Skip to main content
Log in

Continuous location model of a rectangular barrier facility

  • Original Paper
  • Published:
TOP Aims and scope Submit manuscript

Abstract

This paper develops a bi-objective model for determining the location, size, and shape of a finite-size facility. The objectives are to minimize both the closest and barrier distances. The closest distance represents the accessibility of customers, whereas the barrier distance represents the interference to travelers. The distributions of the closest and barrier distances are derived for a rectangular facility in a rectangular city where the distance is measured as the rectilinear distance. The analytical expressions for the distributions demonstrate how the location, size, and shape of the facility affect the closest and barrier distances. A numerical example shows that there exists a trade-off between the closest and barrier distances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Amiri-Aref M, Javadian N, Tavakkoli-Moghaddam R, Baboli A (2013) A new mathematical model for the Weber location problem with a probabilistic polyhedral barrier. Int J Prod Res 51:6110–6128

    Article  Google Scholar 

  • Aneja Y, Parlar M (1994) Algorithms for Weber facility location in the presence of forbidden regions and/or barriers to travel. Transp Sci 28:70–76

    Article  Google Scholar 

  • Batta R, Ghose A, Palekar U (1989) Locating facilities on the Manhattan metric with arbitrarily shaped barriers and convex forbidden regions. Transp Sci 23:26–36

    Article  Google Scholar 

  • Bischoff M, Klamroth K (2007) An efficient solution method for Weber problems with barriers based on genetic algorithms. Eur J Oper Res 177:22–41

    Article  Google Scholar 

  • Bischoff M, Fleischmann T, Klamroth K (2009) The multi-facility location-allocation problem with polyhedral barriers. Comput Oper Res 36:1376–1392

    Article  Google Scholar 

  • Brimberg J, Wesolowsky G (2000) Note: facility location with closest rectangular distances. Nav Res Logist 47:77–84

    Article  Google Scholar 

  • Brimberg J, Wesolowsky G (2002a) Locating facilities by minimax relative to closest points of demand areas. Comput Oper Res 29:625–636

    Article  Google Scholar 

  • Brimberg J, Wesolowsky G (2002b) Minisum location with closest Euclidean distances. Ann Oper Res 111:151–165

    Article  Google Scholar 

  • Brimberg J, Walker J, Love R (2007) Estimation of travel distances with the weighted \(\ell _p\) norm: some empirical results. J Transp Geogr 15:62–72

    Article  Google Scholar 

  • Brimberg J, Juel H, Körner M, Schöbel A (2014) Locating an axis-parallel rectangle on a Manhattan plane. Top 22:185–207

    Article  Google Scholar 

  • Butt S, Cavalier T (1996) An efficient algorithm for facility location in the presence of forbidden regions. Eur J Oper Res 90:56–70

    Article  Google Scholar 

  • Carrizosa E, Conde E, Muñoz-Márquez M, Puerto J (1995) The generalized Weber problem with expected distances. RAIRO Recherche Opérationnelle 29:35–57

    Google Scholar 

  • Carrizosa E, Muñoz-Márquez M, Puerto J (1998) Location and shape of a rectangular facility in \(\mathbb{R}^n\). Convexity properties. Math Program 83:277–290

    Google Scholar 

  • Chien S, Schonfeld P (1997) Optimization of grid transit system in heterogeneous urban environment. J Transp Eng 123:28–35

    Article  Google Scholar 

  • Daganzo C (2010) Structure of competitive transit networks. Transp Res Part B 44:434–446

    Article  Google Scholar 

  • Dearing P, Segars R (2002a) An equivalence result for single facility planar location problems with rectilinear distance and barriers. Ann Oper Res 111:89–110

    Article  Google Scholar 

  • Dearing P, Segars R (2002b) Solving rectilinear planar location problems with barriers by a polynomial partitioning. Ann Oper Res 111:111–133

    Article  Google Scholar 

  • Dearing P, Hamacher H, Klamroth K (2002) Dominating sets for rectilinear center location problems with polyhedral barriers. Nav Res Logist 49:647–665

    Article  Google Scholar 

  • Dearing P, Klamroth K, Segars R (2005) Planar location problems with block distance and barriers. Ann Oper Res 136:117–143

    Article  Google Scholar 

  • Farahani R, SteadieSeifi M, Asgari N (2010) Multiple criteria facility location problems: a survey. Appl Math Model 34:1689–1709

    Article  Google Scholar 

  • Frieß L, Klamroth K, Sprau M (2005) A wavefront approach to center location problems with barriers. Ann Oper Res 136:35–48

    Article  Google Scholar 

  • Griffith D, Vojnovic I, Messina J (2012) Distances in residential space: implications from estimated metric functions for minimum path distances. GISci Remote Sens 49:1–30

    Article  Google Scholar 

  • Hamacher H, Klamroth K (2000) Planar Weber location problems with barriers and block norms. Ann Oper Res 96:191–208

    Article  Google Scholar 

  • Imai K, Imai H, Tokuyama T (1999) Maximin location of convex objects in a polygon and related dynamic Voronoi diagrams. J Oper Res Soc Jpn 42:45–58

    Article  Google Scholar 

  • Katz I, Cooper L (1981) Facility location in the presence of forbidden regions, I: formulation and the case of Euclidean distance with one forbidden circle. Eur J Oper Res 6:166–173

    Article  Google Scholar 

  • Kelachankuttu H, Batta R, Nagi R (2007) Contour line construction for a new rectangular facility in an existing layout with rectangular departments. Eur J Oper Res 180:149–162

    Article  Google Scholar 

  • Klamroth K (2001) A reduction result for location problems with polyhedral barriers. Eur J Oper Res 130:486–497

    Article  Google Scholar 

  • Klamroth K (2004) Algebraic properties of location problems with one circular barrier. Eur J Oper Res 154:20–35

    Article  Google Scholar 

  • Koshizuka T (1984) On methods of analysing spatial patterns composed of parks and open spaces. J City Plan Inst Jpn 19:313–318 (in Japanese)

    Google Scholar 

  • Kurita O (1991) Location models for a facility with some area. J City Plan Inst Jpn 26:535–540 (in Japanese)

    Google Scholar 

  • Larson R, Sadiq G (1983) Facility locations with the Manhattan metric in the presence of barriers to travel. Oper Res 31:652–669

    Article  Google Scholar 

  • Love R, Morris J (1979) Mathematical models of road travel distances. Manag Sci 25:130–139

    Article  Google Scholar 

  • McGarvey R, Cavalier T (2003) A global optimal approach to facility location in the presence of forbidden regions. Comput Ind Eng 45:1–15

    Article  Google Scholar 

  • Miyagawa M (2012) Rectilinear distance to a facility in the presence of a square barrier. Ann Oper Res 196:443–458

    Article  Google Scholar 

  • Miyagawa M (2014) Optimal allocation of area in hierarchical road networks. Ann Reg Sci 53:617–630

    Article  Google Scholar 

  • Nandikonda P, Batta R, Nagi R (2003) Locating a 1-center on a Manhattan plane with “arbitrarily” shaped barriers. Ann Oper Res 123:157–172

    Article  Google Scholar 

  • Nickel S, Puerto J, Rodríguez-Chía A (2003) An approach to location models involving sets as existing facilities. Math Oper Res 28:693–715

    Article  Google Scholar 

  • Nickel S, Puerto J, Rodríguez-Chía A (2005) MCDM location problems. In: Figueria J, Greco S, Ehrgott M (eds) Multiple criteria decision analysis: state of the art surveys. Springer, New York, pp 761–795

    Chapter  Google Scholar 

  • Okabe A, Boots B, Sugihara K, Chiu S (2000) Spatial tessellations: concepts and applications of Voronoi diagrams. Wiley, Chichester

    Book  Google Scholar 

  • Sarkar A, Batta R, Nagi R (2005) Planar area location/layout problem in the presence of generalized congested regions with the rectilinear distance metric. IIE Trans 37:35–50

    Article  Google Scholar 

  • Sarkar A, Batta R, Nagi R (2007) Placing a finite size facility with a center objective on a rectangular plane with barriers. Eur J Oper Res 179:1160–1176

    Article  Google Scholar 

  • Savaş S, Batta R, Nagi R (2002) Finite-size facility placement in the presence of barriers to rectilinear travel. Oper Res 50:1018–1031

    Article  Google Scholar 

  • Shiode N (1995) A study on optimization of the shape and location of spatial facilities. J City Plan Inst Jpn 30:559–564 (in Japanese)

    Google Scholar 

  • Wang S, Bhadury J, Nagi R (2002) Supply facility and input/output point locations in the presence of barriers. Comput Oper Res 29:685–699

    Article  Google Scholar 

  • Zhang M, Savas S, Batta R, Nagi R (2009) Facility placement with sub-aisle design in an existing layout. Eur J Oper Res 197:154–165

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by JSPS Grant-in-Aid for Scientific Research. I am grateful to the anonymous reviewers for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masashi Miyagawa.

Appendices

Appendix 1: Distribution of the closest distance

The distribution of the closest distance is given by

$$\begin{aligned} f(r)=\frac{1}{S}\sum _{i=1}^8S_if_i(r), \end{aligned}$$
(20)

where

$$\begin{aligned} S&=a_1a_2-b_1b_2,\\ f_1(r)&= {\left\{ \begin{array}{ll} \frac{r}{S_1},&{}\quad 0<r\le \alpha _1,\\ \frac{\alpha _1}{S_1},&{}\quad \alpha _1<r\le \beta _1,\\ \frac{\gamma _1-r}{S_1},&{}\quad \beta _1<r\le \gamma _1, \end{array}\right. }\\ S_1&=\left( x_b-\frac{b_1}{2}\right) \left( y_b-\frac{b_2}{2}\right) ,\quad \alpha _1=\min \left\{ x_b-\frac{b_1}{2}, y_b-\frac{b_2}{2}\right\} ,\\ \beta _1&=\max \left\{ x_b-\frac{b_1}{2}, y_b-\frac{b_2}{2}\right\} ,\quad \gamma _1=x_b+y_b-\frac{b_1}{2}-\frac{b_2}{2},\\ f_2(r)&=\frac{b_2}{S_2},\quad 0<r\le x_b-\frac{b_1}{2},\\ S_2&=b_2\left( x_b-\frac{b_1}{2}\right) ,\\ f_3(r)&= {\left\{ \begin{array}{ll} \frac{r}{S_3},&{}\quad 0<r\le \alpha _3,\\ \frac{\alpha _3}{S_3},&{}\quad \alpha _3<r\le \beta _3,\\ \frac{\gamma _3-r}{S_3},&{}\quad \beta _3<r\le \gamma _3, \end{array}\right. }\\ S_3&=\left( x_b-\frac{b_1}{2}\right) \left( a_2-\frac{b_2}{2}-y_b\right) ,\quad \alpha _3=\min \left\{ x_b-\frac{b_1}{2}, a_2-\frac{b_2}{2}-y_b\right\} ,\\ \end{aligned}$$
$$\begin{aligned} \beta _3&=\max \left\{ x_b-\frac{b_1}{2}, a_2-\frac{b_2}{2}-y_b\right\} ,\quad \gamma _3=a_2-\frac{b_1}{2}-\frac{b_2}{2}+x_b-y_b,\\ f_4(r)&=\frac{b_1}{S_4},\quad 0<r\le y_b-\frac{b_2}{2},\\ S_4&=b_1\left( y_b-\frac{b_2}{2}\right) ,\\ f_5(r)&=\frac{b_1}{S_5},\quad 0<r\le a_2-\frac{b_2}{2}-y_b,\\ S_5&=b_1\left( a_2-\frac{b_2}{2}-y_b\right) ,\\ f_6(r)&= {\left\{ \begin{array}{ll} \frac{r}{S_6},&{}\quad 0<r\le \alpha _6,\\ \frac{\alpha _6}{S_6},&{}\quad \alpha _6<r\le \beta _6,\\ \frac{\gamma _6-r}{S_6},&{}\quad \beta _6<r\le \gamma _6, \end{array}\right. }\\ S_6&=\left( a_1-\frac{b_1}{2}-x_b\right) \left( y_b-\frac{b_2}{2}\right) ,\quad \alpha _6=\min \left\{ a_1-\frac{b_1}{2}-x_b, y_b-\frac{b_2}{2}\right\} ,\\ \beta _6&=\max \left\{ a_1-\frac{b_1}{2}-x_b, y_b-\frac{b_2}{2}\right\} ,\quad \gamma _6=a_1-\frac{b_1}{2}-\frac{b_2}{2}-x_b+y_b,\\ \end{aligned}$$
$$\begin{aligned} f_7(r)&=\frac{b_2}{S_7},\quad 0<r\le a_1-\frac{b_1}{2}-x_b,\\ S_7&=b_2\left( a_1-\frac{b_1}{2}-x_b\right) ,\\ f_8(r)&= {\left\{ \begin{array}{ll} \frac{r}{S_8},&{}\quad 0<r\le \alpha _8,\\ \frac{\alpha _8}{S_8},&{}\quad \alpha _8<r\le \beta _8,\\ \frac{\gamma _8-r}{S_8},&{}\quad \beta _8<r\le \gamma _8, \end{array}\right. }\\ S_8&=\left( a_1-\frac{b_1}{2}-x_b\right) \left( a_2-\frac{b_2}{2}-y_b\right) ,\\ \alpha _8&=\min \left\{ a_1-\frac{b_1}{2}-x_b, a_2-\frac{b_2}{2}-y_b\right\} ,\\ \beta _8&=\max \left\{ a_1-\frac{b_1}{2}-x_b, a_2-\frac{b_2}{2}-y_b\right\} ,\quad \gamma _8\!=\!a_1\!+\!a_2-\frac{b_1}{2}-\frac{b_2}{2}-x_b-y_b. \end{aligned}$$

Appendix 2: Total closest distance

The total closest distance is given by

$$\begin{aligned} T_a=\sum _{i=1}^8T_i, \end{aligned}$$
(21)

where

$$\begin{aligned} T_1&=\frac{1}{16}(2x_b-b_1)(2y_b-b_2)(2x_b+2y_b-b_1-b_2),\\ T_2&=\frac{b_2}{8}(2x_b-b_1)^2,\\ T_3&=\frac{1}{16}(2x_b-b_1)(2a_2-b_1-b_2+2x_b-2y_b)(2a_2-b_2-2y_b),\\ T_4&=\frac{b_1}{8}(2y_b-b_2)^2,\\ T_5&=\frac{b_1}{8}(2a_2-b_2-2y_b)^2,\\ T_6&=\frac{1}{16}(2a_1-b_1-2x_b)(2y_b-b_2)(2a_1-b_1-b_2-2x_b+2y_b),\\ T_7&=\frac{b_2}{8}(2a_1-b_1-2x_b)^2,\\ T_8&=\frac{1}{16}(2a_1-b_1-2x_b)(2a_2-b_2-2y_b)(2a_1+2a_2-b_1-b_2-2x_b-2y_b). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyagawa, M. Continuous location model of a rectangular barrier facility. TOP 25, 95–110 (2017). https://doi.org/10.1007/s11750-016-0424-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11750-016-0424-1

Keywords

Mathematics Subject Classification

Navigation