Skip to main content
Log in

Continuous approximation models in freight distribution management

  • Invited Paper
  • Published:
TOP Aims and scope Submit manuscript

Abstract

This paper presents an overview of the literature on continuous approximation models in the context of distribution management. It first describes the seminal contributions of Beardwood, Halton and Hammersley, and of Daganzo and Newell. This is followed by a summary of various extensions, and by applications to districting, location, fleet sizing and vehicle routing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Applegate DL, Bixby RE, Chvátal V, Cook WJ (2011) The traveling salesman problem: a computational study. Princeton University Press, Princeton

    Google Scholar 

  • Arlotto A, Steele JM (2016) Beardwood–Halton–Hammersley theorem for stationary ergodic sequences: a counterexample. Ann Appl Probab 26(4):2141–2168

    Article  Google Scholar 

  • Beardwood J, Halton JH, Hammersley JM (1959) The shortest path through many points. Proc Camb Philos Soc 55(9):299–328

    Article  Google Scholar 

  • Blumenfeld DE, Beckmann MJ (1985) Use of continuous space modeling to estimate freight distribution costs. Transp Res Part A Gen 19(2):173–187

    Article  Google Scholar 

  • Blumenfeld DE, Burns LD, Daganzo CF, Frick MC, Hall RW (1987) Reducing logistics costs at general motors. Interfaces 17(1):26–47

    Article  Google Scholar 

  • Bonomi E, Lutton J-L (1984) The \(N\)-city travelling salesman problem: statistical mechanics and the Metropolis algorithm. SIAM Rev 26(4):551–568

    Article  Google Scholar 

  • Bozkaya B, Erkut E, Laporte G (2003) A tabu search heuristic and adaptive memory procedure for political districting. Eur J Oper Res 144(1):12–26

    Article  Google Scholar 

  • Burns LD, Hall RW, Blumenfeld DE, Daganzo CF (1985) Distribution strategies that minimize transportation and inventory costs. Oper Res 33(3):469–490

    Article  Google Scholar 

  • Campbell JF (1990a) Designing logistics systems by analyzing transportation, inventory and terminal cost tradeoffs. J Bus Logist 11(1):159–179

    Google Scholar 

  • Campbell JF (1990b) Freight consolidation and routing with transportation economies of scale. Transp Res Part B Methodol 24(5):345–361

    Article  Google Scholar 

  • Campbell JF (1992) Location and allocation for distribution systems with transshipments and transportation economies of scale. Ann Oper Res 40(1):77–99

    Article  Google Scholar 

  • Campbell JF (1993a) Continuous and discrete demand hub location problems. Transp Res Part B Methodol 27(6):473–482

    Article  Google Scholar 

  • Campbell JF (1993b) One-to-many distribution with transshipments: an analytic model. Transp Sci 27(4):330–340

    Article  Google Scholar 

  • Campbell JF (1995) Using small trucks to circumvent large truck restrictions: impacts on truck emissions and performance measures. Transp Res Part A Policy Pract 29(6):445–458

    Article  Google Scholar 

  • Campbell JF (2013) A continuous approximation model for time definite many-to-many transportation. Transp Res Part B Methodol 54:100–112

    Article  Google Scholar 

  • Carlsson JG (2012) Dividing a territory among several vehicles. INFORMS J Comput 24(4):565–577

    Article  Google Scholar 

  • Carlsson JG, Behroozi M (2017) Worst-case demand distributions in vehicle routing. Eur J Oper Res 256(2):462–472

    Article  Google Scholar 

  • Carlsson JG, Delage E (2013) Robust partitioning for stochastic multivehicle routing. Oper Res 61(3):727–744

    Article  Google Scholar 

  • Carlsson JG, Jia F (2014) Continuous facility location with backbone network costs. Transp Sci 49(3):433–451

    Article  Google Scholar 

  • Çavdar B, Sokol J (2015) A distribution-free TSP tour length estimation model for random graphs. Eur J Oper Res 243(2):588–598

    Article  Google Scholar 

  • Chien TW (1992) Operational estimators for the length of a traveling salesman tour. Comput Oper Res 19(6):469–478

    Article  Google Scholar 

  • Chou YH, Chen YH, Chen HM (2014) Pickup and delivery routing with hub transshipment across flexible time periods for improving dual objectives on workload and waiting time. Transp Res Part E Logist Transp Rev 61:98–114

    Article  Google Scholar 

  • Cui T, Ouyang Y, Shen Z-JM (2010) Reliable facility location design under the risk of disruptions. Oper Res 58(4-part-1):998–1011

  • Daganzo CF (1984a) The distance traveled to visit \({N}\) points with a maximum of \({C}\) stops per vehicle: an analytic model and an application. Transp Sci 18(4):331–350

    Article  Google Scholar 

  • Daganzo CF (1984b) The length of tours in zones of different shapes. Transp Res Part B Methodol 18(2):135–145

    Article  Google Scholar 

  • Daganzo CF (1987a) Modeling distribution problems with time windows: part I. Transp Sci 21(3):171–179

    Article  Google Scholar 

  • Daganzo CF (1987b) Modeling distribution problems with time windows: part II: two customer types. Transp Sci 21(3):180–187

    Article  Google Scholar 

  • Daganzo CF (1987c) The break-bulk role of terminals in many-to-many logistic networks. Oper Res 35(4):543–555

    Article  Google Scholar 

  • Daganzo CF (1988) A comparison of in-vehicle and out-of-vehicle freight consolidation strategies. Transp Res Part B Methodol 22(3):173–180

    Article  Google Scholar 

  • Daganzo CF (1991) Logistics systems analysis: lecture notes in economics and mathematical systems. Springer, Berlin

    Google Scholar 

  • Daganzo CF (2005) Logistics systems analysis, 4th edn. Springer, New York

    Google Scholar 

  • Daganzo CF, Hall RW (1993) A routing model for pickups and deliveries: no capacity restrictions on the secondary items. Transp Sci 27(4):315–329

    Article  Google Scholar 

  • Daganzo CF, Newell GF (1985) Physical distribution from a warehouse: vehicle coverage and inventory levels. Transp Res Part B Methodol 19(5):397–407

    Article  Google Scholar 

  • Daganzo CF, Smilowitz KR (2004) Bounds and approximations for the transportation problem of linear programming and other scalable network problems. Transp Sci 38(3):343–356

    Article  Google Scholar 

  • Davis BA, Figliozzi MA (2013) A methodology to evaluate the competitiveness of electric delivery trucks. Transp Res Part E Logist Transp Rev 49(1):8–23

    Article  Google Scholar 

  • Drexl A, Haase K (1999) Fast approximation methods for sales force deployment. Manag Sci 45(10):1307–1323

    Article  Google Scholar 

  • Eilon S, Watson-Gandy CDT, Christofides N (1971) Distribution management. Griffin, London

    Google Scholar 

  • Fairthorne D (1965) The distances between pairs of points in towns of simple geometrical shapes. In: Proceedings of the second international symposium on the theory of road traffic flow. OECD, london, pp 391–406

  • Few L (1955) The shortest path and the shortest road through \(n\) points. Mathematika 2(2):141–144

    Article  Google Scholar 

  • Figliozzi MA (2007) Analysis of the efficiency of urban commercial vehicle tours: data collection, methodology, and policy implications. Transp Res Part B Methodol 41(9):1014–1032

    Article  Google Scholar 

  • Figliozzi MA (2008) Planning approximations to the average length of vehicle routing problems with varying customer demands and routing constraints. Transp Res Rec J Transp Res Board 2089:1–8

    Article  Google Scholar 

  • Figliozzi MA (2010) The impacts of congestion on commercial vehicle tour characteristics and costs. Transp Res Part E Logist Transp Rev 46(4):496–506

    Article  Google Scholar 

  • Finch SR (2003) Mathematical constants. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Fisher ML, Jaikumar R (1981) A generalized assignment heuristic for vehicle routing. Networks 11(2):109–124

    Article  Google Scholar 

  • Franceschetti A, Honhon D, Laporte G, Van Woensel T, Fransoo JC (2017) Strategic fleet planning for city logistics. Transp Res Part B Methodol 95:19–40

    Article  Google Scholar 

  • Francis P, Smilowitz KR (2006) Modeling techniques for periodic vehicle routing problems. Transp Res Part B Methodol 40(10):872–884

    Article  Google Scholar 

  • Gaboune B, Laporte G, Soumis F (1994) Optimal strip sequencing strategies for flexible manufacturing operations in two and three dimensions. Int J Flex Manuf Syst 6(2):123–135

    Article  Google Scholar 

  • Galvão LC, Novaes AGN, De Cursi JES, Souza JC (2006) A multiplicatively-weighted Voronoi diagram approach to logistics districting. Comput Oper Res 33(1):93–114

    Article  Google Scholar 

  • Hall RW (1986) Discrete models/continuous models. Omega 3:213–220

    Article  Google Scholar 

  • Hall RW (1987) Direct versus terminal freight routing on a network with concave costs. Transp Res Part B Methodol 21(4):287–298

    Article  Google Scholar 

  • Hall RW (1991) Characteristics of multi-shop/multi-terminal delivery routes, with backhauls and unique items. Transp Res Part B Methodol 25(6):391–403

    Article  Google Scholar 

  • Hall RW (1993) Design for local area freight networks. Transp Res Part B Methodol 27(2):79–95

    Article  Google Scholar 

  • Hall RW, Du Y, Lin J (1994) Use of continuous approximations within discrete algorithms for routing vehicles: experimental results and interpretation. Networks 24(1):43–56

    Article  Google Scholar 

  • Halton JH, Terada R (1982) A fast algorithm for the Euclidean traveling salesman problem, optimal with probability one. SIAM J Comput 11(1):28–46

    Article  Google Scholar 

  • Han AFW, Daganzo CF (1986) Distributing nonstorable items without transshipments. Transp Res Rec 1061:32–41

    Google Scholar 

  • Hindle A, Worthington D (2004) Models to estimate average route lengths in different geographical environments. J Oper Res Soc 55(6):662–666

    Article  Google Scholar 

  • Hitchcock FL (1941) The distribution of a product from several sources to numerous localities. Stud Appl Math 20(1–4):224–230

    Google Scholar 

  • Huang M, Smilowitz KR, Balcik B (2013) A continuous approximation approach for assessment routing in disaster relief. Transp Res Part B Methodol 50:20–41

    Article  Google Scholar 

  • Jabali O, Erdoğan G (2015) Continuous approximation models for the fleet replacement and composition problem. Technical report, CIRRELT-2015-64

  • Jabali O, Gendreau M, Laporte G (2012) A continuous approximation model for the fleet composition problem. Transp Res Part B Methodol 46(10):1591–1606

    Article  Google Scholar 

  • Jessen RJ (1943) Statistical investigation of a sample survey for obtaining farm facts. PhD thesis, Iowa State College

  • Jordan WC, Burns LD (1984) Truck backhauling on two terminal networks. Transp Res Part B Methodol 18(6):487–503

    Article  Google Scholar 

  • Karp RM (1977) Probabilistic analysis of partitioning algorithms for the traveling-salesman problem in the plane. Math Oper Res 2(3):209–224

    Article  Google Scholar 

  • Karp RM, Steele JM (1985) Probabilistic analysis of heuristics. In: Lawler EL, Lenstra JK, Rinnooy Kan AHG, Shmoys DB (eds) The traveling salesman problem, chap 6. Wiley, Chichester, pp 181–205

    Google Scholar 

  • Kirac E, Milburn AB, Wardell C III (2015) The traveling salesman problem with imperfect information with application in disaster relief tour planning. IIE Trans 47(8):783–799

    Article  Google Scholar 

  • Klincewicz JG, Luss H, Pilcher MG (1990) Fleet size planning when outside carrier services are available. Transp Sci 24(3):169–182

    Article  Google Scholar 

  • Kwon O, Golden BL, Wasil EA (1995) Estimating the length of the optimal TSP tour: an empirical study using regression and neural networks. Comput Oper Res 22(10):1039–1046

    Article  Google Scholar 

  • Langevin A, Soumis F (1989) Design of multiple-vehicle delivery tours satisfying time constraints. Transp Res Part B: Methodol 23(2):123–138

    Article  Google Scholar 

  • Langevin A, Mbaraga P, Campbell JF (1996) Continuous approximation models in freight distribution: an overview. Transp Res Part B Methodol 30(3):163–188

    Article  Google Scholar 

  • Laporte G, Dejax PJ (1989) Dynamic location-routing problems. J Oper Res Soc 40(5):471–482

    Article  Google Scholar 

  • Laporte G, Semet F, Dadeshidze VV, Olsson LJ (1998) A tiling and routing heuristic for the screening of cytological samples. J Oper Res Soc 49(12):1233–1238

    Article  Google Scholar 

  • Larsen C, Turkensteen M (2014) A vendor managed inventory model using continuous approximations for route length estimates and Markov chain modeling for cost estimates. Int J Prod Econ 157:120–132

    Article  Google Scholar 

  • Lei H, Laporte G, Guo B (2012) Districting for routing with stochastic customers. EURO J Transp Logist 1(1–2):67–85

    Article  Google Scholar 

  • Lei H, Laporte G, Liu Y, Zhang T (2015) Dynamic design of sales territories. Comput Oper Res 56:84–92

    Article  Google Scholar 

  • Lei H, Wang R, Laporte G (2016) Solving a multi-objective dynamic stochastic districting and routing problem with a co-evolutionary algorithm. Comput Oper Res 67:12–24

    Article  Google Scholar 

  • Mahalanobis PC (1940) A sample survey of the acreage under jute in Bengal. Sankhyā Indian J Stat Proc Indian Stat Conf 1939 4:511–530

    Google Scholar 

  • Marks ES (1948) A lower bound for the expected travel among \(m\) random points. Ann Math Stat 19(3):419–422

    Article  Google Scholar 

  • Mehrotra A, Johnson EL, Nemhauser GL (1998) An optimization based heuristic for political districting. Manag Sci 44(8):1100–1114

    Article  Google Scholar 

  • Monge G (1781) Mémoire sur la théorie des déblais et des remblais. Imprimerie Royale, Paris

  • Newell GF (1986) Design of multiple-vehicle delivery tours—III valuable goods. Transp Res Part B Methodol 20(5):377–390

    Article  Google Scholar 

  • Newell GF, Daganzo CF (1986a) Design of multiple-vehicle delivery tours—I a ring-radial network. Transp Res Part B Methodol 20(5):345–363

    Article  Google Scholar 

  • Newell GF, Daganzo CF (1986b) Design of multiple vehicle delivery tours—II other metrics. Transp Res Part B Methodol 20(5):365–376

    Article  Google Scholar 

  • Nourinejad M, Roorda MJ (2016) A continuous approximation model for the fleet composition problem on the rectangular grid. OR Spectr 39(2):1–29

    Google Scholar 

  • Novaes AGN, De Cursi JES, Graciolli OD (2000) A continuous approach to the design of physical distribution systems. Comput Oper Res 27(9):877–893

    Article  Google Scholar 

  • Novaes AGN, De Cursi JES, da Silva ACL, Souza JC (2009) Solving continuous location-districting problems with Voronoi diagrams. Comput Oper Res 36(1):40–59

    Article  Google Scholar 

  • Novaes AGN, Graciolli OD (1999) Designing multi-vehicle delivery tours in a grid-cell format. Eur J Oper Res 119(3):613–634

    Article  Google Scholar 

  • Ouyang Y (2007) Design of vehicle routing zones for large-scale distribution systems. Transp Res Part B Methodol 41(10):1079–1093

    Article  Google Scholar 

  • Ouyang Y, Daganzo CF (2006) Discretization and validation of the continuum approximation scheme for terminal system design. Transp Sci 40(1):89–98

    Article  Google Scholar 

  • Pang G, Muyldermans L (2013) Vehicle routing and the value of postponement. J Oper Res Soc 64(9):1429–1440

    Article  Google Scholar 

  • Rosenfield DB, Engelstein I, Feigenbaum D (1992) An application of sizing service territories. Eur J Oper Res 63(2):164–172

    Article  Google Scholar 

  • Royden HL (1968) Real analysis, 2nd edn. Macmillan, New York

    Google Scholar 

  • Saberi M, Verbas Ö (2012) Continuous approximation model for the vehicle routing problem for emissions minimization at the strategic level. J Transp Eng 138(11):1368–1376

    Article  Google Scholar 

  • Sankaran JK, Wood L (2007) The relative impact of consignee behaviour and road traffic congestion on distribution costs. Transp Res Part B Methodol 41(9):1033–1049

    Article  Google Scholar 

  • Skiera B, Albers S (1998) COSTA: contribution optimizing sales territory alignment. Mark Sci 17(3):196–213

    Article  Google Scholar 

  • Steele JM (1981a) Complete convergence of short paths and Karp’s algorithm for the TSP. Math Oper Res 6(3):374–378

    Article  Google Scholar 

  • Steele JM (1981b) Subadditive Euclidean functionals and nonlinear growth in geometric probability. Ann Probab 9(3):365–376

    Article  Google Scholar 

  • Stein DM (1978) An asymptotic, probabilistic analysis of a routing problem. Math Oper Res 3(2):89–101

    Article  Google Scholar 

  • Teitz MB, Bart P (1968) Heuristic methods for estimating the generalized vertex median of a weighted graph. Oper Res 16(5):955–961

    Article  Google Scholar 

  • Turkensteen M, Klose A (2012) Demand dispersion and logistics costs in one-to-many distribution systems. Eur J Oper Res 223(2):499–507

    Article  Google Scholar 

  • Verblunsky S (1951) On the shortest path through a number of points. Proc Am Math Soc 2(6):904–913

    Article  Google Scholar 

  • Xie W, Ouyang Y (2015) Optimal layout of transshipment facility locations on an infinite homogeneous plane. Transp Res Part B Methodol 75:74–88

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge funding provided by the Canadian Natural Sciences and Engineering Research Council under Grants 436014-2013 and 2015-06189.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ola Jabali.

Additional information

This invited paper is discussed in the comments available at doi:10.1007/s11750-017-0457-0, doi:10.1007/s11750-017-0458-z, and doi:10.1007/s11750-017-0460-5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franceschetti, A., Jabali, O. & Laporte, G. Continuous approximation models in freight distribution management. TOP 25, 413–433 (2017). https://doi.org/10.1007/s11750-017-0456-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11750-017-0456-1

Keywords

Mathematics Subject Classification

Navigation