Skip to main content
Log in

Optimal preventive maintenance for systems having a continuous output and operating in a random environment

  • Original Paper
  • Published:
TOP Aims and scope Submit manuscript

Abstract

We consider systems that are operating in a random environment modeled by an external shock process. Performance of a system is characterized by a quality (output) function that is decreasing (due to degradation) in the absence of shocks. Shocks have a double impact, i.e., they affect the failure rate of a system directly and at the same time, and each shock contributes to the additional decrease in the quality function. The unconditional and conditional (on survival) expectations for the corresponding stochastic quality process are obtained. The system is replaced either on failure or on the predetermined replacement time, whichever comes first. The corresponding optimization problem is considered and illustrated by detailed numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

\( \{ N(t),t \ge 0\} \) :

The nonhomogeneous Poisson process (NHPP) of shocks

\( \lambda (t) \) :

The rate (intensity function) of \( \{ N(t),t \ge 0\} \)

\( 0 \le T_{1} \le T_{2} \le \cdots \) :

The sequential arrival times of shocks in \( \{ N(t),t \ge 0\} \)

\( T_{{l}} \) :

The lifetime of the system

\( r_{0} (t) \) :

The baseline failure rate of the system

\( \{ W_{i} ,i \ge 1\} \) :

The sequence of the non-negative i.i.d. random variables

\( F_{W} (t) \), \( f_{W} (t) \), \( M_{W} (t) \) :

The common Cdf, pdf and mgf of \( \{ W_{i} ,i \ge 1\} \)

\( Q(t) \) :

Deterministic quality of performance function of a system operating without shocks

\( \tilde{Q}(t) \) :

The quality at time \( t \) under a shock process

\( I(t) \) :

The indicator of the system state (1 if the system is functioning at time t and 0 if it is in the state of failure)

\( Q_{{E}} (t) \) :

The expectation of a quality function of a system at time t

\( Q_{{ES}} (t) \) :

The conditional expectation of a quality function of a system at time t

\( \lambda_{{S}} (t) \) :

The system failure rate function

\( C_{{f}} \) :

The cost of the failure

\( C_{{r}} \) :

The cost of renewal/replacement (\( C_{{f}} > C_{{r}} \))

\( \kappa \) :

The proportionality constant for the reward

\( C(T) \) :

The long-run mean cost rate function

References

  • Aven T, Jensen U (1999) Stochastic models in reliability. Springer, New York

    Book  Google Scholar 

  • Barlow RE, Hunter L (1960) Optimum preventive maintenance policies. Oper Res 8:90–100

    Article  Google Scholar 

  • Beichelt FE, Fischer K (1980) General failure model applied to preventive maintenance policies. IEEE Trans Reliab 29:39–41

    Article  Google Scholar 

  • Block HW, Borges W, Savits TH (1985) Age-dependent minimal repair. J Appl Probab 22:370–386

    Article  Google Scholar 

  • Castro IT (2013) An age-based maintenance strategy for a degradation-threshold shock-model for a system subjected to multiple defects. Asia Pac J Oper Res 30:1350016–1350029

    Article  Google Scholar 

  • Castro IT, Caballe NC, Perez CJ (2015) A condition-based maintenance for a system subject to multiple degradation processes and external shocks. Int J Syst Sci 46:1692–1704

    Article  Google Scholar 

  • Cha JH, Finkelstein M (2012) Information-based thinning of point processes and its application to shock models. J Stat Plann Inference 142:2345–2350

    Article  Google Scholar 

  • Cha JH, Mi J (2007) Study of a stochastic failure model in a random environment. J Appl Probab 44:151–163

    Article  Google Scholar 

  • Dai MDM, Chen KH (2014) Cost evaluation of airline maintenance investigation-triggering methods. Top 22:950–975

    Article  Google Scholar 

  • Dao CD, Zuo MJ (2017) Optimal selective maintenance for multi-state systems in variable loading conditions. Reliab Eng Syst Saf 166:171–180

    Article  Google Scholar 

  • Finkelstein M (2003) The performance quality of repairable systems. Qual Reliab Eng Int 19:67–72

    Article  Google Scholar 

  • Finkelstein M (2008) Failure rate modeling for reliability and risk. Springer, London

    Google Scholar 

  • Finkelstein M, Cha JH (2013) Stochastic modelling for reliability (shocks, burn-in and heterogeneous populations). Springer, London

    Book  Google Scholar 

  • Finkelstein M, Shafiee M, Kotchap AN (2016) Classical optimal replacement strategies revisited. IEEE Trans Reliab 65:540–546

    Article  Google Scholar 

  • Frostig E, Kenzin M (2009) Availability of inspected systems subject to shocks—a matrix algorithmic approach. Eur J Oper Res 193:168–183

    Article  Google Scholar 

  • Gertsbakh I (2005) Reliability Theory with applications to preventive maintenance. Springer, Berlin

    Google Scholar 

  • Hao S, Yang J (2018) Reliability analysis for dependent competing failure processes with changing degradation rate and hard failure threshold levels. Reliab Eng Syst Saf 118:340–351

    Google Scholar 

  • Hong HP, Zhou W, Zhang S, Ye W (2014) Optimal condition-based maintenance decisions for systems with dependent stochastic degradation of components. Reliab Eng Syst Saf 121:276–288

    Article  Google Scholar 

  • Hsieh CC, Chiu KC (2002) Optimal maintenance policy in a multistate deteriorating standby system. Eur J Oper Res 141:689–698

    Article  Google Scholar 

  • Huynh KT, Castro IT, Barros A, Berenguer C (2012) Modeling age-based maintenance strategies with minimal repairs for systems subject to competing failure modes due to degradation and shocks. Eur J Oper Res 218:140–151

    Article  Google Scholar 

  • Le MD, Tan CM (2013) Optimal maintenance strategy of deteriorating system under imperfect maintenance and inspection using mixed inspection scheduling. Reliab Eng Syst Saf 113:21–29

    Article  Google Scholar 

  • Lemoine AJ, Wenocur ML (1985) A note on shot-noise and reliability modeling. Oper Res 34:320–323

    Article  Google Scholar 

  • Levitin G, Xing L, Dai Y (2015) Linear multistate consecutively-connected systems subject to a constrained number of gaps. Reliab Eng Syst Saf 133:246–252

    Article  Google Scholar 

  • Li H, Xu SH (2001) Stochastic bounds and dependence properties of survival times in a multicomponent shock model. J Multivar Anal 76:63–89

    Article  Google Scholar 

  • Lim JH, Qu J, Zuo MJ (2016) Age replacement policy based on imperfect repair with random probability. Reliab Eng Syst Saf 149:24–33

    Article  Google Scholar 

  • Lisniansky A, Levitin G (2003) Multi-state system reliability: assessment, optimization and applications. World Scientific, Singapore

    Book  Google Scholar 

  • Lisniansky A, Frenkel I, Ding Y (2010) Multistate systems reliability analysis and applications for engineers and industrial managers. Springer, London

    Google Scholar 

  • Lu S, Tu YC, Lu H (2007) Predictive condition-based maintenance for continuously deteriorating systems. Qual Reliab Eng Int 23:71–81

    Article  Google Scholar 

  • Marichal JL, Mathonet P, Navarro J, Paroissin C (2017) Joint signature of two or more systems with applications to multistate systems made up of two-state components. Eur J Oper Res 263:559–570

    Article  Google Scholar 

  • Meng FC (2005) Comparing two reliability upper bounds for multistate systems. Reliab Eng Syst Saf 87:31–36

    Article  Google Scholar 

  • Mercier S, Pham HH (2016) A random shock model with mixed effect, including competing soft and sudden failures, and dependence. Methodol Comput Appl Probab 18:377–400

    Article  Google Scholar 

  • Montoro-Cazorla D, Pérez-Ocón R (2011) Two shock and wear systems under repair standing a finite number of shocks. Eur J Oper Res 214:298–307

    Article  Google Scholar 

  • Montoro-Cazorla D, Pérez-Ocón R (2012) A shock and wear system under environmental conditions subject to internal failures, repair, and replacement. Reliab Eng Syst Saf 99:55–61

    Article  Google Scholar 

  • Montoro-Cazorla D, Pérez-Ocón R (2015) A reliability system under cumulative shocks governed by a BMAP. Appl Math Model 39:7620–7629

    Article  Google Scholar 

  • Montoro-Cazorla D, Pérez-Ocón R, Segovia MC (2009) Shock and wear models under policy n using phase-type distributions. Appl Math Model 33:543–554

    Article  Google Scholar 

  • Nakagawa T (2007) Shocks and damage models in reliability theory. Springer, London

    Google Scholar 

  • Natvig B (2010) Multistate systems reliability theory with applications. Wiley, Chichester

    Google Scholar 

  • Ross SM (1996) Stochastic processes. Wiley, New York

    Google Scholar 

  • Ruiz-Castro JE (2016) Markov counting and reward processes for analysing the performance of a complex system subject to random inspections. Reliab Eng Syst Saf 145:155–168

    Article  Google Scholar 

  • van der Weide JAM, Pandey MD (2011) Stochastic analysis of shock process and modeling of condition-based maintenance. Reliab Eng Syst Saf 96:619–626

    Article  Google Scholar 

  • Wang HZ, Pham H (2006) Reliability and optimal maintenance. Springer, London

    Google Scholar 

  • Wang Z, Huang HZ, Li Y, Xiao NC (2011) An approach to reliability assessment under degradation and shock process. IEEE Trans Reliab 60:852–863

    Article  Google Scholar 

  • Yeh WC (2008) A simple minimal path method for estimating the weighted multi-commodity multistate unreliable networks reliability. Reliab Eng Syst Saf 93:125–136

    Article  Google Scholar 

  • Yu M, Tang Y (2017) Optimal replacement policy based on maximum repair time for a random shock and wear model. Top 25:80–94

    Article  Google Scholar 

  • Zhang N, Fouladirad M, Barros A (2017) Maintenance analysis of a two-component load-sharing system. Reliab Eng Syst Saf 167:67–74

    Article  Google Scholar 

  • Zhao X, Al-Khalifa KN, Nakagawa T (2015) Approximate methods for optimal replacement, maintenance, and inspection policies. Reliab Eng Syst Saf 144:68–73

    Article  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the referees for helpful comments and advices. The work of the first author was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2016R1A2B2014211). The work of the second author was supported by the National Research Foundation (SA) (Grant no: 103613).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Hwan Cha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Proposition 1

Observe that

$$ Q_{{E}} (t) = E[\tilde{Q}(t) \cdot I(t)] = E[E[\tilde{Q}(t) \cdot I(t)|N(t),T_{1} ,T_{2} , \ldots ,T_{N(t)} ;W_{1} ,W_{2} , \ldots ,W_{N(t)} ]], $$

where, given the shock process, \( \tilde{Q}(t) \) becomes just constant and

$$ \begin{aligned} & E[\tilde{Q}(t) \cdot I(t)|N(t),T_{1} ,T_{2} , \ldots ,T_{{N(t)}} ;W_{1} ,W_{2},\ldots,W_{N(t)}] \\ & = Q(t)\left[ {\prod\limits_{{i = 1}}^{{N(t)}} {\exp \{ - \psi (T_{i} )\} } } \right] \cdot \exp \left\{ { - \int\limits_{0}^{t} {r_{0} (x){\text{d}}x} } \right\} \cdot {\text{ }}\exp \left\{ { - \int\limits_{0}^{t} {\sum\limits_{1}^{{N(u)}} {W_{i} h(u - T_{i} )} {\text{d}}u} } \right\} \\ & = Q(t)\left[ {\prod\limits_{{i = 1}}^{{N(t)}} {\exp \{ - \psi (T_{i} )\} } } \right] \cdot \exp \left\{ { - \int\limits_{0}^{t} {r_{0} (x){\text{d}}x} } \right\} \cdot \exp \left\{ { - \sum\limits_{{i = 1}}^{{N(t)}} {W_{i} H(t - T_{i} )} } \right\}. \\ \end{aligned} $$

The joint distribution of \( (T_{1} ,T_{2} , \ldots ,T_{N(t)},N(t); W_{1},W_{2} , \ldots ,W_{N(t)})\) is

$$ \begin{aligned} & f_{(T_{1} ,T_{2} , \ldots ,T_{N(t)} ,N(t);W_{1} ,W_{2} , \ldots ,W_{N(t)} )}\;(t_{1} ,t_{2} , \ldots ,t_{n} ,n;w_{1} ,w_{2} , \ldots ,w_{n} ) \\ & = \lambda (t_{1} )\exp \left\{ { - \int\limits_{0}^{{t_{1} }} {\lambda (u){\text{d}}u} } \right\}\lambda (t_{2} )\exp \left\{ { - \int\limits_{{t_{1} }}^{{t_{2} }} {\lambda (u){\text{d}}u} } \right\} \ldots \\ & \quad \times \lambda (t_{n} )\exp \left\{ { - \int\limits_{{t_{n - 1} }}^{{t_{n} }} {\lambda (u){\text{d}}u} } \right\}\exp \left\{ { - \int\limits_{{t_{n} }}^{t} {\lambda (u){\text{d}}u} } \right\} \cdot \left( {\prod\limits_{i = 1}^{n} {f_{W} (w_{i} )} } \right) \\ & = \left( {\prod\limits_{i = 1}^{n} {\lambda (t_{i} )f_{W} (w_{i} )} } \right)\exp \left\{ { - \int\limits_{0}^{t} {\lambda (u){\text{d}}u} } \right\},\\ &\quad 0 < t_{1} < t_{2} < \ldots < t_{n} \le t,n = 1,2, \ldots ,\;0 \le w_{i} < \infty ,\;i = 1,2, \ldots . \\ \end{aligned} $$

Thus, \( Q_{{E}} (t) \) can be obtained as

$$ \begin{aligned} Q_{{E}} (t) & = \sum\limits_{n = 0}^{\infty } {} \int\limits_{0}^{t} \ldots \int\limits_{0}^{{t_{3} }} {\int\limits_{0}^{{t_{2} }} {\int\limits_{0}^{\infty } \ldots \int\limits_{0}^{\infty } {\int\limits_{0}^{\infty } {} } E[\tilde{Q}(t) \cdot I(t)|N(t),T_{1} ,T_{2} , \ldots ,T_{N(t)} ;W_{1} ,W_{2} , \ldots ,W_{N(t)} ]} } \\ & \quad \times f_{{T_{1} ,T_{2} , \ldots ,T_{N(t)} ,N(t);W_{1} ,W_{2} , \ldots ,W_{N(t)} }} (t_{1} ,t_{2} , \ldots ,t_{n} ,n;w_{1} ,w_{2} , \ldots ,w_{n} ){\text{d}}w_{1} {\text{d}}w_{2} \ldots {\text{d}}w_{n} {\text{d}}t_{1} {\text{d}}t_{2} \ldots {\text{d}}t_{n} \\ & = Q(t)\exp \left\{ { - \int\limits_{0}^{t} {r_{0} (x){\text{d}}x} } \right\}\exp \left\{ { - \int\limits_{0}^{t} {\lambda (x){\text{d}}x} } \right\} \\ & \quad \times \sum\limits_{n = 0}^{\infty } {} \int\limits_{0}^{t} \ldots \int\limits_{0}^{{t_{3} }} {\int\limits_{0}^{{t_{2} }} {} } \int\limits_{0}^{\infty } \ldots \int\limits_{0}^{\infty } {\int\limits_{0}^{\infty } {} } \prod\limits_{i = 1}^{n} {\lambda (t_{i} )} f_{W} (w_{i} )\exp \left\{ { - w_{i} H(t - t_{i} ) - \psi (t_{i} ))} \right\}{\text{d}}w_{1} {\text{d}}w_{2} \ldots {\text{d}}w_{n} {\text{d}}t_{1} {\text{d}}t_{2} \ldots {\text{d}}t_{n} \\ & = Q(t)\exp \left\{ { - \int\limits_{0}^{t} {r_{0} (x){\text{d}}x} } \right\}\exp \left\{ { - \int\limits_{0}^{t} {\lambda (x){\text{d}}x} } \right\} \\ & \quad \times \sum\limits_{n = 0}^{\infty } {} \int\limits_{0}^{t} \ldots \int\limits_{0}^{{t_{3} }} {\int\limits_{0}^{{t_{2} }} {} } \prod\limits_{i = 1}^{n} {\lambda (t_{i} )M_{W} ( - H(t - t_{i} ))} \exp \left\{ { - \psi (t_{i} )} \right\}{\text{d}}t_{1} {\text{d}}t_{2} \ldots {\text{d}}t_{n} \\ & = Q(t)\exp \left\{ { - \int\limits_{0}^{t} {r_{0} (x){\text{d}}x} } \right\}\exp \left\{ { - \int\limits_{0}^{t} {\lambda (x){\text{d}}x} } \right\}\sum\limits_{n = 0}^{\infty } {\frac{{\left( {\int\nolimits_{0}^{t} {M_{W} ( - H(t - x))\exp \{ - \psi (x)\} \lambda (x){\text{d}}x} } \right)^{n} }}{n!}} \\ & = Q(t)\exp \left\{ { - \int\limits_{0}^{t} {r_{0} (x){\text{d}}x} } \right\}\exp \left\{ { - \int\limits_{0}^{t} {\lambda (x){\text{d}}x} } \right\}\exp \left\{ {\int\limits_{0}^{t} {M_{W} ( - H(t - x))\exp \{ - \psi (x)\} \lambda (x){\text{d}}x} } \right\}, \\ \end{aligned} $$

where, in obtaining the third equality, the following property is used: for any integrable function \( \delta (x) \),

$$ \int\limits_{0}^{t} \ldots \int\limits_{0}^{{t_{3} }} {\int\limits_{0}^{{t_{2} }} {} } \prod\limits_{i = 1}^{n} {\delta (t_{i} )} {\text{d}}t_{1} {\text{d}}t_{2} \ldots {\text{d}}t_{n} = \frac{{\left( {\int_{0}^{t} {\delta (x){\text{d}}x} } \right)^{n} }}{n!}. $$

Proof of Proposition 2

Observe that \( \tilde{Q}(t) \) is a function of \( (T_{1} ,T_{2} , \ldots ,T_{N(t)} ,N(t)) \); therefore, to obtain \( Q_{{ES}} (t) \), we need the joint conditional distribution of \( (T_{1} ,T_{2} , \ldots ,T_{N(t)} ,N(t)|T_{l} > t) \). The conditional survival function given the shocks and random increment history is

$$ P(T_{l} > t|T_{1} ,T_{2} , \ldots ,T_{N(t)} ,N(t);W_{1} ,W_{2} , \ldots ,W_{N(t)} ) = \exp \left\{ { - \int\limits_{0}^{t} {r_{0} (x){\text{d}}x} } \right\}\exp \left\{ { - \sum\limits_{i = 1}^{N(t)} {W_{i} H(t - T_{i} )} } \right\}. $$

Thus, the joint distribution of \( (T_{1} ,T_{2} , \ldots ,T_{N(t)} ,N(t);W_{1} ,W_{2} , \ldots ,W_{N(t)} ,T_{l} > t) \) is given by

$$ \begin{aligned} & \exp \left\{ { - \int\limits_{0}^{t} {r_{0} (x){\text{d}}x} } \right\}\exp \left\{ { - \sum\limits_{i = 1}^{n} {w_{i} H(t - t_{i} )} } \right\} \cdot \left( {\prod\limits_{i = 1}^{n} {\lambda (t_{i} )} f_{W} (w_{i} )} \right)\exp \left\{ { - \int\limits_{0}^{t} {\lambda (x){\text{d}}x} } \right\}, \\ & \quad \quad \quad 0 < t_{1} < t_{2} < \cdots < t_{n} \le t,n = 1,2, \ldots ,\quad 0 \le w_{i} < \infty ,\quad i = 1,2, \ldots . \\ \end{aligned} $$

The survival probability \( P(T_{l} > t) \) is obtained as

$$ \begin{aligned} P(T_{\text{l}} > t) & = \exp \left\{ { - \int\limits_{0}^{t} {r_{0} (x){\text{d}}x} } \right\}\exp \left\{ { - \int\limits_{0}^{t} {\lambda (x){\text{d}}x} } \right\} \\ & \quad \times \sum\limits_{n = 0}^{\infty } {\int\limits_{0}^{t} \ldots } \int\limits_{0}^{{t_{3} }} {\int\limits_{0}^{{t_{2} }} {\int\limits_{0}^{\infty } \ldots } } \int\limits_{0}^{\infty } {\int\limits_{0}^{\infty } {\prod\limits_{i = 1}^{n} {\lambda (t_{i} )} f_{W} (w_{i} ) \times \exp \left\{ { - w_{i} H(t - t_{i} )} \right\}{\text{d}}w_{1} {\text{d}}w_{2} \ldots {\text{d}}w_{n} {\text{d}}t_{1} {\text{d}}t_{2} \ldots {\text{d}}t_{n} } } \\ & = \exp \left\{ { - \int\limits_{0}^{t} {r_{0} (x){\text{d}}x} } \right\}\exp \left\{ { - \int\limits_{0}^{t} {\lambda (x){\text{d}}x} } \right\}\exp \left\{ {\int\limits_{0}^{t} {M_{W} ( - H(t - x))\lambda (x){\text{d}}x} } \right\}. \\ \end{aligned} $$

Then, the joint conditional distribution of \( (T_{1} ,T_{2} , \ldots ,T_{N(t)} ,N(t);W_{1} ,W_{2} , \ldots ,W_{N(t)} |T_{l} > t) \) is given by

$$ \begin{aligned} & \frac{1}{{P(T_{l} > t)}}\exp \left\{ { - \int\limits_{0}^{t} {r_{0} (x){\text{d}}x} } \right\}\exp \left\{ { - \int\limits_{0}^{t} {\lambda (x){\text{d}}x} } \right\}\exp \left\{ { - \sum\limits_{i = 1}^{n} {w_{i} H(t - t_{i} )} } \right\} \cdot \left( {\prod\limits_{i = 1}^{n} {\lambda (t_{i} )} f_{W} (w_{i} )} \right), \\ & 0 < t_{1} < t_{2} < \cdots < t_{n} \le t,n = 1,2, \ldots ,\quad 0 \le w_{i} < \infty ,\quad i = 1,2, \ldots \\ \end{aligned} $$

and, thus, the joint conditional distribution of \( (T_{1} ,T_{2} , \ldots ,T_{N(t)} ,N(t)|T_{{l}} > t) \) is

$$ \begin{aligned} & \frac{1}{{P(T_{l} > t)}}\exp \left\{ { - \int\limits_{0}^{t} {r_{0} (x){\text{d}}x} } \right\}\exp \left\{ { - \int\limits_{0}^{t} {\lambda (x){\text{d}}x} } \right\} \cdot \left( {\prod\limits_{i = 1}^{n} {M_{W} ( - H(t - t_{i} ))\lambda (t_{i} )} } \right) \\ & 0 < t_{1} < t_{2} < \cdots < t_{n} \le t,n = 1,2, \ldots \\ \end{aligned} $$

Finally, using the joint conditional distribution of \( (T_{1} ,T_{2} , \ldots ,T_{N(t)} ,N(t)|T_{l} > t) \),

$$ \begin{aligned} Q_{{ES}} (t) & = E[\tilde{Q}(t)|T_{{l}} > t] = E\left[ {Q(t)\prod\limits_{i = 1}^{N(t)} {\exp \{ - \psi (T_{i} )\} |T_{{l}} > t} } \right] \\ & = \frac{1}{{P(T_{{l}} > t)}}\exp \left\{ { - \int\limits_{0}^{t} {r_{0} (u){\text{d}}u} } \right\}\exp \left\{ { - \int\limits_{0}^{t} {\lambda (u){\text{d}}u} } \right\} \\ & \quad \times \sum\limits_{n = 0}^{\infty } {\int\limits_{0}^{t} \ldots } \int\limits_{0}^{{t_{3} }} {\int\limits_{0}^{{t_{2} }} {\left( {\prod\limits_{i = 1}^{n} {M_{W} ( - H(t - t_{i} ))\lambda (t_{i} )} } \right)} } Q(t)\prod\limits_{i = 1}^{n} {\exp \{ - \psi (t_{i} )\} {\text{d}}t_{1} {\text{d}}t_{2} \ldots {\text{d}}t_{n} } \\ & = Q(t)\exp \left\{ {\int\limits_{0}^{t} {M_{W} ( - H(t - x))\exp \{ - \psi (x)\} \lambda (x){\text{d}}x} - \int\limits_{0}^{t} {M_{W} ( - H(t - x))\lambda (x){\text{d}}x} } \right\}, \\ \end{aligned} $$

where, as in the previous proof, the property

$$ \int\limits_{0}^{t} \ldots \int\limits_{0}^{{t_{3} }} {\int\limits_{0}^{{t_{2} }} {\prod\limits_{i = 1}^{n} {\delta (t_{i} )} {\text{d}}t_{1} {\text{d}}t_{2} \ldots {\text{d}}t_{n} } } = \frac{{\left( {\int_{0}^{t} {\delta (x){\text{d}}x} } \right)^{n} }}{n!} $$

was used.□

Proof of Proposition 4

In a renewal cycle, the expected cost due to preventive replacement and the replacement upon failure are given by \( C_{{r}} \bar{F}(T) + C_{{f}} F(T) \). Thus, now we derive the average gain in a cycle. For this, we have to derive the conditional average quality at time \( s \) given \( T_{l} > T \)(where \( s < T \)) or \( T_{{l}} = t \), \( t \le T \) (where \( s < t \)).

(Case I) \( T_{l} > T \).

Define \( Q_{\text{ES}} (s|T + ) \equiv E[\tilde{Q}(s)|T_{{l}} > T] \), \( s < T \). Observe that \( \tilde{Q}(s) \) is a function of \( (T_{1} ,T_{2} , \ldots ,T_{N(s)} ,N(s)) \), and to obtain \( Q_{\text{ES}} (s|T + ) \), we need the joint conditional distribution of \( (T_{1} ,T_{2} , \ldots ,T_{N(s)} ,N(s)|T_{{l}} > t) \). For convenience, define

$$ \begin{aligned} &H_{s,t} \equiv (T_{1} = t_{1} ,T_{2} = t_{2} , \ldots ,T_{N(s)} = t_{n(s)} ,T_{N(s) + 1} = t_{n(s) + 1} ,\\ &\qquad\quad T_{N(s) + 2} = t_{n(s) + 2} , \ldots ,T_{N(t)} = t_{n(t)} ,N(s) = n(s),N(t) = n(t)). \\ \end{aligned} $$

Observe that the conditional probability of \( (T_{{l}} > t|H_{{{\text{s}},t}} ) \) is given by

$$ \exp \left\{ { - \int\limits_{0}^{t} {r_{0} (x){\text{d}}x} } \right\}\prod\limits_{i = 1}^{n(s)} {\exp \{ - \eta (t - t_{i} )\} \cdot } \prod\limits_{i = n(s) + 1}^{n(t)} {\exp \{ - \eta (t - t_{i} )\} } . $$

and thus the conditional distribution of \( (H_{s,t} |T_{l} > t) \) is

$$ \begin{aligned} & \frac{1}{{P(T_{{l}} > t)}}\exp \left\{ { - \int\limits_{0}^{t} {r_{0} (x){\text{d}}x} } \right\}\prod\limits_{i = 1}^{n(s)} {\exp \{ - \eta (t - t_{i} )\} \cdot } \prod\limits_{i = n(s) + 1}^{n(t)} {\exp \{ - \eta (t - t_{i} )\} } \\ & \quad \times \left( {\prod\limits_{i = 1}^{n(s)} {\lambda (t_{i} )} } \right)\exp \left\{ { - \int\limits_{0}^{s} {\lambda (x){\text{d}}x} } \right\}\left( {\prod\limits_{i = n(s) + 1}^{n(t)} {\lambda (t_{i} )} } \right)\exp \left\{ { - \int\limits_{s}^{t} {\lambda (x){\text{d}}x} } \right\} \\ & = \frac{{\prod\nolimits_{i = 1}^{n(s)} {} \lambda (t_{i} )\exp \{ - \eta (t - t_{i} )\} \cdot \prod\nolimits_{i = n(s) + 1}^{n(t)} {\lambda (t_{i} )\exp \{ - \eta (t - t_{i} )\} } }}{{\exp \left\{ {\int_{0}^{t} {\exp \{ - \eta (t - x)\} \lambda (x){\text{d}}x} } \right\}}}. \\ \end{aligned} $$

Thus, the conditional joint distribution of \( (T_{1} = t_{1} ,T_{2} = t_{2} , \ldots ,T_{n(s)} = t_{n(s)} ,N(s) = n(s)|T_{{l}} > t) \) is

$$ \begin{aligned} & \frac{{\prod\nolimits_{i = 1}^{n(s)} {\lambda (t_{i} )\exp \{ - \eta (t - t_{i} )\} } }}{{\exp \left\{ {\int_{0}^{t} {\exp \{ - \eta (t - x)\} \lambda (x){\text{d}}x} } \right\}}}\sum\limits_{n(t) = n(s)}^{\infty } {\int\limits_{s}^{t} \ldots } \int\limits_{s}^{{t_{n(s) + 3} }} {\int\limits_{s}^{{t_{n(s) + 2} }} {\prod\limits_{i = n(s) + 1}^{n(t)} {} \lambda (t_{i} )\exp \{ - \eta (t - t_{i} )\} {\text{d}}t_{n(s) + 1} {\text{d}}t_{n(s) + 2} \ldots {\text{d}}t_{n(t)} } } \\ & = \frac{{\prod\nolimits_{i = 1}^{n(s)} {\lambda (t_{i} )\exp \{ - \eta (t - t_{i} )\} } }}{{\exp \left\{ {\int_{0}^{t} {\exp \{ - \eta (t - x)\} \lambda (x){\text{d}}x} } \right\}}}\sum\nolimits_{n(t) = n(s)}^{\infty } {\frac{{\left( {\int_{s}^{t} {\exp \{ - \eta (t - x)\} \lambda (x){\text{d}}x} } \right)^{n(t) - n(s)} }}{(n(t) - n(s))!}} \\ & = \frac{{\prod\nolimits_{i = 1}^{n(s)} {\lambda (t_{i} )\exp \{ - \eta (t - t_{i} )\} } }}{{\exp \left\{ {\int_{0}^{t} {\exp \{ - \eta (t - x)\} \lambda (x){\text{d}}x} } \right\}}}\exp \left\{ {\int_{s}^{t} {\exp \{ - \eta (t - x)\} \lambda (x){\text{d}}x} } \right\} \\ & = \frac{{\prod\nolimits_{i = 1}^{n(s)} {\lambda (t_{i} )\exp \{ - \eta (t - t_{i} )\} } }}{{\exp \left\{ {\int_{0}^{s} {\exp \{ - \eta (t - x)\} \lambda (x){\text{d}}x} } \right\}}}. \\ \end{aligned} $$

Thus,

$$ \begin{aligned} Q_{\text{ES}} (s|T + ) & = E[\tilde{Q}(s)|T_{l} > T] = E\left[ {Q(s)\prod\limits_{i = 1}^{N(s)} {} \exp \{ - \psi (T_{i} )\} |T_{l} > T} \right] \\ & = Q(s)\sum\limits_{n(s) = 0}^{\infty } {\int\limits_{0}^{s} \ldots } \int\limits_{0}^{{t_{3} }} {\int\limits_{0}^{{t_{2} }} {\frac{{\prod\nolimits_{i = 1}^{n(s)} {\lambda (t_{i} )\exp \{ - \eta (T - t_{i} ) - \psi (t_{i} )\} } }}{{\exp \left\{ {\int_{0}^{s} {\exp \{ - \eta (T - x)\} \lambda (x){\text{d}}x} } \right\}}}{\text{d}}t_{1} {\text{d}}t_{2} \ldots {\text{d}}t_{n(s)} } } \\ & = Q(s)\exp \left\{ {\int\limits_{0}^{s} {\exp \{ - \eta (T - x) - \psi (x)\} \lambda (x){\text{d}}x} - \int\limits_{0}^{s} {\exp \{ - \eta (T - x)\} \lambda (x){\text{d}}x} } \right\}. \\ \end{aligned} $$

Given \( T_{l} > T \), the conditional total average gain during the cycle is

$$ \kappa \int\limits_{0}^{T} {Q_{\text{ES}} (s|T + ){\text{d}}s} . $$

(Case II) \( T_{l} \le T \).

For \( t \le T \), define \( Q_{\text{ES}} (s|t) \equiv E[\tilde{Q}(s)|T_{{l}} = t] \), \( s < t \). In this case, to obtain \( Q_{\text{ES}} (s|t) \), we need the joint conditional distribution of \( (T_{1} ,T_{2} , \ldots ,T_{N(s)} ,N(s)|T_{{l}} = t) \).

Observe that

$$ P(t < T_{{l}} \le t + \Delta t|H_{{{\text{s}}:t}} ) = P(t < T_{{l}} \le t + \Delta t|T_{{l}} > t,H_{{{\text{s}}:t}} )P(T_{{l}} > t|H_{{{\text{s}}:t}} ), $$

where

$$ P(T_{{l}} > t|H_{{{\text{s}}:t}} ) = \exp \left\{ { - \int\limits_{0}^{t} {r_{0} (x){\text{d}}x} } \right\}\prod\limits_{i = 1}^{n(s)} {\exp \{ - \eta (t - t_{i} )\} } \cdot \prod\limits_{i = n(s) + 1}^{n(t)} {\exp \{ - \eta (t - t_{i} )\} } . $$

When \( \Delta t \approx 0 \),

$$ P(t < T_{{l}} \le t + \Delta t|T_{{l}} > t,H_{s:t} ) = \left( {r_{0} (t) + n(s)\eta + (n(t) - n(s))\eta } \right)\Delta t. $$

Thus,

$$ \begin{aligned} P(t < T_{{l}} \le t + \Delta t|H_{{{\text{s}}:t}} ) & = P(t < T_{{l}} \le t + \Delta t|T_{{l}} > t,H_{{{\text{s}}:t}} )P(T_{{l}} > t|H_{{{\text{s}}:t}} ) \\ & = \left( {r_{0} (t) + n(s)\eta + (n(t) - n(s))\eta } \right) \\ & \quad \times \exp \left\{ { - \int\limits_{0}^{t} {r_{0} (x){\text{d}}x} } \right\}\prod\limits_{i = 1}^{n(s)} {\exp \{ - \eta (t - t_{i} )\} } \cdot \prod\limits_{i = n(s) + 1}^{n(t)} {\exp \{ - \eta (t - t_{i} )\} \Delta t} \\ \end{aligned} $$

and, accordingly, the conditional pdf of \( (T_{{l}} |H_{{{\text{s}}:t}} ) \) is given by

$$ \begin{aligned} & \left( {r_{0} (t) + n(s)\eta + (n(t) - n(s))\eta } \right) \\ & \quad \times \exp \left\{ { - \int\limits_{0}^{t} {r_{0} (x){\text{d}}x} } \right\}\prod\limits_{i = 1}^{n(s)} {\exp \{ - \eta (t - t_{i} )\} } \cdot \prod\limits_{i = n(s) + 1}^{n(t)} {\exp \{ - \eta (t - t_{i} )\} } . \\ \end{aligned} $$

Thus, the joint distribution of \( (T_{{l}} ,H_{{{\text{s}}:t}} ) \) is

$$ \begin{aligned} & \left( {r_{0} (t) + n(s)\eta + (n(t) - n(s))\eta } \right) \\ & \quad \times \exp \left\{ { - \int\limits_{0}^{t} {r_{0} (x){\text{d}}x} } \right\}\prod\limits_{i = 1}^{n(s)} {\exp \{ - \eta (t - t_{i} )\} } \cdot \prod\limits_{i = n(s) + 1}^{n(t)} {\exp \{ - \eta (t - t_{i} )\} } \\ & \quad \times \left( {\prod\limits_{i = 1}^{n(s)} {\lambda (t_{i} )} } \right)\exp \left\{ { - \int\limits_{0}^{s} {\lambda (x){\text{d}}x} } \right\}\left( {\prod\limits_{i = n(s) + 1}^{n(t)} {\lambda (t_{i} )} } \right)\exp \left\{ { - \int\limits_{s}^{t} {\lambda (x){\text{d}}x} } \right\}, \\ \end{aligned} $$

From this, the conditional distribution of \( (H_{{{\text{s}}:t}} |T_{{l}} ) \) can be obtained as

$$ \begin{aligned} & \frac{1}{f(t)}\left( {r_{0} (t) + n(s)\eta + (n(t) - n(s))\eta } \right)\prod\limits_{i = 1}^{n(s)} {\lambda (t_{i} )\exp \{ - \eta (t - t_{i} )\} } \cdot \prod\limits_{i = n(s) + 1}^{n(t)} {\lambda (t_{i} )\exp \{ - \eta (t - t_{i} )\} } \\ & \quad \times \exp \left\{ { - \int\limits_{0}^{t} {r_{0} (x){\text{d}}x} } \right\}\exp \left\{ { - \int\limits_{0}^{t} {\lambda (x){\text{d}}x} } \right\}. \\ \end{aligned} $$

The joint conditional distribution of \( (T_{1} ,T_{2} , \ldots ,T_{N(s)} ,N(s)|T_{{l}} = t) \) is given by

$$ \begin{aligned} &\frac{1}{f(t)}\sum\limits_{n(t) = n(s)}^{\infty } {\left( {r_{0} (t) + n(s)\eta + (n(t) - n(s))\eta } \right)} \prod\limits_{i = 1}^{n(s)} {\lambda (t_{i} )\exp ( - \eta (t - t_{i} ))} \hfill \\ & \quad \times \frac{{\left( {\int_{s}^{t} {\exp \{ - \eta (t - x)\} \lambda (x){\text{d}}x} } \right)^{n(t) - n(s)} }}{(n(t) - n(s))!}\exp \left\{ { - \int\limits_{0}^{t} {r_{0} (x){\text{d}}x} } \right\}\exp \left\{ { - \int\limits_{0}^{t} {\lambda (x){\text{d}}x} } \right\} \hfill \\ & = \frac{{\exp \left\{ { - \int_{0}^{t} {r_{0} (x){\text{d}}x} } \right\}\exp \left\{ { - \int_{0}^{t} {\lambda (x){\text{d}}x} } \right\}}}{f(t)} \hfill \\ & \quad \times \left[ {\left( {r_{0} (t) + n(s)\eta } \right)\prod\limits_{i = 1}^{n(s)} {\lambda (t_{i} )\exp \{ - \eta (t - t_{i} )\} } \cdot \exp \left\{ {\int\limits_{s}^{t} {\exp \{ - \eta (t - x)\} \lambda (x){\text{d}}x} } \right\}} \right. \hfill \\ & \quad \left. { + \eta \prod\limits_{i = 1}^{n(s)} {\lambda (t_{i} )\exp \{ - \eta (t - t_{i} )\} } \cdot \int\limits_{s}^{t} {\exp \{ - \eta (t - x)\} \lambda (x){\text{d}}x} \cdot \exp \left\{ {\int\limits_{s}^{t} {\exp \{ - \eta (t - x)\} \lambda (x){\text{d}}x} } \right\}} \right] \hfill \\ \end{aligned} $$

Thus,

$$ \begin{aligned} Q_{\text{ES}} (s|t) \equiv E[\tilde{Q}(s)|T_{{l}} = t] &= E\left[ {Q(s)\prod\limits_{i = 1}^{N(s)} {\exp \{ - \psi (T_{i} )\} |T_{{l}} = t} } \right] \hfill \\ & = \frac{{Q(s)\exp \left\{ { - \int_{0}^{t} {r_{0} (x){\text{d}}x} } \right\}\exp \left\{ { - \int_{0}^{t} {\lambda (x){\text{d}}x} } \right\}}}{f(t)} \hfill \\ & \quad \times \left[ {\sum\limits_{n(s) = 0}^{\infty } {\left( {r_{0} (t) + n(s)\eta } \right)} \int\limits_{0}^{s} \ldots \int\limits_{0}^{{t_{3} }} {\int\limits_{0}^{{t_{2} }} {\prod\limits_{i = 1}^{n(s)} {\lambda (t_{i} )\exp \{ - \eta (t - t_{i} ) - \psi (t_{i} )\} {\text{d}}t_{1} {\text{d}}t_{2} \ldots {\text{d}}t_{n(s)} } } } } \right. \hfill \\ & \quad \times \exp \left\{ {\int\limits_{s}^{t} {\exp \{ - \eta (t - x)\} \lambda (x){\text{d}}x} } \right\} \hfill \\ & \quad + \eta \sum\limits_{n(s) = 0}^{\infty } {\int\limits_{0}^{s} \ldots } \int\limits_{0}^{{t_{3} }} {\int\limits_{0}^{{t_{2} }} {\prod\limits_{i = 1}^{n(s)} {\lambda (t_{i} )\exp \{ - \eta (t - t_{i} ) - \psi (t_{i} )\} {\text{d}}t_{1} {\text{d}}t_{2} \ldots {\text{d}}t_{n(s)} } } } \hfill \\ & \quad \left. { \times \int\limits_{s}^{t} {\exp \{ - \eta (t - x)\} \lambda (x){\text{d}}x} \cdot \exp \left\{ {\int\limits_{s}^{t} {\exp \{ - \eta (t - x)\} \lambda (x){\text{d}}x} } \right\}} \right] \hfill \\ &= \frac{{Q(s)\exp \left\{ { - \int_{0}^{t} {r_{0} (x){\text{d}}x} } \right\}\exp \left\{ { - \int_{0}^{t} {\lambda (x){\text{d}}x} } \right\}}}{f(t)}\left[ {\left( {r_{0} (t)\exp \left\{ {\int\limits_{0}^{s} {\exp \{ - \eta (t - x) - \psi (x)\} \lambda (x){\text{d}}x} } \right\}} \right.} \right. \hfill \\ & \quad \left. { + \eta \int\limits_{0}^{s} {\exp \{ - \eta (t - x) - \psi (x)\} \lambda (x){\text{d}}x \cdot } \exp \left\{ {\int\limits_{0}^{s} {\exp \{ - \eta (t - x) - \psi (x)\} \lambda (x){\text{d}}x} } \right\}} \right) \hfill \\ & \quad \times \exp \left\{ {\int\limits_{s}^{t} {\exp \{ - \eta (t - x)\} \lambda (x){\text{d}}x} } \right\} \hfill \\ & \quad + \eta \exp \left\{ {\int\limits_{0}^{s} {\exp \{ - \eta (t - x) - \psi (x)\} \lambda (x){\text{d}}x} } \right\} \hfill \\ & \quad \left. { \times \int\limits_{s}^{t} {\exp \{ - \eta (t - x)\} \lambda (x){\text{d}}x} \cdot \exp \left\{ {\int\limits_{s}^{t} {\exp \{ - \eta (t - x)\} \lambda (x){\text{d}}x} } \right\}} \right] \hfill \\ \end{aligned} $$

Thus, given \( T_{{l}} \le T \), the conditional total average gain during the cycle is obtained as

$$ \kappa \int\limits_{0}^{T} {\int\limits_{0}^{t} {Q_{\text{ES}} (s|t){\text{d}}s\frac{f(t)}{F(T)}{\text{d}}t} } . $$

Combining Case I and Case II, the average gain during a renewal cycle is given by

$$ \kappa \int\limits_{0}^{T} {Q_{\text{ES}} (s|T + ){\text{d}}s\overline{F} (T)} + \kappa \int\limits_{0}^{T} {\int\limits_{0}^{t} {Q_{\text{ES}} (s|t){\text{d}}sf(t){\text{d}}t} } . $$

The proof is completed.□

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cha, J.H., Finkelstein, M. Optimal preventive maintenance for systems having a continuous output and operating in a random environment. TOP 27, 327–350 (2019). https://doi.org/10.1007/s11750-019-00508-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11750-019-00508-2

Keywords

Mathematical Subject Classification

Navigation