
1€Z u=0

Then, splitting the sums according to the parity of u, we get the multiplicities and
exponents expected. O
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Proposition 5.5. Let s = ¢* with a = 1/2 and N even. Take the embedding

—

<p[gm] SU’N — d™. The AT -module L(d&ﬂ,)\) regarded as a S;’]Z\\,]-module is

—

isomorphic to L(S Zjvv,e et;e™), where

(a) If 1 < i < [N/2] — 0N .even, the exponents are e = | with | € Z and their
multiplicities are

" (—zlo q)“ u .

pri( E g dhgl )1/2)N+1 if 1>0 and
- xlogq .

i, 7, = E dhg?) 1/2)N—i ’Lf l < 0

(b) If i = N, the exponents et and e~ are 1/2 — 1 with I > 1 and their
multiplicities are

m u

€ u €z
Pljo—in(T) = Z dh(l)l/Q)N and

u=0,u even

m

€ _ d7 (w)
q1/27l,N(x) = Z h(l 1/2)N 1
u=0,u odd
where
dhé?)uz) = 2(log q)"( hﬁ?)l/z n t01(cu — dupoco)) and

dhE?)l/Q)N = 2(log q)"( hg?)l/z)N +d,1¢4)

and Pf 5 (0) = —2co.
(¢) Moreover, if N is even, for i = N/2 the exponents et and e~ are | > 0
and their multiplicities are, if 1 > 1,

i zlog ) ;. (u
piny2(T) = Z 2ﬂdhl(1\f) and

u!
u=0,u even

m

zlogq)" ;. (u
ql,N/2(1‘) = Z —Q%dhl(z\r)
u=0,u odd '

and if l=0

s zlogq)" ;. (u
Po,n/2(T) = Z 2%% ) and qo,n/2(x) = 0.

u=0,u even

Proof. Consider ﬁrst the case ¢ = 1. By Remark . 4.6} part (a), we have that the

embedding gp 8‘7 soN — d"™ is in fact the embedding given by Proposwlon
composed by 771, Where T is the automorphism of gEL’;”] defined in .
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If 1 <4 < [N/2] — 6N ,even, using (5.3) for the embedding in this case, we get

nlogq gl
(A, /2,2 jin = )‘(Z Z ‘t Eat1/2)N+1-i,0+1/2)N+1-i
1€7 u=0

nlogq ol i
+ ZZ Iy E(11/2)N+i,(l1/2)N+i> + Znu(—l/Q,n)Cu

l€Z u=0 u=1

Making an adequate change of variables in [ and using (2.5)), we get

( fn,l/zm') —( fn1/2,\z‘+1)

nlogq w.n n(—
= E E (-1)"q ldh(l—l/Z)N+i+q ( l+1)dh(l—1/2)N—i)~
1>1 u=0

Making use of the definitions of multiplicities and exponents for the quasipolyno-
mial P;(z) in (5.2)), we finish the proof of (a).
Using (5.4) for the embedding in this case, we get

(Db 1/20,N8)n
nloggq n(1/2— w, —n(1/2—
A(Zz(ul) (=" = (=1) N EG g N ao1/ann
1€Z u=0 :

" (nlogq)® _ n
DD (n1089)" o nt1/240) 4 (_1)yug W2 B yan ar1/2)v)
leZ u=0

+ Z 2sinhg(n/2)n,(—1/2,n)c,

Once again, making an adequate change of variables in [, using (2.5, and taking
into account the fact that

<qn/2 + (—1)“q_"/2)(n10g q)u
u!

21, (—1/2,n) sinhy(n/2) =

)

we have

(B jonn)n = 2 B oy () (@270 4 (=1)1g 70727

" (nlogq)“
> (108" (nr2 4 (“1yeq=n/2) (e, — Guoco).

u!
u=0

In order to complete the proof, we study the parity of u and split the sums
accordingly. As a result of the definitions of multiplicities and exponents for the
quasipolynomials P (x) in (5.2)), we find the exponents and multiplicities expected
for (b).
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For i = N/2, we follow the same steps as in (a), but with an adequate change
of variables in {. This way, we get

(A:n,l/l)\,N/Q)n - (Afn,l/Q,A,N/Z-&-l)n
- (’I’Llqu)u —n(l— u n(l— u
:ZZ (™D 4 (=1) g 1))dh5131m

1>1 u=0
n i (’n, IOg Q)u (1 + (_1)u) d)\(u)
—~ ul L

Lastly, by splitting these sums according to the parity of u, we find the exponents
and multiplicities expected, finishing the proof foggs case.

Consider now € = —1. The embedding <p[m] S;’]J\\[[ — dLZL I'is in this case the
embedding given by Proposition composed by D = T o T’, where T’ is the
automorphism of gﬂgg] defined in (4.7). The results for this embedding are the
same as for e = 1. O

Prop051t10n 5.6. Let s = ¢* with a = 1/2 and N odd and take the embedding
plml Son soN — gl™l, where g™ = =l ife=1 and gl™ = =™ ife=—1. The glml-

S
— —

module L(gl"™), \) regarded as a S;’Ji,v—module is isomorphic to L(S;’J]\y;e;eﬂe’),
where

(a) The exponents e are | € Z and their multiplicities are

-~ (—zlog @)y, (u )
pi(z) = Z 7%%[ )1/2)N+1 12 if 1>0 and

u!

u=0
~ (zlog @)y ()
by (u .
pui(7) :ZT haZion—ic1e F 10,
u=0 '
for 1 < i <[N/2] — 0N cven-
(b) The exponents are et = e~ = 1/2 — 1 with | > 0 and their respective

multiplicities are, for 1 <1,
m U
€ u xr
Pija—in (@) = Z 2(log q)" hﬁl 1/2)N-1/2 71 and
u=0,u even ’

m u

€ u u X
Q1/27Z,N(x) = Z 2(1Og (]) bhélzl/g)]\],l/gmv
u=0,u odd :
and for 1 =0,
m xu
Pijo.n(@) = Z 2(log Q)uﬁ(cu —dy0c0) and

m
€ UI
ql/z,N(l") = Z 2(log q) acu,
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and Py (0) = —2¢ fori= N.

Proof. Con51der first e = 1. By Remark -, 4.6 part (a), we have that the embedding

piml

SU 5o N — bOo is in fact the embeddlng given by PrOpOblthIl COHlpObed

by 71, Where T is the automorphism of gfoo defined in . Usmg 5.3)) for the
embedding for this case, we have

nlogq gl
(Dni/2.0,i)n = /\(Z Z it Eq_1/2)N—it1/2,(-1/2)N—i+1/2
1€Z u=0

nlogq ol
+ZZ ‘t E((l1/2)N+i1/2,(l1/2)N+i1/2>
1€Z u=0

+ Z Nu(—1/2,n)cy
u=1

Making an adequate change of variables in [ and using (2.4)), we have

(Dn,1/2.0,i)n

nlogq (u) w,nl _ dy(uw) -1
_ZZ /\? 1/2)N4i— 1/2( 1)%q /\(l 1/2)N—it1/29 n(=h)
1>1 u=0

+ Z Nu(—1/2,n)c,
u=1

Then,

(Am,l/z,A,i)n - (Am,l/Q,)\,i—i-l)n

~ (nlog )" i (u) (=1 by (w)
:ZZ (=D)"¢" h 1 oy nriz12 T4 (= haZ1j2yN—i—1/2)-

Making use of the definitions of multiplicities and exponents for the quasipolyno-
mial P;(z) in (5.2), we finish the proof of (a).
Using (5.4)) for the embedding in this case, we have

(Am,l/Q,A,N)n

o~ (nlogg)* n(1/2— w —n(1/2—
_)\(ZZ ((—q (/21 —(-1)"q (/2 l))E(l—1/2)N+1/2,(l—1/2)N+1/2

|
1€Z u=0 u
o~ (nlogq)"
+ Z Z Tt"(q_"(l/2+l) + (_1)uqn(1/2+l))E(l+1/2)N1/2,(l+1/2)N1/2))
le€Z u=0

+ Z 2sinhg(n/2)n,(—1/2,n)c,

u=1
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Once again, making an adequate change of variables in [, using (2.4]) and the fact

that
(¢"/% + (—1)"q~"/?)(nlog q)"
n

21, (—1/2,n)sinhy(n/2) =

)

we obtain

nlogq u (1o Y
(Don1/2 N H—ZZ l)l/Q)N 1/2( (1/2=0) 4 (_1)yugn(1/2-0)
1>1 u=0

1
N Z (n ogq (@2 + (=1)"q™/?)(cy — Su.0c0)-

To complete the proof, we study the parity of u and split the sums accordingly. As
a result of the definitions of multiplicities and exponents for the quasipolynomials
Pg(z) in 7 we find the exponents and multiplicities expected.

Consider now ¢ = —1. The embedding <p[m] : S;’IJ\Y — dL’Z} ] is in this case the
embedding given by Proposition composed by D = T oT’, where T" is the
automorphism of gﬁgg] defined in . Proceeding in an analogous way as for the
case € = 1, we get the expected results. O

Proposition 5.7. Let s = ¢q* with a = 1 and let the embedding <p[m] : S;’IJ\\,/ —
g™ where g™ = dLo] if e =1 and g™ = C([x)] if e = —1. The g™ -module
L(gl™, \) regarded as a S;’]]\,V-module is isomorphic to L(S;’IJ\\;; e;et;e™), where

(a) If 1 <i <[N/2] — dN,even, the exponents e are 1/2 —1 with | € Z and their
multiplicities are

o~ (z10g9)" t, (u :
P1/2—1:(x) = 3,0 Tihl(zv) , with1>0 and
~ (—zlog @), ()
) — \THO5Y) gy (u .
P12—1i(z) = E ] h(l DNpis  with 1 <0,

I
=)

u

where 1 represents ¢ or d depending on whether g™ is CLZZ] or d([fg].
(b) Ifi = N, the exponents e™ and e~ are l —1 with | < 1 and their multiplic-

ities are
€ = ~(u J?u e m “ xu
pl—LN(x) = Z ThElzl)Na and ql—i,N(l‘) = Z Th(l)l N
u=0u even u=0,u odd
with
Th = 20008 9)" ("} )y + 011 (cu + TN = bu0co)  and
7 (u) w ity (u)
h(l HN ~ —2(log q) Th(l—l)N’
where t represents ¢ or d depending on whether g[m] is cLZ?] or dLT] and

P;N(O) = —200.
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(¢) Moreover, if N is even, for i = N/2 the exponents e* and ¢~ are l — 1/2
with [ > 1 and their multiplicities are

m

(zlog@)" s, (u
pr-1/2.n/2(x) = OZ 2T*h§l )1/2) and
u=0,u even
= (zlogq)®" s, (u)
QZ71/2,N/2(-I) = Z —QTT}L(? 1/2)N>
u=0,u odd

where t represents ¢ or d depending on whether gl™ s cLZL] or dLZ‘].

Proof. By Remark part (a), we have that the embedding <p[m] S;’IJ\\,[ — d
is in fact the embedding given by Proposition composed by T~1, where T is
the automorphism of gégg] defined in (4.6)).

If 1 <i <[N/2] — 6N even, using r the embedding in this case, we have

(nlo —Dar
(DAmixni)n = /\(ZZ gq "V BN i iN i

l€Z u=0

nlogq = r
N Z Z (=1/2+1)4 E(l_l)N-&-L(l—l)NH)
leZ u=0

+ Z 74(0, 1)y
u=1

Making an adequate change of variable in [ and using (2.5)), we have

(nlo _
Amii)n ZZ gq az)\l(;t,)+1 lqn(1/2 )
LEZ u=0

+(=1)" d/\E;A)l il n(*1/2+l)) + Z 72(0,n)cy

u=1

Then,
(Dmani)n — (D, i+1)

1 u _ u
=33 LB e e )
1>1 u=0

Making use of the definitions of multiplicities and exponents for the quasipoly-
nomial P;(z) in (5.2)), we finish the proof of (a).
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Using (5.4) for the embedding in this case, we obtain

(A, 10N )n
i nlogq)" ,, n(l— w1
_A(ZZ( u ) t((—q = — (—1yg— l))E(l—l)N+1,(l—1)N+1
1E€Z u=0 :
G (nlqu)u w(, —nl u, nl = :
+ZZT75 (" + (-1)"¢" ) Einvan) +Z2smhq(n/2)nu(07n)cu
1€Z u=0 ’ u=1

We make a change of variables in [. Using (2.5)) and the fact that
1+ (-1)*)(nl “
(L+ ()" (nloga)*

21,(0,n) sinh,y(n/2) =

ul
2(nl u
210(0,n) sinhy(n/2) = %)7'gq>7
we have
(Am,l,)\,N)n
" (nlogq)* ,, a0 w ., "
= ZZ%((‘I =0 4 (=) D) gy + (1 + (-1)) )
1>1 u=0 :
Y 1+(=1) ')(nlogq) e — 2.
—= u!

In order to finish the proof, we study the parity of u and split the sums ac-
cordingly. As a result of the definitions of multiplicities and exponents for the
quasipolynomials Pg (x) in (5.2)), we find the exponents and multiplicities expected
for (b).

For i = N/2, following the same steps as in the proof of (a), we have
(Dmiy2,n N/2) = (Dm1/2,0,N/241)n
= 3 5o - P 02y OB
1>1 u=0

nlogq)” ./ n(j2- un(—
+%t (P20 4 (Z1yugn(-1/2+D)

Making a change of variables in | and using (2.5)), we get

E(l—l/2)N,(l—1/2)N>-

(Dp,1/2,0 N/2)n — (D120 N/241)n

_ZZ ”10gq n(1/2—l) +(—1)"q n(— 1/2+l))dh ?)I/Q)N
1>1 u=0

Studying the parity of u and splitting the sums accordingly, we find the exponents
and multiplicities expected for this case, finishing the proof.

Consider now ¢ = —1. The embedding Lﬁ[sm] : 8;’]]\\,] — C([)T } is in this case the

embedding given by Proposition composed by D = T o T’, where T’ is the
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automorphism of g&[gb] defined in (4.3)). Proceeding in an analogous way as for case
€ = 1, we obtain the expected results. O

—

Consider an irreducible quasifinite highest weight SZ’JIVV -module V' with central
charge ¢ and generating series A\;(x) such that

Pi(n) = Din = Dipin for 1 <i <[N/2] = 0N even  and
Py(n)=ANy, forn#0 and Py(0) = —2c,

where P;(z) are quasipolynomials and Pg (z) are even quasipolynomials. Moreover,
if IV is even, there exists an even quasipolynomial Py /o (z) such that

Pyja(n) = Anjan — DNj24in

Using the notation introduced in (5.2)), decompose the set A = {s € C | ps; #
0 for some i} U{s € C|p§ y #0}U{s €C|psn/2 #0}U{s € C| g5y #0}U{s €
C | gs,n/2 # 0} into a disjoint union of equivalence classes under the condition

s=q"~q¢" =5 sa—d €L+ 'L

Pick a representative s in an equivalence class S such that s = ¢ if the equivalence
class lies in Z and s = ¢'/? if the equivalence class lies in Z + 1/2. Let S =
{q*, ¢t ¢ t2 ...} be such an equivalence class. Take to = 0 and let m =
max;es{deg ps.i,deg pg y,deg ¢S n,deg ps n/2,deg gs n/2}. It is easy to see that
if a =1ora=1/2 then t; € Z. Now, we will associate S to a gl™-module
L™ (X\g) in one of the following ways.

e Ifa¢Z/2, for 1 <i<[N/2] — 6N even let

1

ay (w) — d h
h(tj—l)N+i - W (dﬂc) p1/2—a+t1»i(0) and

u —-1\"/d\"
“hijz)v,i = (1ogq) (daz) p71/2+a7t]‘,i(0)7

ay () 1 d\" . :
h(Z—l)N +0¢;,1(cu — du,0c0) = 3oz q)" <da:> pi, n(0) if u even and

and let

ap (u) _ 1 " .
h(tj—1)N +0¢;,1Cu = 2log q)" <d:v> g;, n(0) if u odd,

and if N is even,

ap (w) _ 1 d\" ,
h(gjf1/2)N = (ogq)* <daz> pe;,ny2(0)  if u even and

ayp (u) _ 1 d\" _
h(tj—1/2)N = _m (dm) q,,n/2(0) if u odd,
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foru=0,...,m. We associate S to the gAﬁz]—module rkm (As) with central
charges

(u) (u) (u)
ZZ (“hig_1yns T e n—i) T Z N T 0N even Py _q /o))

and labels

ay(u) _ ai (u) ai(u)
)\l - Z h(t —1)N+i + Z ht N—i
(t;—1)N—+i>1 t;N—i>l

ai(u) aj(u)
D th gy FONeen DL Ry g
(t;—1)N>I (t;—1/2)N>1

with “h;u) = ahE“) — 0¢,0Cy-
o If a=1/2 and N is even, for 1 <i < [N/2] — 0N even let

dp (u) —1\"(d\" :
M —1/2 N+ = (logq> (dz> p;i(0) if £ >0,

1 d\"
d .
h) oy = (ogq)* <d$> pi;i(0) if t; <0,

and let

dy (u) 1 d\" . )
hig;—1/an + d¢;,1(cu — du,0c0) = oz g)" (dx) Pija—t;n(0) if u even and

u
dp, (1) __ 1 d\" . .
Mt —12)n T Oty1Cu = 2(log )" (dm) di2—¢,,n(0) if u odd,

and if N is even

1 d\" .
dhg?z)v — 2osa® <dx) pe,;.n/2(0) if u even and

dye _ L d\" .
hi, N =~ 2oz )" (dac) q,,n/2(0) if w odd,

for u = 0,...,m. We associate S to the d2)-module L™ (As) with central
charges

( ) 4 d dy (u) dy (u)
Cy = Z Z (“his 12Nt h(t _1zN—i) Z( h(?jq/z)N + 0N, even "y )
tj

)

and labels
dy(u) _ di (u) dy (w)
A= Z b, —1/2yn4i + Z e, —12)n—
(t;—1/2)N+i>l (t;—1/2)N—i>l
dy (w) dp (u)
+ Z h(tj—1/2)N+6Nveven Z hi -
(t;—1/2)N>I t;N>1
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e Ifa=1/2, Nisodd for 1 <i<[N/2] — Ineven let
by (u) 1N\ dN\" .
M1y Nvic1j2 = <10gq> (d:p) pr;i(0) ift; >0

Mo, 12N —ic1j2 = (logq)" (d:c) pr;i(0) if t; <0,

log q)*
and let
bp(™) 5 5 N S (0 0) if d
(t;—1/2)N—1/2 T t;,1(Cu — Ou0c0) = 2(log q)" Ir p1/2—tj,N( ) if u even an
by (u) _ 1 d\" . .
h(tj—l/Q)N—1/2 +0¢;,1Cu = m <d$) ql/thj’N(O) if u odd,
for u=0,...,m. We associate S to the gi™-module L™ (Ag) with central
charges
— by (u) by (u) by ()
Cu = Z Z( h(tj—l/Q)N-i-i—l/Z + h’(tj—l/2)N—i—1/2) + Z h(tj—1/2)1v—1/2
7 t; t;
and labels
by (u) _ by (u) by (u)
A= Z hie,—1/2)Nti-12 T Z hit,—1/2)N—i-1/2
(tj—1/2)N+i—1/2>1 (t;—1/2)N—i—1/2>1

by, (u)
+ Z h(t]‘—l/z)N—l/Q’
(t;—1/2)N—1/2>1

with g™ = 5 if e = 1 and gl™ = b7 if e = —1.
o Ifa=1,for 1 <i<[N/2] — 0N even, lot

Thth—i = (log )™ <da?> p1/2_tj,i(0) ift; >0
(u) R WEAS .
Th(tj—l)N-i-i = (logq) (dx) p1/2—t,:(0) if t; <0,
and let
hig,) 5 A o) = — (L) e it
(t;-1)N T ey +TA7 — u,OCO)—m e pi, n(0) if u even and
Th(u) :7# i “ € 0 T ad
(t;—1)N 2(log )" \ da g, n(0) if u odd,
and if NV is even
() _ 1 d\" :
Th(Z71/2)N = 2(logq)“<daj> Pt;—1/2,n/2(0) if u even and
u
() R S _
h(tj—1/2)N ~ " 2(logq)" (dm) Qtj71/2,N/2(0) if u odd,

Rev. Un. Mat. Argentina, Vol. 59, No. 2 (2018)



QHWM OF ORTHOGONAL AND SYMPLECTIC TYPE LIE SUBALGEBRAS 239

foru =0,...,m, where { represents d if e = 1 and cif e = —1. We associate
S to the gl™l-module LLm](As) with central charges

ZZ Th‘i(fuN+z + Thgul)\/' z + Z Th 1)N + 6N evenThEZ)fl/Q)N)

and labels
T)\l(U) = Z t N+z + Z ThtJN %
t;N+i>1 t;N—i>l
+ oy Th(t 1N T 0N, even > h(t —1/2)N>

(t;—1)N>1 (t;—1/2)N>1

where gl = d™ and t=dife=1and g™ = M with f=cife=—1.

Denote {s1,s2,...} with s; = ¢% a set of representatives of equivalence classes

of the set A. By Theorem the S;’]Z\\,/ -module L[Slﬁ]()\) is irreducible for § =
(s1,82,...)such that a; € Z implies that a; = 1 and a; € Z/2 implies that a; = 1/2.
Then, as consequence of the discussion above, Theorem and Propositions
5.7 we have proved the following.

Theorem 5.8. Let V' be an irreducible quasifinite highest weight S;’J]\y—module with
central charge ¢ and let Pi(x), Py (x) and, if N is even, Py/o(x) be the quasipoly-
nomials given by Theorem written in the form . Then, V is isomorphic to
the tensor product of the modules L[sm]()\s) with distinct equivalence classes S.

Remark 5.9. A different choice of representative s = ¢ with a ¢ Z/2 in the

equivalence class S has the effect of shifting gAE([:: ] via the automorphism v for
some ¢. It is not difficult to see that any irreducible quasifinite highest weight

module L(S; N,f) can be obtained as above in an essentially unique way, up to
this shift.
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