Skip to main content
Log in

Almost integrable evolution equations

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We present a 2-component equation with exactly two nontrivial generalized symmetries, a counterexample to Fokas' conjecture that equations with as many symmetries as components are integrable. Furthermore we prove the existence of infinitely many evolution equations with finitely many symmetries. We introduce the concept of almost integrability to describe the situation where one has a finite number of symmetries. The symbolic calculus of Gel'fand-Dikiî andp-adic analysis are used to prove our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I.M. Bakirov. On the symmetries of some system of evolution equations. Technical report, Akad. Nauk SSSR Ural. Otdel. Bashkir. Nauchn Tsentr, Ufa, 1991.

    Google Scholar 

  2. F. Beukers, On a sequence of polynomials.Journal of Pure and Applied Algebra 117, and118 (1997), 97–103.

    Article  MathSciNet  Google Scholar 

  3. F. Beukers, J.A. Sanders and J.P. Wang. One symmetry does not imply integrability.J. Differential Equations 146 (1998), no. 1, 251–260.

    Article  MATH  MathSciNet  Google Scholar 

  4. F. Beukers, J.A. Sanders and J.P. Wang. On integrability of systems of evolution equations.Journal of Differential Equations 172 (2001), no. 2, 396–408.

    Article  MATH  MathSciNet  Google Scholar 

  5. F. Beukers and C.J. Smyth. Cyclotomic points on curves. Millennial Conference on Number Theory, May 21–26, 2000, Urbana-Champaign, A.K. Peters, 2001.

  6. B.W. Char, K.O. Geddes, G.H. Gonnet, B.L. Leong, M.B. Monagan and S.M. Watt.Maple V Language Reference Manual. Springer-Verlag, Berlin, 1991.

    MATH  Google Scholar 

  7. A.S. Fokas. A symmetry approach to exactly solvable evolution equations.Journal of Mathematical Physics 21 (1980), no. 6, 1318–1325.

    Article  MATH  MathSciNet  Google Scholar 

  8. A.S. Fokas. Symmetries and integrability.Studies in Applied Mathematics 77 (1987), 253–299.

    MATH  MathSciNet  Google Scholar 

  9. C.S. Gardner, J.M. Greene, M.D. Kruskal and R.M. Miura. Korteweg-de Vries equation and generalizations. VI. Methods for exact solution.Communications on Pure and Applied Mathematics 27 (1974), 97–133.

    Article  MATH  MathSciNet  Google Scholar 

  10. I.M. Gel'fand and L.A. Dikiî. Asymptotic properties of the resolvent of Sturm-Liouville equations, and the algebra of Korteweg-de Vries equations.Uspehi Mat. Nauk 30(5(185)) (1975), 67–100; English translation.Russian Math. Surveys 30 (1975), no. 5, 77–113.

    MathSciNet  Google Scholar 

  11. N.H. Ibragimov and A.B. Šabat. Evolution equations with a nontrivial Lie-Bäcklund group.Funktsional Anal. i Prilozhen 14 (1980), no. 1, 25–36, 96.

    MathSciNet  Google Scholar 

  12. D.J. Korteweg and G. de Vries. On the change of form of long waves advancing in a rectangular canal, and a new type of long stationary waves.Philos. mag. 39 (1895), no. 5, 422–443.

    Google Scholar 

  13. R.M. Miura, C.S. Gardner and M.D. Kruskal. Korteweg-de Vries equation and generalizations. II. Existence of conservation laws and constants of motion.Journal of Mathematical Physics 9 (1968), no. 8, 1204–1209.

    Article  MATH  MathSciNet  Google Scholar 

  14. E. Noether. Invariante Variationsprobleme.Nachr. v.d. Ges. d. Wiss. zu Göttingen, Math.-phys. Kl. 2 (1918), 235–257.

    Google Scholar 

  15. P.J. Olver. Evolution equations possessing infinitely many symmetries.J. Mathematical Phys. 18 (1977), no. 6, 1212–1215.

    Article  MATH  MathSciNet  Google Scholar 

  16. P.J. Olver.Applications of Lie groups to differentiatial equations, volume 107 of Graduate Texts in Mathematics,. second edition. Springer-Verlag, New York, 1993.

    Google Scholar 

  17. P.J. Olver and V.V. Sokolov. Integrable evolution equations on associative algebras.Comm. Math. Phys. 193 (1998), no. 2, 245–268.

    Article  MATH  MathSciNet  Google Scholar 

  18. J.A. Sanders and J.P. Wang. On the integrability of homogeneous scalar evolution equations.J. Differential Equations 147 (1998), no. 2, 410–434.

    Article  MATH  MathSciNet  Google Scholar 

  19. J.A. Sanders and J.P. Wang. On the integrability of systems of second order evolution equations with two components. Technical Report WS-557, Vrije Universiteit Amsterdam, Amsterdam, 2001, Submitted to Journal of Differential Equations.

    Google Scholar 

  20. T. Tsuchida and M. Wadati. Complete integrability of derivative nonlinear Schrödinger-type equations.Inverse Problems 15 (1999), no. 5, 1363–1373.

    Article  MATH  MathSciNet  Google Scholar 

  21. P.H. van der Kamp. Classification of Integrable β-equations. Technical Report WS-566, Vrije Universiteit Amsterdam, Amsterdam, 2002.

    Google Scholar 

  22. P.H. van der Kamp. Integrable Evolution Equations: a Diophantine Approach, 2002.

  23. P.H. van der Kamp and J.A. Sanders. On testing integrability.J. Nonlinear Math. Phys. 8 (2001), no. 4, 561–574.

    Article  MATH  MathSciNet  Google Scholar 

  24. G.Z. Tu and M.Z. Qin. The invariant groups and conservation laws of nonlinear evolution equations—an approach of symmetric function.Sci. Sinica 24 (1981), no. 1, 13–26.

    MATH  MathSciNet  Google Scholar 

  25. As was shown by V.V. Sokolov and A.G. Meshkov at the summerschool “What is Integrability?”, August 2001, Cambridge.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Kamp, P.H., Sanders, J.A. Almost integrable evolution equations. Selecta Mathematica, New Series 8, 705–719 (2002). https://doi.org/10.1007/BF02637315

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02637315

Mathematics Subject Classification (2000)

Key words

Navigation