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Efficient algorithms for constructing D- and

I-optimal exact designs for linear and non-linear

models in mixture experiments

Raúl Martı́n Martı́n1, Irene Garcı́a-Camacha Gutiérrez1 and Bernard Torsney2

Abstract

The problem of finding optimal exact designs is more challenging than that of approximate optimal

designs. In the present paper, we develop two efficient algorithms to numerically construct exact

designs for mixture experiments. The first is a novel approach to the well-known multiplicative

algorithm based on sets of permutation points, while the second uses genetic algorithms. Using

(i) linear and non-linear models, (ii) D- and I-optimality criteria, and (iii) constraints on the ingre-

dients, both approaches are explored through several practical problems arising in the chemical,

pharmaceutical and oil industry.

MSC: 62-K05.

Keywords: Optimal experimental design, D-optimality, I-optimality, mixture experiments, multi-

plicative algorithm, genetic algorithm, exact designs.

1. Introduction

Applications of mixture problems can be found in several areas including the chemical,

pharmaceutical and oil industries. Their main purpose is to identify the composition of

different blends which optimally describe the characteristic-response of their products.

Standard choice designs and models are typically applied in the literature. However, due

to the benefits of the optimal experimental design (OED) theory, more attention is re-

ceiving the development of this theory for mixture experiments nowadays (Coetzer and

Haines, 2017; Garcı́a-Camacha Gutiérrez, 2017; Goos, Jones and Syafitri, 2016; Wong

et al., 2015; Brown, Donev and Bissett, 2015). Many authors have worked on develop-

ing efficient algorithms for designing exact optimal experimental design. The limited

number of theoretical results focuses on approximate optimal designs to precise parame-

ter estimation (Cornell, 2002; Atkinson, Donev and Tobias, 2007). Kiefer (1961) analyt-
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ically determined D-optimal designs for quadratic models. Galil and Kiefer (1977) ex-

tended these results for φp-optimization, while Mikaeili and Lim’s works focused on

cubic polynomials (Mikaeili, 1989; Lim, 1990). Nevertheless, no remarkable result ex-

ists for general-degree polynomials. Chan (1992) and Chan and Guan (1998) computed

optimal designs for other classes of models such as log-contrast ones, with inverse terms

or additive ones and Chan and Guan (2001) gave an extensive review about this topic.

The book Optimal Mixture Experiments is an updated guide about both analytical and

numerical results (Sinha et al., 2014). On the other hand, less attention has been paid in

the statistical literature to seek I-optimal designs. Goos et al. (2016) provided a recent

literature review on I-optimal designs and Coetzer and Haines (2017) introduced a new

approach to the construction of D- and I- optimal designs when the mixture components

are linearly constrained. Thus there is some space for exploiting the problem to develop

more efficient numerical algorithms than the traditional ones.

The aim of this paper is to propose two novel design constructions algorithms for

identifying exact D- and I-optimal designs in mixture experiments. The first one is based

on a multiplicative algorithm (MA). This is a well known algorithm in OED (Torsney,

1977; Silvey, Titterington and Torsney, 1978). It consists of an update rule of probabil-

ity measures and its convergence has been extensively studied for approximate design

theory (Yu (2010)). However, the application of this methodology is not straightforward

in exact mixture problems. In this work, we provide a new approach of the MA using a

special class of designs known as exchangeable designs (Draper and Pukelsheim, 1999).

The idea of these designs is to generate candidate points in the mixture designs using

permutations of a fixed set of component values. In this paper, this class of designs are

called permutation mixture experimental designs (PMEDs), where the use of MA takes

advantage of exploiting the general equivalence theorem. On the other hand, an effi-

cient genetic algorithm (GA) is provided as an heuristic alternative which is also valid

in constrained mixture problems. Borkowski (2003) was a pioneer applying this numer-

ical optimization tool to OED field and motivated its use for irregularly-shaped design

regions. The nature of mixture experiments requires special conditions on the operators

and even more if there are experimental limitations on the proportions. For that reason,

although the basis of our algorithm is standard, adaptations of the operators have been

carried out. GAs have been tested in a wide variety of contexts, in particular, they have

been used as alternatives to exchange algorithms. Several modifications have already

been developed to accelerate the convergence of these algorithms. Most of them are

focused on the operators. Two new improvements are proposed in this paper. The first

one based on the selection of the initial population and the second one is a new strategy

based on a clusterization process around optimal points. Mixing laws for fluid viscosity,

drug delivery systems, drug formulation and improvement of crude quality are some

real examples suitable for computing optimal designs and for checking the goodness of

the proposed algorithms.

The paper is organized as follows. Section 2 recalls the basis of mixture experimental

design. We describe the existing designs for mixture experiments and an introduction
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of the OED theory is presented. The proposed multiplicative and genetic algorithms

for computing exact D- and I-optimal designs in mixture experiments are described in

Section 3. Examples of applications to real problems are shown in Section 4. Finally,

Section 5 provides a brief discussion and some future lines of research.

2. Background

2.1. Models and designs for mixture experiments

Controlled variables in a standard mixture problem are nonnegative, belonging to [0,1]
and dependent through the relationship 1

T

q p = 1 where 1q = (1, . . . ,1)T ∈ R
q and p =

(p1, . . . , pq)
T is the vector of relative proportions in a q-component mixture. These con-

straints define the design region χ as a (q− 1)-dimensional simplex S = {p ∈ [0,1]q :

1
T

q p = 1}. In addition, many real mixture problems are often constrained by lower and

upper bounds on their proportions, 0 ≤ Li ≤ pi ≤Ui ≤ 1, i = 1, . . . ,q. This is mainly due

to experimental limitations or ingredient availability considerations.

A suitable model must be selected a priori describing the composition-response re-

lationship. Let y = ηηηT(p)θθθ+ ε(p) be the observed response, where ηηηT(p) = (η1(p), . . . ,

ηk(p)) is a vector of k linearly independent functions, θθθ = (θ1, . . . ,θk)
T is the unknown

parameter vector and ε(p) is the error term. Additive uncorrelated random errors with

common variance will be assumed. Because of the ordinary polynomials do not allow

estimation of parameters due to collinearity between proportions, canonical polynomi-

als introduced by Scheffé (1958) are the most commonly used for a large of practical

situations. To illustrate, a third-order Scheffé polynomial (the full cubic model) is

E[y] =

q
∑

i=1

θi pi +

q−1
∑

i=1

q
∑

j=i+1

θi j pi p j +

q−1
∑

i=1

q
∑

j=i+1

δi j pi p j(pi − p j)+

q−2
∑

i=1

q−1
∑

j=i+1

q
∑

k= j+1

θi jk pi p j pk,

where δi j are reparametrizations of the parameters of an ordinary full third-order poly-

nomial. In spite of being the most popular, other models have been proposed in the liter-

ature for data from mixture experiments with particular properties. Darroch and Waller’s

additive polynomials (Darroch and Waller, 1985), models with homogeneous functions

(Becker, 1968), models with inverse terms (Draper and John, 1977), log-contrast models

(Aitchison and Bacon-Shone, 1984) or Draper and Pukelsheim’s K-polynomials (Draper

and Pukelsheim, 1997) are some of them.

Although many aspects differ between experiments from different areas, standard

designs are often used by practitioners in mixture problems. In general, standard mixture

designs are adopted in the literature for fitting standard mixture models. If m ≥ 1 is
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an integer, the {q,m}-simplex lattice in S is defined as the collection of points whose

coordinates are integer multiples of 1/m, that is the set of points {p ∈ S, pi =
j

m
,0 ≤

j ≤ m, 1 ≤ i ≤ q} (Scheffé, 1958). Thus a {q,m}-simplex lattice design describes a

design that takes observations at the above set of points, the {q,m}-lattice. On the other

hand, a {q,m}-simplex centroid (1 ≤ m ≤ q) is defined as a collection of points in S

with q− j coordinates equal to zero and j coordinates equal to 1
j
, j = 1, . . . ,m (Scheffé,

1963). However, if interest is focused on exploring within the simplex, another class of

designs named axial designs were suggested by Cornell (2002). Snee and McLean and

Anderson (Snee, 1979; McLean and Anderson, 1966) proposed extreme-vertex designs

for constrained mixture problems.

In summary, the analysis of mixture experiments has been developed using canonical

polynomials models and other alternative linear models under standard designs. How-

ever, there are situations where models that are nonlinear in the parameters would be

preferable and standard designs are not appropiated. The application of mixture ex-

periments to nonlinear models appears to be a very interesing question which has been

little explored (Coetzer and Focke, 2010; Brown et al., 2015). On the other hand, even

considering linear models, if the design region is constrained, standard designs are not

suitable 6 (Piepel, Cooley and Jones, 2005). In this paper we apply the OED theory to

obtain optimal designs using both linear and nonlinear models and considering uncon-

strained and constrained regions. In the next subsection, we introduce the OED basis,

which is used in what follows.

2.2. Optimal experimental design background

Let a linear model y = ηηηT(p)θθθ+ε(p) as defined above. A set of experimental conditions,

p, must be determined in order to observe the outcome in an optimal manner (mainly to

attain precise estimations of the parameters or to obtain accurate response predictions).

An exact design will be a sequence of experimental conditions (mixture settings) ξN =
{p1, p2, . . . , pN} from a compact set (the (q− 1)-dimensional simplex S) which are not

necessarily distinct. Assuming that only J of the points are different the design may

be represented by a probability measure. Thus, if the point p j appears n j times in the

design,ω j = n j/N will be the probability of p j within the sample. Then the exact design

problem can be viewed as one of determining these proportions optimally subject to

them being rational. Using this idea Kiefer (1961) relaxed this condition, defining an

approximate design as any probability measure ξ on χ with a finite support,

ξ =

{

p1 p2 · · · pJ

ω1 ω2 · · · ωJ

}

,

where the ω j values satisfy 0 ≤ ω j ≤ 1 and
∑J

j=1ω j = 1, j = 1, . . . ,J. From the

Carathéodory theorem, an upper bound for the number of support points can be derived

as
k(k+1)

2
+ 1 (Chapter 8, Pukelsheim, 2006). For moderate and large numbers of runs,
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the number of replicates of design points can be determined by integer appr oximation

to the optimal measure.

The most important element for describing the quality of statistical inference that

can be drawn from data collected with a design is the Fisher information matrix.

For an N-point exact design ξN we can assume J = N and ω j = 1/N; so

M(ξN) =
N
∑

j=1

ηηη(p j)ηηηT(p j)ω j =
1

N
VV

T
∝ VV

T,

where the ith column of the matrix V is ηηη(pi) denoted by vi = v(pi). The set of infor-

mation matrices, M, is convex and compact. The inverse of the information matrix is

proportional to the covariance matrix of the least squares estimates. Thus, an experi-

mental designing “optimizing”, in some sense, the information matrix, should be found.

Following convention, the ranking of alternative designs is based on a scalar-valued cri-

terion function, ψ[M(ξN)], so that, the problem becomes one of function optimization.

A function ψ defined on the set of information matrices defines an optimality crite-

rion if it is non decreasing in the Loewner sense (ψ(M1) ≤ ψ(M2) whenever M1 −M2

is non-negative definite). For notational issues, let us define two functions ψ[·] and

φ(·), both relative the criterion function whose use will depend on its argument, in par-

ticular ψ[M(ξN)] = φ(ξN). In this paper, we consider two optimality criteria: D- and

I-optimality. The goal of D-optimality is connected to parameter estimation. This cri-

terion seeks to minimize the volume of the confidence ellipsoid of the parameters and

is formulated as φD(ξN) = det[M(ξN)]
−1/k. On the other hand, due to the importance of

predictive capability of many mixture experiments, I-optimal designs were considered

in this work too. This criterion focuses on precise prediction, and is defined by the fol-

lowing function: φI(ξN) =
∫
S
η(p)TM−1(ξN )η(p)dp∫

S
dp

= Γ(q) · trace[M−1(ξN)B], where B is the

moment matrix given by B =
∫

S
η(p)ηT(p)d p and

∫

S
d p = 1

Γ(q) when the domain of the

mixture settings is the simplex. Thus, I-optimal designs seek to minimize the average

prediction variance over the design region.

A design optimizing the criterion function in the class ΞN of all exact designs of size

N is referred to as an exact φ-optimal design, ξ∗N . Thus we can compare the quality

of two designs of the same size (N) through the ratio of the criterion values. When

the optimal exact design is known, ξ∗N , the efficiency of a design ξ ∈ ΞN is defined as

Effφ(ξN) = (φ(ξN)/φ(ξ
∗
N)).

However, finding an exact optimal design is not an easy task because it is a discrete

optimization problem and there is no general analytical tool for confirming whether an

exact design is optimal or not. On the contrary, approximate designs are easier to find.

The most important advantage of searching approximate designs is the concavity (con-

vexity) of the criterion functions. Under these conditions, an excellent tool to check

whether a particular approximate design is optimal (especially for differentiable crite-

ria) is the Equivalence Theorem. Even though finding approximate optimal design is
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easier because of the above results, in practical settings, only exact designs can be im-

plemented. So, when an optimal approximate design has been found, then it has to be

rounded to obtain an exact design (Pukelsheim and Rieder, 1992). A weakness of this

approach is that the final exact design obtained by rounding off an approximate design

for implementation is not unique. In addition, a large sample size is needed to obtain a

design close to the optimal exact design.

It is worth mentioning that in many real situations, mixing laws do not linearly re-

spond as composition varies. For the linear case, optimal designs are independent of

the value of θ. In the case where non-linear models are appropriate, the most common

method for analyzing them is based on the use of the linear Taylor series approximation

of the model. Under these conditions, the covariance matrix of the least squares estima-

tor of θθθ is asymptotically approximated by the inverse of the information matrix induced

by the design

M(ξN,θθθ
0) =

1

N

N
∑

j=1

v(p j,θθθ0)vT(p j,θθθ0),

where v(p j,θθθ0)= ( ∂η(p j,θθθ)
∂θ1

, . . . , ∂η(p j ,θθθ)
∂θk

)T

|
θθθ=θθθ0

and θθθ0 is a prior guess of θθθ (Chernoff, 1953).

In this sense, the computed designs are locally optimum.

3. Algorithms for solving mixture exact design problems

As it was defined in the previous section, finding a φ-optimal exact N-point design is a

combinatorial problem, and it has been considered an NP-hard problem (Welch, 1982).

Globally optimal exact designs usually cannot be established and, in most cases, we need

to resort to heuristic algorithms to find good designs. Several algorithms are available

in the literature, most of which can be only used to compute approximate designs. They

can be categorised into two broad groups: greedy algorithms such as those based on

Fedorov-type exchanges, candidate-free coordinate exchange and multiplicative updat-

ing of the weights, and nature inspired algorithms which include simulated annealing,

genetic algorithms and swarm intelligence between others (Dean et al., 2015).

The first algorithms developed for dealing with exact designs are based on exchange

methods and were proposed for the D-optimality criterion (Fedorov, 1972; Wynn, 1970).

Some modifications of these procedures were suggested in order to speed up the origi-

nal algorithms (DETMAX algorithm (Mitchell, 1974); KL-exchange algorithm (Atkin-

son and Donev, 1989); coordinate-exchange algorithm (Meyer and Nachtsheim, 1995).

McLean and Anderson’s method (McLean and Anderson, 1966), XVERT (Snee and

Marquardt, 1974) and CONSIM (Snee, 1979) were specifically developed for obtaining

designs on irregularly shaped experimental regions. The resulting designs are called the

extreme-vertex designs. Most of these algorithms were later directly applied to mixture

settings. Neither of the algorithms are guaranteed to find the globally optimum design
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because the support points are chosen from a pre-specified grid points. This requirement

implies an exhaustive search over all candidate points, which is time-consuming and in-

efficient. During the last few years, algorithms have been improved to avoid this draw-

backs. In particular, for constructing approximate designs, hybrid algorithms have been

developed for improving computational efficiency (Martı́n-Martı́n and Garcı́a-Camacha

Gutiérrez, 2015) for D-optimality, Saleh and Pan (2016) for G-optimality, and Coetzer

and Haines (2017) for D- and I-optimality for mixture experiments with linear con-

straints). They are based on suitably adjusting the strategies followed by the standard

algorithms so that the new proprieties were able to solve the arisen problems using these

methods in an isolated way. Another class of algorithms, inside of the first group of al-

gorithms, which has received much attention for finding optimal approximate designs

is the class of multiplicative algorithms (Torsney, 1977; Silvey et al., 1978). In spite of

the several improvements to this class of algorithms, only Torsney and Martı́n-Martı́n

(2009) adapted the multiplicative algorithm to cope with exact designs. In the present

paper, this numerical method will be adapted to the special nature of mixture design.

The second group of optimization techniques used in OED to compute optimal de-

signs are the meta-heuristic optimization algorithms. Due to their flexibility and po-

tential, they have become a common tool in computational statistics as alternatives

to standard algorithms. One of the most popular ones is the GA. Borkowski (2003)

was a pioneer applying this numerical optimization tool to OED field and motivated its

use for irregularly-shaped design regions. Heredia-Langer et al. (2003) and Limmuun,

Borkowski and Chomtee (2013) gave a substantial discussion about the relative merits

of GAs for design of experiments and some of the potential pitfalls of the implemen-

tation. On the other hand, in a recent paper, Wong et al. (2015) proposed a modified

particle swarm optimization (PSO) technique for computing D-optimal approximate de-

signs for mixture linear models. It is important to highlight that these algorithms take the

mixture proportions to be continuous over the design region. Variable-Neighbourhood

Search (VNS) is also a metaheuristic strategy commonly used to escape from local op-

tima. Several variants of VNS have been proposed in the literature (Vazquez, Goos

and Schoen, 2018). In this work, two new improvements have been incorporated to the

proposed GA. The first one is based on the selection of the initial population and the

second one is a new strategy based on a clustering process around presumed optimal

design points.

3.1. A novel approach of the MA to determining exact optimal design

for mixture experiments

Symmetry and balancedness have always been a prime attribute of good experimental

designs (Draper and Pukelsheim, 1999). Nevertheless, in the case of mixture experi-

ments, symmetry cannot be conducted in the general geometrical sense since the simplex

is not itself a symmetric region. The natural structure of symmetry in the simplex deals

with the invariance under permutation of its coordinates, it means symmetry through
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the centroid of the simplex. Following this idea and since the support points of most

the optimal mixture designs obtained in the literature are permutations of proportions,

we consider the use of permutations of fixed sets of q component values or proportions,

say p = (p1, . . . , pq) where 1
T

q p = 1, to generate candidate points for mixture designs.

In this paper, this class of designs is called Permutation Mixture Experimental Designs

(PMEDs).

Let p = (p1, . . . , pq) be a single mixture point in the (q− 1)-dimensional simplex S

and let

P(p) = {a = (a1, . . . ,aq) = σ(p1, . . . , pq),

q
∑

i=1

pi = 1, pi ≥ 0, i = 1, . . . ,q}

be the set of all possible permutations of its proportions, #P(p) = q! . A PMED of p ∈ S

mixtures is an exact N = q!-design generated by one set of components ξP(p) = {P(p)}.
From this definition, it is worth mentioning that the set of the permutation points of any

point belonging to a linearly-constrained region into the simplex may not be entirely

included in this region. Consequently, this new approach cannot be applied for solving

constrained mixture problems. In this regard, new approaches are being explored for

overcoming this situation.

Let us denote the PMED design ξP(p) ≡
Not

P. The corresponding information matrix

will be written as

M(P) =
1

q!

q!
∑

j=1

v(p j)vT(p j). (1)

We are interested in finding p∗ = (p∗1, . . . , p∗q) optimally to maximize a chosen design

criterion, ψ[M(P∗)] = φ(p∗) = maxp∈Sφ(p). This problem can be considered as special

case of the general class optimization problem discussed by Torsney and Martı́n-Martı́n

(2009). One advantage of this approach is that we can use calculus to determine first-

order conditions of optimality for exact designs.

The first-order conditions for a local maximum (minimum) are:

F∗
i = Fφ(p∗,ei) =

{

= 0, for p∗i > 0

≤ (≥) 0 for p∗i = 0,
i = 1, . . . ,q (2)

where Fi = Fφ(p,ei) is the directional derivative of φ() at p in the direction of the ex-

treme vertex ei ∈ R
q. It is noteworthy that the elements of the information matrix (1) in

the mixture experiment context are not linear functions of p even for simple models such

as higher first-order polynomials. Therefore, the criterion function φ(p) = ψ[M(P)] is

probably a non-concave (non-convex) function, in which case (2) are necessary but not

sufficient conditions for local maxima (minima). For illustrative purposes, directional

derivatives for D-optimality are computed following the above considerations (see sup-

plementary material A). The expression of the directional derivative in the case of non-
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linear arguments is

Fφ(p,ei) = Fψ

[

M(P), M(P)+
∂ M(P)

∂ pi

−
q

∑

l=1

pl

∂ M(P)

∂ pl

]

.

The directional derivatives for the D- and I-optimality criteria derived from these are

FφD
(p,ei) = Tr

[

M−1(P)
∂ M(P)

∂ pi

]

−
q

∑

l=1

plTr

[

M−1(P)
∂ M(P)

∂ pl

]

, (3)

and

FφI
(p,ei) = Tr

[

LM−1(P)
∂ M(P)

∂ pi

M−1(P)LT

]

−
q

∑

l=1

plTr

[

LM−1(P)
∂ M(P)

∂ pl

M−1(P)LT

]

,

(4)

where L is the Cholesky factor of the moment matrix B.

To satisfy the constrains of this problem of maximizing a criterion function of pro-

portions p1, . . . , pq, we will use an iterative multiplicative algorithm. Thus, the n-th

update corresponding to the i-th component of p is

p
(n)
i =

p
(n−1)
i f (x

(n−1)
i ,δ)

q
∑

l=1

p
(n−1)
l f (x

(n−1)
l ,δ)

, i = 1, . . . ,q,

where x
(n−1)
i = Fφ(p(n−1),ei), f (x

(n−1)
i ,δ) is positive, ∂ f (x,δ)/∂x > 0 and, if δ = 0,

f (x,δ) is constant; n = 1,2, . . . is the iteration number and p(0) = (p0
1, . . . , p0

q) a starting

point such that M(P(0)) is not a singular matrix. The choice of f plays an important role

in the convergence of the algorithm. δ is a small positive constant whose choice must

be suitably made for the monotoniciy of the algorithm. Since the criterion function can

have negative derivatives, two appropriate choices of f (x,δ) are f (x,δ) = Φ(δx), where

Φ is the c.d.f. of the standard normal distribution, and f (x,δ) = exp(δx)/(1+exp(δx)),

i.e., the logistic c.d.f. evaluated at δx. An iteration of the algorithm will be completed

when all components have been updated. It is important to note that the application

of the standard version of the MA for computing the optimal approximate design with

q! points, will imply q! · q updates in each iteration, while it will be only q in the case

of considering a permutation design due to only one set of proportions needs to be

computed. The stopping rule will comprise checking if the first-order conditions (4) are

satisfied up to a certain tolerance.

One of the limitations of considering one set of permutations is that, in many mixture

systems, it is not sufficient to estimate all model parameters. This is mainly due to singu-

larity occurring in the information matrix by the repetition of its elements (permutations
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of blends with repeated coordinates) or simply because the number of design-points (q!)

is lower than the number of parameters. In order to solve these problems, we provide

a natural extension of the algorithm presented above. This approach consists of the

simultaneous calculation of more than one set of permutations, say t sets,

p(h) = (ph1, . . . , phq), h = 1, . . . , t,

where
q

∑

i=1

phi = 1 ∀h = 1, . . . , t and phi ≥ 0,∀h = 1, . . . , t, i = 1, . . . ,q.

Thus, a greater variety of designs points can be included in the designs,

P(p(1), . . . p(t)) =

{

a(h) = (ah1, . . . ,ahq) = σ(ph1, . . . , phq) :

q
∑

i=1

phi = 1, phi ≥ 0,h = 1, . . . , t, i = 1, . . . ,q

}

= P(p(1))∪ . . .∪P(p(t)).

A PMED of p(1), . . . , p(t) ∈ S mixtures is an exact N = t ·q! - design,

ξP(p(1),...,p(t))
=

{

P(p(1)), P(p(2)), ..., P(p(t))

}

consisting of all possible points formed by permutation of the coordinates of (p(1), . . . ,
p(t)) ∈ S. Then, according to (1), the information matrix is

M(P(1), . . . ,P(t)) =
t

∑

h=1

M(P(h)) =
1

t ·q!

t
∑

h=1

q!
∑

j=1

v(p
j

(h))v
T(p

j

(h)).

Thus we are facing to the following optimization problem: optimize

φ(p(1), . . . , p(t)) over p(1), . . . , p(t) ∈ S. Then the following (h-sets) simultaneous ap-

proaches are used

p
(n)
hi =

p
(n−1)
hi fh(x

(n−1)
hi ,δh)

∑q

l=1 p
(n−1)
hl fh(x

(n−1)
hl ,δh)

,h = 1, . . . , t, i = 1, . . . ,q

where n is the iteration number, fh(x
(n−1)
hi ,δh) are positive increasing functions and

x
(n−1)
hi = Fφ(p

(n)
(h),ei) ≡

Not
Fhi are the directional derivatives defined as above. There are

necessary optimality conditions equivalent to those in Eq. (2). Therefore, the algorithm

stops when the following conditions
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F∗
hi = Fφ(p∗(h),ei) =

{

= 0, for p∗hi > 0

≤ (≥) 0 for p∗hi = 0,
i = 1, . . . ,q, h = 1, . . . , t (5)

are simultaneously satisfied.

Multiplicative algorithm for φ-optimal mixture design

Step 0. Input q, p
(0)
(1), ξ

(0)
P

= ξ
P(p

(0)
(1)

)
, δδδ1, tol. Set n = 1, t = 1.

Step 1. Update the proportions for each mixture point generator,(p
(0)
(1), . . . , p

(0)
(t) )

For h = 1, . . . , t, do,

• For i = 1, . . . ,q, do p
(n+1)
hi =

p
(n)
hi

fh(x
(n)
hi

,δh)
∑q

l=1
p
(n)
hl

fh(x
(n)
hl

,δh)

with x
(n)
hi = Fφ(p

(n)
(h),ei) calculated as in (3), (4).

Step 2. Construct the design ξ
(n+1)
P

= ξ
P(p

(n+1)
(1)

,...,p
(n+1)
(t)

)
.

Step 3. If |M(P
(n+1)
(1) , . . . ,P

(n+1)
(t) )| ≈ 0, then repeat from step 1 to step 3 adding a new

group of permutation, ξ
(0)
P

= ξ
P(p

(0)
(1)

,...,p
(0)
(t)

,p
(0)
(t+1)

)
, t = t +1. Otherwise, go to step 4.

Step 4. Stopping rule: If

min
h=1,...,t
i=1,...,q

{Fφ(p
(1)
(hi),ei)} ≤ 10−tol

where tol is a number specified by the user, then STOP.

Else update ξ
(n)
P

by ξ
(n+1)
P

, n = n+1, and return to Step 1.

In the next section we explore the potential of this method in a variety of examples

encompassing both linear and non-linear models for D-optimality and I-optimality.

3.2. Genetic algorithm

When the design space is regular and conventional mathematics can be applied the NP-

hard combinatorial optimization problem of finding a φ-optimal exact N-point design

can be solved using traditional optimization techniques. However many difficulties

such as the irregular structure of the design spaces, the non-linear and non-differentiable

objective functions, etc. make that optimization techniques break down in many opti-

mization problems. For this reason, metaheuristic strategies have been developed to

solve these difficulties. The goal is to explore the design space in a smart way to get

near-optimal solutions.
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One of these algorithms is the genetic algorithm (GA). GAs are population based

stochastic search algorithms inspired by Darwin’s Theory of Evolution and the survival-

of the fittest. The weakest individuals will disappear while the best ones will survive and

be able to reproduce themselves for generating the next population. Although there is

no metaheuristic algorithm that will be universally the winner, it should be pointed out

that GAs are robust, flexible and easy to implement. As other metaheuristics strategies,

the two main features of the algorithm are the locally and intensively exploring/search-

ing around the best solutions (intensification) and the generation of diverse solutions to

make sure the algorithm explores the design space globally (diversification).

It is common to find in the literature related to this class of algorithms a specific

terminology based on Genetics. P denotes the population of M initial N-point exact

designs. Potential solutions of the problem (designs) are named chromosomes, whereas

support points (blends) are labelled genes.

GAs start to search from an initial population. The information provided for each ex-

act design is measured in terms of the criterion function value relative to the population.

This value is a probability measure of the design goodness known as the fitness function.

At each iteration a number of operators is applied to the designs of the current popula-

tion to generate the designs of the population of the next generation (iteration). The most

popular genetic operators are (1) selection (certain elitism is used to ensure the mono-

tonicity of the algorithm. Also, designs with higher fitness have higher probabilities of

being selected for successive processes); (2) crossover, also called the recombination

operator (new designs, called offspring, are generated from two designs, called parents

with a crossover probability, PC); (3) mutation (to avoid premature convergence toward

local optimal, with a mutation probability, PM). Applying this process iteratively, new

generations of designs are created until some stopping rule is reached. In this work, the

algorithm stops after performing a prefixed maximum number of consecutive iterations

(Nmax) without improvement of the best fitness function value.

In the first step of a GA an initial population of designs, which are created from a

set of points, is needed. As in Heredia-Langer et al. (2003) we use a population size

of M = 40 exact designs. It is reasonable to believe that if the set contains good points

to create designs, then we will have more possibilities to find the near-optimal design.

Thus, if some information about the optimal solutions is available it will be convenient

to use. On the other hand, if no information about the solution is available, it would be

expected that the more diverse the initial population is, the greater the possibility to find

a solution (Diaz-Gomez and Hougen, 2007). With this in mind, several scenarios were

considered in this work. Basically they are distinguished by the fact that they include

just randomly points or also contain vertices, the overall centroid and the centroid of all

lower dimensional simplices of a (q− 1)-simplex. A detailed explanation of different

frameworks can be found in the supplementary material B. Through numerical examples

we study the effect of the initial populations in the convergence of the algorithm.

The choice of the algorithm operators and parameters is a hard problem that will

determine whether the algorithm will find a near-optimum solution and whether it will
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find such a solution efficiently (Eiben, Hinterding and Michalewicz, 1999). Although

the proposed algorithm is based on the presented one in Limmuun et al. (2013), new

modifications was needed to avoid infeasible solutions. In particular, solutions out of the

feasible region were penalized during the recombination, whereas suitable replacements

were carried out during mutation.

Finally, a new intensification strategy to improve the fitness of designs was applied

when the fitness function was based on D-optimality. Due to exact D-optimal designs

for Scheffé mixture models are {q,m} simplex-lattice designs, {q,m} simplex-centroid

designs, and replications of points of them, that points can be viewed as consisting of

clusters of points. It suggests that if the points of the designs are near of this cluster

points (points in the open balls centred at cluster points with radius tolclu), they will be

reached in some iterations so an appropriate strategy consists of moving nearby points

to them with certain frequency (nclu
it iterations).

The step-by-step implementation of GA is explained as follows:

Genetic algorithm for D- and I-optimal mixture design

Step 0. Input M, Nelite, Pelite, PC, PM, Nmax, tol, nclu
it , tolclu.

Step 1. Initialize counter = 1 and select an scenario to generate

P
(1) = {ξ(1)1 ,ξ

(1)
2 , . . . ,ξ

(1)
M }:

• Unrestricted mixture experiments: RD, RUD or VD.

• Restricted mixture experiments: RRD, EVD or SEVD.

Step 2. For each j = 1, . . . ,M, calculate the fitness

f itD
j =

ΦD(ξ j)
∑M

i=1 ΦD(ξi)
or f itI

j =
1

√

i j ·
∑M

j=k

( 1√
ik

)

,

according to the chosen optimality criterion. The subscripts i1, . . . , iM are refereed

to the position of ξ1, . . . ,ξM increasingly sorted according to their criterion function

values.

Step 3. Selection:

(i) Selection with elitism. Select the Nelite = Pelite ·M designs with the highest

fitness values.

(ii) Probabilistic selection. Select the i∗1-th and i∗2-th parent designs, being

i∗1 = min{i :

i
∑

s=1

f itφs ≥ γ1} and i∗2 = min{i :

i
∑

s=1

f itφs ≥ γ2},

where γ1,γ2 ∼U(0,1). The superscript φ is taken to be φD or φI to denote D-

or I-optimality respectively
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Step 4. Crossover:

(i) Arithmetic blending. For each p
i∗1
j ∈ ξi∗1 , j = 1, . . . ,n, generate γ ∼ U(0,1). If

γ < PC, then

poff j
= λp

i∗1
j +(1−λ)p

i∗2
j and poff j

= (1−λ)p
i∗1
j +λp

i∗2
j

where λ ∼ U(0,1). Otherwise, remain unchanged. ξoff1
and ξoff2

denote the

new created offsprings.

(ii) Single-crossover point. Let p j = (p1, . . . , pq) be the j-th gen of ξoff1
from (i).

Thus, p j can be written as

p j = (0.abc
j
1 | de f

j
1, ...,0.abc j

q | de f j
q),

being abc
j

k and de f
j

k are the the decimal figures corresponding to the head

and tail respectively. Let us consider third decimal position to divide for

illustrating. For each j = 1, . . . ,n, if γ < PC, then keep abc
j

k ∀k = 1, . . . ,q

and replace the tails by a random permutation σ(de f
j
1, . . . ,de f j

q). Otherwise,

remain unchanged. Repeat the same operation with ξoff2
genes. If there are

constrains over the ingredients, remain unchanged cross points out of the

feasible region.

Step 5. Mutation: Let ζ be a randomly selected U(0,1). For each p j, j = 1, . . . ,n, of

ξoff1
from (ii), if ζ < PM, then replace p j by other randomly selected gen in the

feasible region. Otherwise, remain unchanged. Repeat the same operation with

ξoff2
genes.

Step 6. Repeat step 3(ii)-5 until having obtained a new generation P(2) of M new

designs.

Step 7. Let ξ
best

1 and ξ
best

2 be the designs with highest (lowest) D- (I-)criterion function

value in P(1) and P(2) respectively. If

ΦD(ξ
(2)
best

)−ΦD(ξ
(1)
best

)

ΦD(ξ
(2)
best )

≤ 10−tol or
ΦI(ξ

(1)
best

)−ΦI(ξ
(2)
best

)

ΦI(ξ
(2)
best )

≤ 10−tol (6)

is satisfied, where tol is a number specified by the user, then counter++. Other-

wise, counter = 1.

Step 8. If φ= φD and counter ≡ 0 (mod nclu
it ), then clusterize:

(i) Construct a distance matrix D, where di j =‖ pi − p j ‖2, p j ∈ ξ
(k+1)
best , j =

1, . . . ,n, pi ∈ C or V , i = 1, . . . ,#(C) or #(V ), depending on whether it is a

unrestricted or restricted mixture problem, respectively.
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(ii) Define a new design ξclu to store the clusterized version of ξ
(k+1)
best and initialize

ξclu = ξ
(k+1)
best . Let

i∗j = argmin
1≤i≤#(C) or #(V )

di j

be the position of the i∗j-th point belonging to C or V nearest the j-th point of

ξ
(k+1)
best . For each p j ∈ ξclu, j = 1, ...n, if di∗j j < tolclu, then p j = pi.

iii) Replace ξ
(k+1)
worst by ξclu, where ξ

(k+1)
worst is the design with lowest D-criterion func-

tion value in P(k).

(iv) If ΦD(ξclu)> ΦD(ξ
(k+1)
best ), then counter = 1.

Step 9. Stopping rule: If counter = Nmax, then STOP. Else update P(1) by P(2) and

repeat from step 2.

4. Numerical Examples

Several real problems in the chemical, pharmaceutical and oil industry were used to

demonstrate the effectiveness of the proposed algorithms. The selected models were set

for three or four-ingredient blends since they were the most commonly used in the litera-

ture for data from mixture experiments. For illustrative purposes, D- and I-exact optimal

designs were also computed for more ingredients and different numbers of points.

Both algorithms were developed in R 3.6.0 software (R Core Team, 2018). The

tolerance level considered with GA was 10−10 whereas it was 10−5 with MA since it has

a more stringent stopping rule. It was established Nmax = 200 in the stopping rule of the

GA and the cumulative distribution function (CDF) of the standard normal distribution

or logistic distribution were taken as the f (x,δ) function with δ= 1 in the MA.

In all examples, we compared results from MA and GA with one of the most popular

algorithm in the literature to compute exact designs, the KL-exchange algorithm (KLA),

implemented in the R package OptimalDesign. As usual, it is recommended to verify

the quality of the designs obtained by other heuristic methods. The application of this

method is not direct since it is necessary to provide a set of candidate points. The type

of initial mesh strongly affects the finding of the optimal designs. In this work, we

propose several procedures for generating sets of candidate points (see supplementary

material B) in order to improve its yield. On the other hand, we used the coordinate-

exchange algorithm (CEA) of Piepel et al. (2005), which does not require specification

of a candidate set. Other comparisons were made with other algorithms such as the

cocktail algorithm, but they were not include in this paper for space considerations. A

brief discussion of these algorithms will be provided in the last section.

In order to compute I-optimal exact designs with KLA, we found some compu-

tational problems considering the IV -optimality criterion provided in OptimalDesign

package. Then, the corresponding problem of A-optimality was set such as imple-
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menters suggest. The entries of the moment matrix for calculating I-optimal designs,

B, were obtained directly from the moments of a Dirichlet distribution (DeGroot, 1970,

p. 51) when the experimental region was the (q− 1)-dimensional simplex and linear

models were considered (Goos and Syafitri, 2014). In other cases, that is, when the

experimental region was a constrained space or the model was non-linear, the moment

matrix was obtained by numerical calculations generating a large candidate set o points

uniformly on the region. This was very important because a poor approximation could

lead to suboptimal designs (Goos et al., 2016).

4.1. Real applications of the proposed algorithms

4.1.1. Tramadol matrix tablets formulation

Polynomial models have been widely used in pharmacology, particularly in optimizing

drug delivery systems. The following example is motivated by a real problem in which

the aim was to determine the release-modifying effect of carboxymethyl xyloglucan for

oral drug delivery (Madgulkar et al., 2013). A special cubic polynomial (7) was used to

explain the percentage of drug release after a few hours in terms of the drug formulation.

The mixture comprised three ingredients: p1 =carboxymethyl xyloglucan, p2 =gelling

agent (HPMC K100M) and p3 =dicalcium phosphate (DCP).

E[y(p)] = θ1 p1 + θ2 p2 + θ3 p3 + θ12 p1 p2 + θ13 p1 p3 + θ23 p2 p3 + θ123 p1 p2 p3. (7)

Various softwares are often employed by practitioners to obtain designs on which

must be carried out by experimenters. Classical designs such as simplex-lattice or sim-

plex centroid are the most common choice suggested by these programs. In this simple

case, there are analytical results about the D-optimal design. Uranisi (1964) showed

that the {3,3}-simplex centroid was the D-optimal exact design of size 7. Indeed, when

the size of the exact design N is proportional to the number of parameters, m, then the

D-optimal exact design is the continuous one replicating N/m times each point. In other

case, the design points should be as equireplicated as possible regardless which points

are replicated most frequently (Goos et al., 2016). Our algorithms produced the same

optimal designs for many common models. So, the validation of both techniques is

especially interesting for our purposes.

We computed D-optimal designs with N = 7,14 and 18 runs for q = 3, and N = 25

and 50 for q= 5 ingredients. MA was used considering three groups of permutations and

GA algorithm was applied under the different scenarios (see supplementary material B).

In order to compare our results with the KLA, the exact optimal designs were calculated

taking into account that the initial candidate set of points were obtained through the

same scenarios than GA. CEA was also run for the same study cases.



Raúl Martı́n Martı́n, Irene Garcı́a-Camacha Gutiérrez and Bernard Torsney 179

Table 1 (supplementary material C) collects the D-efficiencies of the obtained de-

signs with regard to the optimal designs available in the literature or, otherwise, the

best design achieved from the algorithms used in this work. They will be named as

relative efficiencies. It is noteworthy the robustness of GA under different approaches

we considered to construct the initial population in the case of three ingredients. Al-

though this behaviour did not hold for five-ingredient mixtures, the optimum was always

achieved under VD scenario (supplementary material B). Regarding the performance of

the KLA, it is remarkable to say that this algorithm found difficulties to obtain the op-

timal design when a random grid of initial points was considered. This situation got

worse when a bigger number of ingredients was considered. As it could be expected,

the CEA achieved the optimum in all frameworks since it is not based on a set of candi-

date designs points and it was specially designed to tackle problems with large number

of mixture components. On the other hand, when the optimum was a permutation de-

sign, such was the case of N = 18 runs, the MA quickly achieved the optimum. The

convergence speed of the GA is shown in the Figure 1 (a). Despite the fact that the opti-

mum was obtained in all scenarios, the initial population constructed from VD led to the

solution faster than the others because it started from designs nearer optimum. Owing

to space considerations, these figures are only presented for one case in each example.

(a) (b)

Figure 1: Values of the D- and I-optimality criteria for GA applied to example 4.1.1 with three ingredients

and N = 18 runs under different scenarios (RD, RUD and VD), (a) and (b) respectively.

Regarding I-optimality, exact designs were computed for the second-order Scheffé

model in order to compare our results with the presented ones in Goos et al. (2016).

I-optimal designs with N = 6,7,8,18 and 30 runs for q = 3, N = 15,16 and 17 for

q = 4, and N = 15 and 30 runs for q = 5 ingredients were calculated. From Table 2

(supplementary material C) it is deduced that, differently from D-optimality, there is

no a strong dependence of the initial scenario for achieving the optimum regardless

the number of ingredients considered in the problem. Designs achieved with GA are

highly efficient in all study cases. This behaviour is also observed in the Figure 1 (b)

in which it is shown that the optimum is practically obtained in 500 iterations for all

scenarios. Optimal designs were obtained in all samples using the CEA. Again, when

MA could be used, the optimal design was nimbly achieved. As in Goos et al. (2016) for



180 Efficient algorithms for constructing D- and I-optimal exact designs...

q = 3-ingredient mixtures, the {3,2}-simplex-lattice was found for N = 6 runs, whereas

the {3,3}-simplex-centroid was obtained for N = 7. Nevertheless, some interior points

appear in the optimum in many cases for I-optimality (Goos et al., 2016). These points

cannot be obtained with the KLA unless they are included in the initial set of points. The

higher the number of ingredients is, the lower the probability of being contained in the

initial grid is. In spite of providing a thin grid, poorly efficient designs were obtained.

4.1.2. Mixing laws for fluid viscosity

Another usual application of mixture models is found in chemistry and chemical engi-

neering. When the purpose of the study is to analyse the kinematic viscosity of a fluid

blend, optimal design tools are used to achieve the best parameter estimation in mixing

laws. Most fluid viscosities do not linearly change as formulation varies. Therefore,

researchers have developed complex mixture models for their prediction. The selected

model in this example is a popular mixing law (8) provided by Grunberg and Nissan

(1949). It is a particular case of a wide class of models named power-mean-mixture

models (Focke, Sandrock and Kok, 2007). They used (8) to explain the viscosity as a

function of the three components namely p1 =acetone, p2 =methanol and p3 =water.

We assume θi j = θ ji and the nominal values as in Focke et al. (2007),

E[y(p,θθθ)] = ηηη(p,θθθ) = Exp

( 3
∑

i=1

3
∑

j=1

Ln(θi j)pi p j

)

. (8)

Coetzer and Focke (2010) computed a six-point D-optimal design for this model

using a non-linear constrained optimization technique. Variations in the location of

the design points caused a significant increase in the criterion function value. The de-

sign provided in Coetzer and Focke (2010) is 86.69% efficient relative to the six-point

optimal design obtained with the GA and KLA as we can observe from Table 3 (sup-

plementary material D). One set of permutations provided three different support points

(permutations of (1,0,0)) which was not enough to estimate the model parameters with

MA. Therefore, new groups of permutations were considered in the problem, although

this involved adding q! new design points for each group. We will compute the op-

timal designs with N = 6,12, and 18 runs for ternary blends, and N = 15 and 30 for

five-ingredient samples for both D- and I-optimality criteria.

Similar performances of the algorithms were found to those observed in the previous

example (see Table 3, supplementary material D). The I-optimal designs obtained with

GA and KLA for five ingredients and N = 15 runs are shown in Table 4 (supplemen-

tary material D). This table illustrates the GA searchability when optimal design points

are located in the interior of the design region. This situation is frequently found when

response is not linear in the parameters. Figure 2 shows that the speed of convergence

is less dependent on the initial scenario for I-optimality than it is for D-optimality. The

CEA cannot be directly applied on non-linear mixture models so that it is not imple-
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mented in the most popular commercial softwares. Designs cannot be calculated using

this method since a new adaptation is necessary to tackle the non-linearity of the model

at the same time that mixture coordinates cannot be independently exchanged without

violating the constraint that proportions must sum to one.

(a) (b)

Figure 2: Values of the D- and I-optimality criteria for GA applied to example 4.1.2 with three ingredients

and N = 18 runs under different scenarios (RD, RUD and VD), (a) and (b) respectively.

The following examples are constrained mixture problems. As we mentioned in

section 3.1, the extension of the MA proposed in this work does not allow to tackle

such kind of problems. New approaches are being investigated for overcoming this

situation. Nevertheless, if the initial population of designs is randomly generated over

the constrained region, new solutions will remain in this region by construction of the

operators proposed in the GA.

4.1.3. Size control of amphiphilic cyclodextrin nanoparticles

Natural or modified cyclodextrins are important excipients used in the pharmaceutical

industry to reduce toxicity while improving stability, solubility and bioavailability of

hydrophobic drugs (Choisnard et al., 2005). The nanoparticle capacity associated with a

drug is expected to be partially influenced by nanoparticle size. This study was focused

on controlling the size of amphiphilic β-cyclodextrin (βCDa) nanoparticles using a nano-

precipitaciton procedure which strongly depends on solvent formulation. The influence

of p1 =water, p2 =acetone and p3 =ethanol proportions involved in this technique was

investigated through an experimental design methodology using the full second-degree

polynomial to estimate the nanoparticle size. Due to difficulties found in preliminary

studies, the experimental region was limited to 0.4 ≤ p1 ≤ 0.7 and 0 ≤ p2, p3 ≤ 0.6.

These limitations are necessary to control the high solubility of βCDa in organic solvent

and to avoid the low limit of scattering intensity.

The model chosen in Choisnard et al. (2005) is not an appropriate model for this

kind of settings. It is not a canonical polynomial so that the parameters associated with

its terms are not unique. Consequently, the design used by the experimenters with that

model led to a singular determinant of the information matrix. Thus, a reparametrization
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of the full second-degree polynomial was used in this work

E[y(p)] = θ1 p1 + θ2 p2 + θ3 p3 + θ12 p1 p2 + θ13 p1 p3 + θ23 p2 p3. (9)

It does not only avoid the singularity of the information matrix but also it involves a

reduction in the number of model parameters. Thus, fewer runs are needed to estimate

the parameters.

Table 5 (supplementary material E) collects the D-efficiencies obtained with GA,

KLA and CEA with N = 6 and 12 runs in the case of ternary blends, and N = 15 runs

for five-ingredient mixtures. Both samples in this latter case have different complexity.

In the first case (⋆), fourth and fifth ingredient can be freely allocated into the sim-

plex, whereas all ingredients are constrained in the second case (⋆⋆). D-optimal designs

achieved with GA and CEA were quite robust, while KLA showed difficulty to find the

optimum for RRD and SEVD scenarios for ternary blends and it was unable to achieve

them for five ingredients.

Problems of numerical accuracy were found with KLA in the calculus of the I-op-

timal exact designs despite being recommended in the literature to verify the quality of

the designs obtained by other heuristic methods (Harman, Bachrata and Filová, 2016).

I-optimal designs cannot be calculated by using this algorithm. Table 6 (supplementary

material E) contains the I-efficiencies obtained with GA and CEA in several examples.

The CEA applicable for constrained mixture experiments was designed to D-optimally

select design points without candidate points (Piepel et al., 2005). In view of the results,

this strategy does not seem adequate to achieve I-optimal constrained mixture designs.

On the contrary, GA results seem quite robust. It is noteworthy from Figure 3 that both

D- and I-optimal design are quickly achieved in a few iterations which reveals the good

GA performance in constrained problems.

(a) (b)

Figure 3: Values of the D- and I-optimality criteria for GA applied to example 4.1.3 with three ingredients

and N = 12 runs under different scenarios (RRD, EVD and SEVD), (a) and (b) respectively.
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4.1.4. Aqueous phase composition of a microemulsion

Enhanced oil recovery process is obtained determining the optimal formulation of a mi-

croemulsion system. Water and oil are not miscible substances at ambient temperatures.

The mixture needs to be made under critical conditions due to the existing incompati-

bility between these fluids. However, a small amount of surfactant, co-surfactant, brine

and water may render them compatible to form a structure called microemulsion. This

desirable effect is produced due to the properties of these substances. Jerirani et al.

(2012) modeled this behaviour using the special cubic polynomial (10) for predicting

IFT (interfacial tension) as a measure of energy at the interface of two immiscible flu-

ids. Lower IFT is expected to produce a more effective microemulsion system. Provid-

ing a suitable model is essential to finding the formulation which yields its minimum

value. Four components are involved in this experiment: p1 =isopropyl alcohol (IPA),

p2 =sodium chloride (NaCl), p3 =polysorbate 80 (Tween80) and p4 =water. A rele-

vant issue arises in the construction of valid formulations under which a microemulsion

system is effective. A large amount of water is involved in this process and the rest

of the components are practically negligible in spite of their significant positive effect.

Particularly, the constraints are 0.01 ≤ p1 ≤ 0.04, 0 ≤ p2 ≤ 0.03, 0.002 ≤ p3 ≤ 0.02,

and 0.91 ≤ p4 ≤ 0.98998. This fact implies an extreme difficulty in the search for the

optimum.

E[y(p)] = θ1 p1 + θ2 p2 + θ3 p3 + θ4 p4 + θ12 p1 p2 + θ13 p1 p3 + θ14 p1 p4 + θ23 p2 p3+

+ θ24 p2 p4 + θ34 p3 p4 + θ123 p1 p2 p3 + θ124 p1 p2 p4 + θ134 p1 p3 p4 + θ234 p2 p3 p4

(10)

Table 7 (supplementary material F) shows the GA power to seek a D-optimum over

a severely constrained region, whereas the KLA is even less D-efficient than in the

previous case. Unlike 4.1.3 example, CEA was unable to achieve the D-optimum. Fig-

ure 4 shows that a random or “semi-random” scenario is preferable to any other for

D-optimality. This matter demonstrates that KLA and CEA are inefficient in samples

where the optimum is not allocated on extreme-vertex points.

The same drawback than in the previous example was found considering KLA for

I-optimality, so that we can only compare with the designs provided by the experi-

menters and the CEA for this criterion. A 20-point I-optimal design was selected in

Jerirani et al. (2012) for IFT modelization. In view of the I-efficiencies shown in Table

8 (supplementary material F), we have that the design obtained by the experimenters is

4.51% efficient in comparison with the design obtained with GA. This fact implies the

methodology used by them to carry the optimization out is not adequate. The robustness

of the GA for I-optimality can be observed in Figure 4, whereas the CEA inefficiently

performs again.
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(a) (b)

Figure 4: Values of the D- and I-optimality criteria for GA applied to example 4.1.4 with four ingredients

and N = 20 runs under different scenarios (RRD, EVD and SEVD), (a) and (b) respectively.

5. Discussion

This paper presents two new optimization tools for constructing D- and I-optimal exact

designs, when the variables controlled by the experimenter are proportions, and then

discusses their properties.

The MA is well known in OED and its convergence has been extensively studied

in approximate design theory. However, its application to the solution of exact mixture

problems is not straightforward and a new approach based on a class of permutation

designs is proposed in this paper. Since symmetry and balancedness have always been

a prime attribute of good experimental designs (Draper and Pukelsheim, 1999), and

in view of the results obtained, considering PMED seems to be a suitable strategy to

generate candidate points for mixture design. The new definition of the multiplicative

iteration has a substantial advantage over the other algorithms: first order conditions

can be obtained by exploiting the equivalence theorems, whereas stopping rules in the

other methods are based on the idea of not finding a better exchange or a better solution.

Another advantage the MA offers is that it does not need to anticipate the number of

design points, unlike the other methods. The optimal number of permutation groups

is automatically determined by the algorithm. However, disadvantages include the fact

that it cannot be used when the design space has constraints beyond the natural one

and the fact that the sample size has to be a multiple of q!. While this may not be too

restrictive in a small q, in other cases it can become a difficulty.

GAs are a class of stochastic optimization methods, easy to implement and computa-

tionally powerful. We provided an efficient GA as a heuristic alternative when additional

constraints over the experimental region appeared in real problems. One common fea-

ture of the GAs is that their computational time is relative. This situation has led to

the development of a number of modifications to accelerate their convergence. Most

of them focus mainly on the operators. Nevertheless, another interesting but much less

studied option relates to initial populations. Several scenarios were proposed in this pa-

per and substantial differences were observed in the speed of convergence rather than
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the quality of final solution. A new strategy based on a clustering process around op-

timal points was also incorporated into the algorithm for this purpose. The number of

iterations required to achieve the optimum is much lower than when clustering is not

considered. This approach helps operators to explore and quickly reach potential so-

lutions. Moreover, it prevents suboptimal designs from being obtained, in the sense of

generating near-optimal points. Many algorithms have the disadvantage of achieving

support points close to the vertices, the overall centroid and the centroid of all lower

dimensional simplices of a (q− 1)-dimensional simplex. This intensification strategy

gives further guarantees of reaching the optimum. It is also noteworthy that if the op-

timum does not lie on the extreme vertex points, this new mechanism does not force

their inclusion in the optimal design considering all possible cases. On the other hand,

changes in the operators were made in order to hold the solutions within the feasible

regions.

Genetic algorithms were seen as robust problem solvers that exhibit approximately

the same accuracy over the different scenarios considered for constructing the initial

populations (supplementary material B) in a wide range of problems. This property is

even more evident when I-optimal designs are sought. In this regard, the MA and the

CEA do not depend on an initial set of candidate points. However, the strong depen-

dency of KLA on the initial set of points means it is a good choice when the interest is

in selecting rather than finding solutions. As may be deduced from the examples, a GA

does not offer significant benefits over exchange algorithms when the designs spaces

are regular in the case of D-optimality. Unlike point-exchange algorithms, the CEA

performs successfully when the optimal design points are located in the interior of the

design region (I-optimality) in unrestricted regions. In spite of these advantages, this

algorithm cannot be directly applied to non-linear mixture models. Due to the CEA

efficiency, it could be interesting to explore a new approach to this algorithm in this

kind of situation. On the other hand, when there is no evidence of potential candidate

points as, for instance, in severely constrained design regions, the designs generated by

exchange algorithms are not frequently optimal under any scenario. On the other hand,

the GA and the MA (when possible) converged in all examples and showed excellent

searchability.

Other algorithms were also used in this paper apart from KLA and CEA for com-

parison purposes. In the examples where the cocktail algorithm could be applied, the

efficiencies of the designs obtained were the lowest due to rounding effects. Rounding

methods take neither the model nor the criteria into account. As a consequence, they

are guaranteed to produce efficient results only if the number of trials is high compared

to the dimension of the unknown parameter (Harman and Filová, 2014). Results could

not be obtained for a predetermined number of runs N since the approximation rule will

depend on the weight assigned to each point of the discretized space. These results were

omitted due to their poor performance and for considerations of space.

Particular attention is drawn to the successful performance of the proposed algo-

rithms when non-linear mixture models are considered. We can recommend to practi-
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tioners more efficient designs than those used in their experiments. They provided better

results than general optimization solvers and the algorithms implemented in commercial

software.

Finally, although at this stage the use of the multiplicative method seems to be lim-

ited, this approach offers the advantages previously noted. In regard to limitations, we

are exploring other alternatives as a line of future research. In particular, we are looking

at a partition of the simplex into symmetrical regions to simplify the research as the

number of proportions increases, and we are working on imposing order constraints on

the proportions so the sample size need not be a multiple of q!. In addition, it would

be interesting to use the MA proposed here to construct D- and I-optimal designs for

mixture experiments in which linear constraints are imposed on the components. A new

adaptation of MA for tackling this kind of practical situation is also being explored.

Moreover, we expect that these algorithms can be applied to find optimal designs for a

much broader class of optimality criteria. All these studies will be aimed at solving real

situations in other fields of study where OED with mixtures plays an essential role.
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