Skip to main content
Log in

The hopf algebra rep\(U_q \widehat{\mathfrak{g}\mathfrak{l}}_\infty \)

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We define the Hopf algebra structure on the Grothendieck group of finite-dimensional polynomial representations of\(U_q \widehat{\mathfrak{g}\mathfrak{l}}_N \) in the limitN→∞. The resulting Hopf algebra Rep\(U_q \widehat{\mathfrak{g}\mathfrak{l}}_\infty \) is a tensor product of its Hopf subalgebras Repa \(U_q \widehat{\mathfrak{g}\mathfrak{l}}_\infty \),a ∈ ℂ×/q2ℤ. Whenq is generic (resp.,q 2 is a primitive root of unity of orderl), we construct an isomorphism between the Hopf algebra Rep a \(U_q \widehat{\mathfrak{g}\mathfrak{l}}_\infty \) and the algebra of regular functions on the prounipotent proalgebraic group\(\widetilde{SL}\overline {_\infty } \) (resp.,\(\widetilde{GL}\overline {_l } \)). Whenq is a root of unity, this isomorphism identifies the Hopf subalgebra of Rep a \(U_q \widehat{\mathfrak{g}\mathfrak{l}}_\infty \) spanned by the modules obtained by pullback with respect to the Frobenius homomorphism with the algebra generated by the coefficients of the determinant of an element of\(\widetilde{GL}\overline {_l } \) considered as anl×l matrix over the Taylor series. This gives us an explicit formula for the Frobenius pullbacks of the fundamental representations. In addition, we construct a natural action of the Hall algebra associated to the infinite linear quiver (resp., the cyclic quiver withl vertices) on Rep a \(U_q \widehat{\mathfrak{g}\mathfrak{l}}_\infty \) and describe the span of tensor products of evaluation representations taken at fixed points as a module over this Hall algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • [A] S. Ariki. On the decomposition numbers of the Hecke algebra ofG(m, 1, n).J. Math. Kyoto Univ. 36 (1996), 789–808.

    MATH  MathSciNet  Google Scholar 

  • [AKOS] H. Awata, H. Kubo, S. Odake and J. Shiraishi. QuantumW N algebras and Macdonald polynomials.Comm. Math. Phys. 179 (1996), 401–416.

    Article  MATH  MathSciNet  Google Scholar 

  • [B] J. Beck. Braid group action and quantum affine algebras.Comm. Math. Phys. 165 (1994), no. 3, 555–568.

    Article  MATH  MathSciNet  Google Scholar 

  • [BCP] J. Beck, V. Chari and A. Pressley. An algebraic characterization of the affine canonical basis.Duke Math. J. 99 (1999), 455–487.

    Article  MATH  MathSciNet  Google Scholar 

  • [BK] J. Beck and V. Kac. Finite-dimensional representations of quantum affine algebras at roots of unity.Journal of AMS 9 (1996), 391–423.

    MATH  MathSciNet  Google Scholar 

  • [BR] V. Bazhanov and N. Reshetikhin. Restricted solid-on-solid models connected with simply laced algebras and conformal field theory.J. Phys. A 23 (1990), 1477–1492.

    Article  MATH  MathSciNet  Google Scholar 

  • [BZ] J. Bernstein and A. Zelevinsky. Induced representations of reductivep-adic groups, I.Ann. Sci. École Norm. Sup. 10 (1977), 441–472.

    MATH  MathSciNet  Google Scholar 

  • [Ch] I. Cherednik. A new interpretation of Gelfand-Zetlin bases.Duke Math. J. 54 (1987), 563–577.

    Article  MATH  MathSciNet  Google Scholar 

  • [CP1] V. Chari and A. Pressley. Quantum affine algebras.Comm. Math. Phys. 142 (1991), no. 2, 261–283.

    Article  MATH  MathSciNet  Google Scholar 

  • [CP2] V. Chari and A. Pressley.A Guide to Quantum Groups. Cambridge University Press, Cambridge, 1994.

    MATH  Google Scholar 

  • [CP3] V. Chari and A. Pressley. Quantum affine algebras and their representations. Representations of groups (Banff, AB, 1994) 59–78, CMS Conf. Proc.16, Amer. Math. Soc., Providence, RI, 1995.

    Google Scholar 

  • [CP4] V. Chari and A. Pressley. Quantum affine algebras and affine Hecke algebras.Pacific J. Math. 174 (1996), 295–326.

    MATH  MathSciNet  Google Scholar 

  • [CP5] V. Chari and A. Pressley. Quantum affine algebras at roots of unity.Representation Theory 1, (1997), 280–328.

    Article  MATH  MathSciNet  Google Scholar 

  • [CP6] V. Chari and A. Pressley. Weyl modules for classical and quantum affine algebras. Preprint QA/0004174.

  • [Da] I. Damiani. LaR-matrice pour les algebres quantiques de type affine non tordu.Ann. Sci. Ecole Norm. Sup. (4)31 (1998), no. 4, 493–523.

    MATH  MathSciNet  Google Scholar 

  • [Dr1] V.G. Drinfeld. Hopf algebras and the quantum Yang-Baxter equation.Sov. Math. Dokl. 32 (1985), 254–258.

    Google Scholar 

  • [Dr2] V.G. Drinfeld. A new realization of Yangians and of quantum affine algebras.Sov. Math. Dokl. 36 (1987), 212–216.

    MathSciNet  Google Scholar 

  • [Dr3] V.G. Drinfeld. On almost cocommutative Hopf algebras.Leningrad Math. J. 1 (1990), 1419–1457.

    MathSciNet  Google Scholar 

  • [DF] J. Ding and I. Frenkel. Isomorphism of two realizations of quantum affine algebraU q(ĝl(n)).Comm. Math. Phys. 156 (1993), 277–300.

    Article  MATH  MathSciNet  Google Scholar 

  • [EFK] P.I. Etingof, I.B. Frenkel and A.A. Kirillov, Jr.Lectures on Representation Theory and Knizhnik-Zamolodchikov Equations. AMS, 1998.

  • [FF] B. Feigin and E. Frenkel. QuantumW-algebras and elliptic algebras.Comm. Math. Phys. 178 (1996), 653–678.

    Article  MATH  MathSciNet  Google Scholar 

  • [FKRW] E. Frenkel, V. Kac, A. Radul and W. Wang.W 1+∞ andW(gl N) with central chargeN.Comm. Math. Phys. 170 (1995), 337–357.

    Article  MATH  MathSciNet  Google Scholar 

  • [FM1] E. Frenkel and E. Mukhin. Combinatorics of q-characters of finite-dimensional representations of quantum affine algebras.Comm. Math. Phys. 216 (2001), 23–57.

    Article  MATH  MathSciNet  Google Scholar 

  • [FM2] E. Frenkel and E. Mukhin. Theq-characters at roots of unity. Preprint math. QA/0101018.

  • [FR1] E. Frenkel and N. Reshetikhin. Deformations ofW-algebras associated to simple Lie algebras.Comm. Math. Phys. 197 (1998), no. 1, 1–32.

    MATH  MathSciNet  Google Scholar 

  • [FR2] E. Frenkel and N. Reshetikhin. Theq-characters of representations of quantum affine algebras and deformations ofW-algebras.Contemporary Math, AMS 248 (1998), 163–205.

    MathSciNet  Google Scholar 

  • [GZ] I.M. Gelfand and M.L. Zetlin. Finite-dimensional representations of the unimodular group.Dokl. Acad. Nauk USSR 71 (1950), 825–828.

    Google Scholar 

  • [GRV] V. Ginzburg, N. Reshetikhin and E. Vasserot. Quantum groups and flag varieties. in Mathematical aspects of conformal and topological field theories and quantum groups, pp. 101–130, Contemp. Math.175, AMS 1994.

  • [GV] V. Ginzburg and E. Vasserot Langlands reciprocity for affine quantum groups of typeA n.Int. Math. Res. Not. (1993), no. 3, 67–85.

    Article  MathSciNet  Google Scholar 

  • [G] J.A. Green. Hall algebras, hereditary algebras and quantum groups.Invent. Math. 120 (1995), 361–377.

    Article  MATH  MathSciNet  Google Scholar 

  • [Gr] I. Grojnowski. Affinesl p controls the representation theory of the symmetric group and related Hecke algebras. Preprint math. RT/9907129.

  • [H] T. Hayashi.q-analogues of Clifford and Weyl algebras spinor and oscillator representations of quantum enveloping algebras.Comm. Math. Phys. 127 (1990), 129–144.

    Article  MathSciNet  Google Scholar 

  • [J] M. Jimbo. Aq-difference analogue ofU(g) and the Yang-Baxter equation.Lett. Math. Phys. 10 (1985), no. 1, 63–69.

    Article  MATH  MathSciNet  Google Scholar 

  • [K] V.G. Kac.Infinite-dimensional Lie Algebras. 3rd Edition. Cambridge University Press, 1990.

  • [KT] S. Khoroshkin and V. Tolstoy. Twisting of quantum (super)algebras. Connection of Drinfeld's and Cartan-Weyl realizations for quantum affine algebras. Generalized symmetries in physics (Clausthal, 1993) 42–54, World Sci. Publishing, River Edge, NJ, 1994.

    Google Scholar 

  • [Ko] Y. Koyama. Staggered polarization of vertex models withU q(ŝl(n))-symmetry. Preprint hep-th/9307197.

  • [LNT] B. Leclerc, M. Nazarov and J.-Y. Thibon. Induced representations of affine Hecke algebras and canonical bases of quantum groups. Preprint math. QA/0011074.

  • [Lor] S. Levendorsky, Ya. Soibelman and V. Stukopin. The quantum Weyl group and the universal quantumR-matrix for affine Lie algebraA 1 (1).Lett. Math. Phys. 27 (1993), no. 4, 253–264.

    Article  MathSciNet  Google Scholar 

  • [L] G. Lusztig.Introduction to Quantum Groups. Birkhäuser, 1993.

  • [L2] G. Lusztig. Canonical bases arising from quantized enveloping algebras, I.Journal of AMS 3 (1990), 447–498.

    MATH  MathSciNet  Google Scholar 

  • [M] P. MacMahan.Combinatory Analysis. Cambridge University Press, 1916.

  • [Mac] I. MacDonald.Symmetric Functions and Hall Polymomials. Oxford University Press, 1995.

  • [NT] M. Nazarov and V. Tarasov. Representations of Yangians with Gelfand-Zetlin bases.J. Reine Angew. Math. 496 (1998), 181–212.

    MATH  MathSciNet  Google Scholar 

  • [Ri] C. Ringel. Hall algebras and quantum groups.Invent. Math. 101 (1990), 583–591.

    Article  MATH  MathSciNet  Google Scholar 

  • [Sh] O. Schiffmann. The Hall algebra of a cyclic quiver and canonical bases of Fock spaces.Internat. Math. Res. Notices (2000), no. 8, 413–440.

    Article  MathSciNet  Google Scholar 

  • [VV] M. Varagnolo and E. Vasserot. On the decomposition matrices of the quantized Schur algebra.Duke Math. J. 100 (1999), 267–297.

    Article  MATH  MathSciNet  Google Scholar 

  • [V] E. Vasserot. Affine quantum groups and equivariantK-theory.Transform. Groups 3 (1998), no. 3, 269–299.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frenkel, E., Mukhin, E. The hopf algebra rep\(U_q \widehat{\mathfrak{g}\mathfrak{l}}_\infty \) . Selecta Mathematica, New Series 8, 537–635 (2002). https://doi.org/10.1007/BF02637313

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02637313

Mathematics Subject Classification (2000)

Key words

Navigation