Skip to main content
Log in

The nestedness property of location problems on the line

  • Original Paper
  • Published:
TOP Aims and scope Submit manuscript

Abstract

We prove the existence of a nestedness property for a family of common convex parametric tactical serving facility location problems defined on the line. The parameter t is the length of the serving facility (closed interval). The nestedness property means that, given any two facility lengths \(t_1, t_2, 0 \le t_1<t_2\), there is an optimal solution with length \(t_1\) which lies within some optimal solution with length \(t_2\). The main idea of the proof is the representation of a serving facility as a point in \({\mathbb {R}}^2\) and the investigation of its geometrical properties. An intuitive graphical approach to the proof is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Aurenhammer F (1991) Voronoi diagrams—a survey of a fundamental geometric data structure. ACM Comput Surv 23(3):345–405

    Article  Google Scholar 

  • Bhattacharya B, Shi Q, Tamir A (2009) Optimal algorithms for the path/tree-shaped facility location problems in trees. Algorithmica 55:601–618

    Article  Google Scholar 

  • Hakimi SL, Schmeichel EF, Labbe M (1993) On locating path or tree shaped facilities on networks. Networks 23:543–555

    Article  Google Scholar 

  • Hedetniemi SM, Cockaine EJ, Hedetniemi ST (1981) Linear algorithms for finding the Jordan center and path center of a tree. Transp Sci 15:98–114

    Article  Google Scholar 

  • Kalcsics J, Nickel S, Puerto J, Tamir A (2002) Algorithmic results for ordered median problems. Oper Res Lett 30:149–158

    Article  Google Scholar 

  • Lazar A, Tamir A (2013) Improved algorithms for some competitive location centroid problems on paths, trees and graphs. Algorithmica 66:615–640

    Article  Google Scholar 

  • Mesa JA, Boffey TB (1996) A review of extensive facility location in networks. Eur J Oper Res 95(3):592–603

    Article  Google Scholar 

  • Minieka E (1980) Conditional centers and medians on a graph. Networks 10:265–272

    Article  Google Scholar 

  • Minieka E (1980) The optimal location of a path or tree in a tree network. Networks 10:265–272

    Article  Google Scholar 

  • Nickel S (2000) Discrete ordered weber problems. In: Operations Research Proceedings, pp 71–76

  • Nickel S, Puerto J (2005) Location theory. A unified approach. Springer, Berlin

    Google Scholar 

  • Ogryczak W, Tamir A (2003) Minimizing the sum of the \(k\) largest functions in linear time. Inf Proc Lett 85:117–222

    Article  Google Scholar 

  • Puerto J, Fernández FR (2000) Geometrical properties of the symmetrical single facility location problem. J Nonlinear Convex Anal 1(3):321–342

    Google Scholar 

  • Puerto J, Rodríguez-Chía AM, Tamir A (2017) Revisiting \(k\)-sum optimization. Math Program 165:579–604

    Article  Google Scholar 

  • Puerto J, Tamir A (2005) Locating tree-shaped facilities using the ordered median objective. Math Program A 102:313–338

    Article  Google Scholar 

  • Rodríguez-Chía AM, Nickel S, Puerto J, Fernández FR (2000) A flexible approach to location problems. Math Method Oper Res 51:69–89

    Article  Google Scholar 

  • Rozanov M (2015) The nestedness property of the convex ordered median location problem on a tree. M.Sc. Thesis, Tel-Aviv University. http://primage.tau.ac.il/libraries/theses/exeng/free/3257656.pdf

  • Tamir A, Puerto J, Mesa JA, Rodríguez-Chía AM (2005) Conditional location of path and tree shaped facilities on trees. J Algebra 56:50–75

    Google Scholar 

  • Tang H (2013) A note on the nestedness property for ordered median problems in tree networks. J Syst Sci Complex 26:335–340

    Article  Google Scholar 

  • Tang H, Cheng TCE, Ng CT (2012) A note on subtree ordered median problem in networks based on nestedness property. J Ind Manag Optim 8:41–49

    Article  Google Scholar 

  • Zemel E (1984) An O(n) algorithm for the linear multiple choice knapsack problem and related problems. Inf Proc Lett 18:123–128

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Rozanov.

Additional information

The results of this paper are based on Rozanov (2015).

Appendix

Appendix

This section contains two lemmas used in the paper. The lemmas are presented without the proofs. Detailed proofs of the lemmas can be found in Rozanov (2015).

1.1 Continuity of the optimal solution objective value of a parametrized LP problem

Lemma 6

Given a parametrized LP problem:

$$\begin{aligned} \begin{aligned}&\text{ Minimize } C^T\mathbf z \\&\text{ subject } \text{ to: }\\&A^T\mathbf z \le D, \\&E^T\mathbf z = G, \\&M^T\mathbf z \le R(t), \\&\mathbf z \ge 0,\\&\mathbf z \in {\mathbb {R}}^n,\;C \in {\mathbb {R}}^n,\; D \in {\mathbb {R}}^d,\;\\&A \in {\mathbb {R}}^{n \times d},\;G \in {\mathbb {R}}^g,\;E \in {\mathbb {R}}^{n \times g},\;M \in {\mathbb {R}}^{n \times m},\;\\&R(t) = \left( r_1(t),r_2(t),\ldots ,r_m(t)\right) ,\;\;\\&r_i(t): T \rightarrow {\mathbb {R}}^1,\; i = 1,\ldots ,m,\\&\text{ where } T \text{ is } \text{ a } \text{ finite } \text{ closed } \text{ connected } \text{ interval } \text{ on } {\mathbb {R}}. \end{aligned} \end{aligned}$$
(47)

Denote by H(t) the optimal objective value of (47). If (47) is feasible and bounded for all \(t \in T \), and all functions \(r_1(t),\ldots ,r_m(t)\) are continuous on T, then H(t) is a continuous function on T. Moreover, if \(r_1(t),\ldots ,r_m(t)\) are concave, then H(t) is convex. In addition, if the functions \(r_1(t),\ldots ,r_m(t)\) are linear, then H(t) is piecewise linear.

1.2 Monotonicity lemma

Lemma 7

Let \(f(x):{\mathbb {R}}\rightarrow {\mathbb {R}}\) be a real-valued function defined on a closed interval \(\hat{D} \in {\mathbb {R}}\), and suppose that the following property holds:

$$\begin{aligned} \begin{array}{l} \forall x\;\; \exists \epsilon >0\;s.t., \; f(x^-) \le f(x) \le f(x^+)\;\\ \forall x^- \in [x-\epsilon ,x) \cap \hat{D},\;\forall x^+\in (x,x+\epsilon ] \cap \hat{D},\\ \end{array} \end{aligned}$$
(48)

then, f(x) is a non-decreasing function of x.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rozanov, M., Tamir, A. The nestedness property of location problems on the line. TOP 26, 257–282 (2018). https://doi.org/10.1007/s11750-018-0471-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11750-018-0471-x

Keywords

Mathematics Subject Classification

Navigation