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Isomorphisms of H*-Triple Systems1

A. CASTELLÓN SERRANO - J.A. CUENCA MIRA

Let A be a module over the commutative unit ring 0. We say that A is
a 0-triple system if it is endowed with a trilinear map ("’) of A x A x A to A.
If 0 = R or C the map * : A -~ A that to each x assigns x* is said to be a

multiplicative involution if it satisfies (xyz)* = (:c*~*~*) for any x, y, z E A and
it is involutive linear if 0 = R or involutive antilinear if ø = C. The 0-triple
system A is said an H*-triple system if its underlying 0-module (ø = R or C)
is a Hilbert 0-space of inner product (. I .) endowed with a multiplicative
involution x F-+ x* satisfying

for any x, y, z E A. A 0-linear map F between the triple systems V and V’
is said to be a morphism if F(xyz) = (F(x)F(y)F(z)) for any x, y, z E V. The
concepts of isomorphism, automorphism between triple systems and *-morphism,
*-isomorphism and *-automorphism between H*-triple systems are defined in
an obvious way. A *-isomorphism F between the H*-triple systems V and V’
is said to be an isogeny if there exists a real positive number À, called the
constant of the isogeny, such that = A(xly) for any x, y E V. If F
is a continuous morphism between the H*-triple systems V and V’, we denote
by F° : V’ -~ V the adjoint operator of F and by F* : V -; V’ the morphism
given by F* : z - [F(x*)]*. A subspace I of a triple system V is said to be
an ideal of V if it satisfies (IVV) + (VIV) + (VVI) C I. An H*-triple sys-
tem V is topologically simple if the triple product is non-zero and contains no
proper closed ideals. In an H*-triple system V we define the annihilator Ann(V)
of V to be the set { x E V : (xVV) = 0}. We observe that if V is an H*-triple
system, then Ann(V) = {x E V : = 01 = {x E V : (VVx) = 0}, and the
involution * is isometric if Ann(V) = 0 ([3], [4] and [5]). Ann(V) is a closed
self-adjoint ideal of V. The centroid Z(V) of an H*-triple system V is the set of

1 This work was partially supported by the "Plan Andaluz de Investigacion y Desarrollo
Tecnologico".

Pervenuto alla Redazione il 26 Luglio 1991.
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linear maps F : V --&#x3E; V such that F(xyz) = (F(x)yz) = (xF(y)z) = (xyF(z)) for
any x, y, z E V. In [6] we proved that if V is a topologically simple H*-triple
system then (Z(V),a) is (C Id, - ) in the complex case and either (C Id, - ) or
(R Id, Id) in the real case.

PROPOSITION 1. Let V and V’ be two H*-triple systems with continuous
involution and F : V --+ V’ a continuous morphism with dense range. Then
F* o Fl lies in Z(V’).

PROOF. For any : we have

and on the other hand

Hence Substituting y for y* and z for

z*, we can write F°(tF*(z)F*(y)) = and by applying F* to both

members, we obtain

It follows, from continuity of F and the fact that F* is a morphism, that
F* has dense range. Taking into account the above equality we have

for any u, v E V’. Analogously we can prove that

for any u, v E V’ and therefore F* FD E Z(V’).

PROPOSITION 2. (a) Let V be an H*-triple system with zero annihilator of
norm ( I . 11. If V is endowed with another norm I I - I 1 1 such that is a

complete normed triple system, I and I I . III 1 are equivalent.
(b) Let V and V’ be two H*-triple systems with zero annihilator and

F : V --+ V’ an (algebraic) isomorphism. Then F is continuous.

PROOF. (a) Let V, be the triple system V with the norm ( I . For any
x, y E V, we have L(x, y) E BL(V) n BL(VI). So
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From the Banach inverse map theorem, we obtain

So

and therefore

As in [7, (1-2-36)], it can be shown that * is continuous for the topology
induced by the norm [[ . lit, hence there exists a positive real k such that

for any x E VI. Let {z,, I be a sequence of elements of V with lim zn = 0 in
n-oo

VI and lim zn = z in V. It follows from (3) and (4) that
n-oo

and therefore

The limit of the sequence {L(zn, y)} with the norm ~~ I . ~~ I is therefore zero.
Since relative to the norm [[ . [[, we have lim = L(z, y), it follows

n-oo 

that L(z, y) = 0 and z = 0. The closed map theorem implies that x F-+ x is a
continuous map of VI to V. The Banach inverse map theorem finishes the proof.

(b) We define a new norm || . || i on V by Then

(V, ~~ . Ill) is a complete normed triple system. Part (a) proves that [[ . [[ and
BI . lit i are equivalent and this implies the continuity of F.

COROLLARY 5. Let V and V’ be topologically simple H*-triple systems
and G : V - V’ a *-isomorphism. Then G is an isogeny.

PROOF. By Proposition 3, G is continuous. It follows from Proposition 1

and [6, Teorema 14] that GG" = A Id (A E R). For any x, y E V’, we have

Hence A is a positive real number and G is an isogeny of constant A.

DEFINITION 6. Let V be a triple system over K and D : V - V a linear
map. We say that D is a derivation if it satisfies
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for any

LEMMA 7. Let V be a complex H* -triple system with non-zero triple
product, F a continuous automorphism of V and D a continuous derivation of
V. Then

(a) there exist A, M, v E Sp(F), such that Apv E Sp(F);
(b) there exist A, fl, v E Sp(D), such that A + /-t + v E Sp(D);
(c) Sp(F) cannot be contained in a halfline of origin 0 different , from and

I~ ;

(d) Sp(D) cannot be contained in a line other than for the lines containing
. the origin.

PROOF. Let F be the Banach space of the continuous trilinear maps of
~ 

a b c d

V x V x V into V. For any T E BL(V) we define the maps T, T, T, T E BL(F)
by

a b c d

If fo(x, y, z) = (xyz) then T is an automorphism T 0) = T T T( fo) and
~ ~ ~ 

iff 
a b c d a 

T is a derivation iff T( fo) = (T + T + T) ( fo). The map T - T is a continuous
x

morphism which preserves the unity and the maps T - T, x E {b, c, dl, are

continuous skewmorphisms which preserve the unity. Hence

tz b c d

If F is an automorphism then F( fo) = F F F( fo), that is,
a b c d a b c d

(F - F F F) ( fo) = 0, and therefore 0 E Sp (F - F F F). It follows from the fact
x 

~ ~ 

a b c d

that is a commutative set, that 0 E Sp (F) - Sp ( F~ Sp ( F~ Sp ( F~
a b c d

(see [11, p. 280]). So there exist p E Sp (F), A E Sp (F), 1L E Sp (F), v E Sp (F),
such that 0 = p - Ativ. Part (a) now follows from (8). In a similar way part (b)
can be obtained. Parts (c) and (d) are consequence of (a) and (b).

Let V be a Hilbert space and F E BL(V). We recall that F is a positive
operator if F is self-adjoint and (F(x)lx) &#x3E; 0 for any x E V. In the complex
case the self-adjointness follows from the last condition.
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LEMMA 9. Let V and V’ be two topologically simple complex H*-triple
systems and F : V - V’ an isomorphism. Then either (F* )-1 o F o F
is a positive operator.

PROOF. By [6, Teorema 14] and Proposition 1 we have F* o Fl = A Id

(A E CC ) . Firstly we prove that A E R - (0). The fact that A f0 is obtained from
the invertibility of F. So

Since FD o F is a positive operator

and, by Lemma 7, A E R - { 0 } . Then we have either (F*)’~ oF oF
is a positive operator. This finishes the proof.

From the following lemmata we shall prove that the unique positive root
of (F* )-1 o F or -(F* )-1 o F is also a morphism. Next we generalize a well
know result (see [10, Lemme 8 p. 313]).

LEMMA 10. Let E be a complex Banach space and F the Banach space
of the continuous multilinear maps of En into E. Let D E BL(E) and F = e~.
We define D’ E BL(F) and F’ E BL(F) by

with Then

PROOF. We define maps

""-

taking into account that D’ = t xi and that the xi pairwise commute, we can
i=O

conclude the proof as in [10, Lemme 8 p. 314].
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LEMMA 11. Let V be a complex complete normed triple system and F a
continuous automorphism of V such that

There there exists a unique continuous derivation D : V - V such that
eD = F and 

I - I

PROOF. Let f be the triple product of V and log the principal determination
of the logarithm. Let D = log(F). Because F is an automorphism, it follows
that F’ f = f, with F’ as in Lemma 10. The condition on F implies that

and by Lemma 10 (b) we have that D’ f = 0, that is D is a derivation.

PROPOSITION 12. Let V be a topologically simple H*-triple system and F
a positive automorphism of Y. Then there exists a unique positive automorphism
G of V such that G2 = F. Moreover if (F* )-1 = F, then (G*)-l = G.

PROOF. Let V be a complex topologically simple H*-triple system.
Since Sp(F) C I1~+, by Lemma 11 there exists a unique continuous derivation
D : V - V such that eD = F. Obviously 1 D is a derivation of V, and by Lemma
10 (a) and the spectral mapping theorem, G = is a positive automorphism
of V such that G2 = F. If V is a real H*-triple system with (Z(V), 0) = (R Id, Id),
the unique positive automorphism a of C(V), with G2 = C(F) can be obtained
by arguing over the automorphism C(F) of the complexified C(V) of V given
by C(F) : (a + bi) H F(a) + F(b)i . A direct calculation proves that TaT is another
positive root of C(F), where T is the (real) involutive C-antilinear automorphism
of V given by T : (a + bi) " (a - bi). So 6(V) C V and G = is the unique
positive automorphism of V such that G2 = F. Finally, if V is a real H*-triple
system with (Z(V), o) = (~ Id,- ), that is, V is the realization of a complex
H*-triple system, then as in [1, Lemma 1.4.3] it can be proved that F is either
C-linear or C-antilinear. But the (real) positivity of F implies that F must be
a C-linear automorphism of V. Hence this case follows from the complex one.

Suppose now that (F* )-1 = F. By Proposition 1, we obtain (G* )-1 = ~G,
for some &#x3E; E Z(V) (Z(V) = R or C), since G and G* are positive operators
Jj &#x3E; 0. On the other hand, we have

so ti = 1 and the proposition is proved.

MAIN THEOREM 13. Let V and V’ be two topologically simple H*-
triple systems and F : V - V’ an isomorphism. Then either F : V --+ V’,
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splits in a unique way

where Fi is a positive automorphism, F2 is a *-isomorphism and Vb is the
twin of V, that is, the H*-triple system with the same Hilbert space and triple
product as V and involution x H -x*.

In particular if V and V’ are isomorphic, then either V or Vb is

*-isomorphic to V’.

PROOF. Let H = (F’)-l o F. By Lemma 9 and the proposition above, we
obtain that either H or -H has a unique positive root Fl. First we suppose
that H is a positive operator. A direct calculation prove that (H*)-l = H, and
by Proposition 12 we have (Ft)-l = Fl . Then F2 = FoFI-1 1 is a *-isomorphism.
Indeed from

we obtain

or equivalently

It follows from = FI that F2 = F2, and F2 is a *-isomorphism. If H
is a negative operator we argue over -Id o H in a similar way, taking into
account that -Id : V 2013~ V6 shows that (-Id)* = Id. Finally we prove the

uniqueness of the factorization. Arguing as in the proof of Lemma 9, we have
that G° = A(G)(G*)-l for every automorphism G, where A(G) is a non-zero real
number. Moreover A(G) &#x3E; 0 if G is positive. Suppose that F = F2 o Fl with Fi
a positive automorphism and F2 a *-isomorphism. Then

so Fi is the unique positive root of the operator (G* )-1 o G with G = 
and, by Proposition 12, = Fl, that is A(Fl) = 1 and the factorization is

unique. In a similar way, we can obtain the uniqueness in the case -F = F2 o Fl.

COROLLARY 14 (Essential uniqueness). Let V be a topologically simple
H* -triple system over K (K = I1~ or C) and V’ another H* -triple system with
the same underlying K-triple system of Y. Then either V or Vb is isogenic to V’.



514

REFERENCES

[1] M. CABRERA, H*-álgebras no asociativas reales. H*-álgebras de Malcev complejas
y reales, Tesis doctoral, Universidad de Granada, 1987.

[2] M. CABRERA - J. MARTÍNEZ - A. RODRÍGUEZ, Nonassociative real H*-algebras, Publ.
Mat. 32, 1988, 267-274. 

[3] A. CASTELLÓN, Sobre H*-sistemas triples, Tesis doctoral, Universidad de Málaga,
1989.

[4] A. CASTELLÓN - J.A. CUENCA, Associative H*-triple systems. In Nonassociative

Algebraic Models, Nova Science Publisher (eds. S. González and H.C. Uyung), New
York, 1992, 45-67.

[5] A. CASTELLÓN - J.A. CUENCA, Compatibility in Jordan H*-triple systems, Boll. Un.
Mat. Ital. (7) 4-B, 1990, 433-447.

[6] A. CASTELLÓN - J.A. CUENCA, El centroide de un H*-sistema triple, Primeras Jornadas
Hispano-marroquíes de Matemática, Tetuán, 1989.

[7] J.A. CUENCA, Sobre H*-álgebras no asociativas, Teoría de estructura de las H*-álge-
bras de Jordan no conmutativas semisimples, Universidad de Málaga, Málaga 1984.

[8] J.A. CUENCA - A. RODRÍGUEZ, Isomorphisms of H*-algebras, Math. Proc. Cambridge
Philos. Soc. 97, 1985, 93-99.

[9] J.A. CUENCA - A. RODRÍGUEZ, Structure theory for noncommutative Jordan H*-

algebras, J. Algebra 106, 1987, 1-14.

[10] J. DIXMIER, Les algèbras d’operateurs dans l’espace hilbertien, Gauthier-Villars,
1969.

[11] W. RUDIN, Functional Analysis, Springer-Verlag, Berlin-Heidelberg-New York, 1971.

Departamento de Algebra, Geometria y Topologia
Facultad de Ciencias, Universidad de Malaga
Apartado 59
(29080) Malaga
Spain


