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Abstract In the field of cooperative games with restricted cooperation, various restric-
tions on coalition formation are studied. The most studied restrictions are those that
arise from restricted communication and hierarchies. This survey discusses several
models of hierarchy restrictions and their relation with communication restrictions.
In the literature, there are results on game properties, Harsanyi dividends, core sta-
bility, and various solutions that generalize existing solutions for TU-games. In this
survey, we mainly focus on axiomatizations of the Shapley value in different models
of games with a hierarchically structured player set, and their applications. Not only
do these axiomatizations provide insight in the Shapley value for these models, but
also by considering the types of axioms that characterize the Shapley value, we learn
more about different network structures. A central model of games with hierarchies
is that of games with a permission structure where players in a cooperative transfer-
able utility game are part of a permission structure in the sense that there are players
that need permission from other players before they are allowed to cooperate. This
permission structure is represented by a directed graph. Generalizations of this model
are, for example, games on antimatroids, and games with a local permission struc-
ture. Besides discussing these generalizations, we briefly discuss some applications,
in particular auction games and hierarchically structured firms.
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1 Introduction

A situation in which a finite set of players can generate certain payoffs by cooperation
can be described by a cooperative game with transferable utility (or simply a TU-
game). A TU-game consists of a player set, and for every subset of the player set,
called a coalition, a real number which is the worth that the coalition of players can
earn when they agree to cooperate.

In a TU-game, there are no restrictions on the cooperation possibilities of the
players, i.e. every coalition is feasible and can generate a worth. Various models with
restrictions on coalition formation are discussed in the literature. The most applied
restrictions are those arising from restrictions in communication and hierarchies. In
this survey, we discuss several models where cooperation is restricted because the
players are part of some hierarchical structure. We review several of such models and
their relations. Considering payoff allocation we focus on the Shapley value, but other
solutions such as the nucleolus, Banzhaf value or Core are considered in the literature.

A central model in this is that of games with a permission structure which describe
situations in which the players in a TU-game are part of a hierarchical organization
that is represented by a directed graph, referred to as a permission structure, such that
there are players that need permission from other players before they are allowed to
cooperate. Various assumptions can be made about how a permission structure affects
the cooperation possibilities. In the conjunctive approach, it is assumed that every
player needs permission from all its predecessors before it is allowed to cooperate.
Alternatively, in the disjunctive approach, it is assumed that every player needs per-
mission from at least one of its predecessors before it is allowed to cooperate with
other players.'

To take account of the limited cooperation possibilities, for every game with a
permission structure a modified game is defined which assigns to every coalition
the worth of its largest feasible subcoalition in the original game. The disjunctive
and conjunctive approach yield different modified games. A solution for games with a
permission structure is a function that assigns to every such a game a payoff distribution
over the individual players. Applying solutions for TU-games to the modified games
yields solutions for games with a permission structure. Applying the Shapley value to
the two restricted games described above yields two different solutions for games with a
permission structure: the conjunctive and the disjunctive (Shapley) permission values.

Games with a permission structure can be generalized in various ways, for example
to games on antimatroids. Antimatroids are combinatorial structures which, besides
permission structures, also generalize other models such as ordered partition voting
where players are partitioned into levels, and a coalition in a certain level can be active

1 References to game models and solutions are given in the main text.

@ Springer



Games with a permission structure... 3

only if a majority of players in higher levels approve. Since antimatroids are union
closed (i.e. the union of any two feasible coalitions is also feasible), a similar approach
as for games with a permission structure can be followed by defining a restricted game
that assigns to every coalition the worth of its largest feasible subset in the original
game, and applying the Shapley value (or any other TU-game solution) to this restricted
game. We discuss how some results can be generalized to this framework. After that
we argue that antimatroids are a natural counterpart for undirected communication
graphs in the sense that they are defined by properties that are similar to properties
that characterize connected coalitions in undirected communication graphs.

A special class of games with a permission structure that has many applications in
economics and operations research is the class of peer group games which are also
a special case of so-called digraph games. Peer group games are derived from peer
group situations being games with a permission structure where the game is additive
and the permission structure is arooted tree. Applications are, e.g. polluted river games,
liability games, the duals of airport games, auction games and ATM games. Digraph
games are directly defined for weighted digraphs (with weights on the nodes/players)
and are applied to measure domination or centrality in directed networks. A model that
generalizes games with a permission structure as well as digraph games are games with
alocal permission structure where players need permission from their predecessors to
cooperate, but do not need permission from their predecessors to allow their successors
to cooperate. In this sense, authority and value generation are separated.

From the many applications of games with a permission structure, we will briefly
discuss two: (i) auction games which are an application of peer group games, and
(i1) hierarchically structured firms where the permission structure is a rooted tree
and the game is convex such that the only nonnull players are those at the lowest
level of the hierarchy, i.e. those players that have no successors (the other players are
supposed to be managers who coordinate the production process but do not produce
value themselves).

This survey is organized as follows. In Sect. 2, we discuss the central model of
games with a permission structure. In Sect. 3, we generalize permission structures
to antimatroids. In Sect. 4, we compare hierarchies with communication graphs, and
argue that antimatroids are a natural counterpart for communication graphs. In Sect. 5,
we discuss games with a local permission structure that generalize games with a
permission structure as well as digraph games. In Sect. 6, we discuss some applications.
We end with some concluding remarks in Sect. 7.

2 Games with a permission structure

2.1 Cooperative TU-games

A situation in which a finite set of players N C N can generate certain payoffs by
cooperation can be described by a cooperative game with transferable utility (or simply
a TU-game), being a pair (N, v) where v: 2V — R is a characteristic function on N

satisfying v() = 0. For every coalition E C N, v(E) € R is the worth of coalition
E, i.e. the members of coalition E can obtain a total payoff of v(E) by agreeing to

@ Springer



4 R. van den Brink

cooperate. Since we take the player set to be fixed, we denote a TU-game (N, v)
just by its characteristic function v and refer to this simply as a game. We denote the
collection of all TU-games (characteristic functions) on player set N by GV .

A payoff vector for game v € GV is an |N|-dimensional vector x € R assigning
a payoff x; € R to any player i € N. A (single-valued) solution for TU-games is a
function f that assigns a payoff vector f(v) € R¥ to every TU-game v € G". One of
the most famous solutions for TU-games is the Shapley value (Shapley 1953) given by

1 T
i) = 7 > mf ),

" well(N)

where IT(N) is the set of all permutations of NV, and for every permutationt: N — N,
the corresponding marginal vector m™ (v) is given by m? (v) = v({j € N | w(j) <
7)) —v({{jeN|n(j) <n@)}) foralli € N.

The Core (Gillies 1953) of v € GV is the set of all efficient payoff vectors that are
group stable in the sense that no coalition can do better by separating, and is given by

Y xi=v(N)and Y x; > v(E) forallECN .

Core(v) = {x e RV
ieN icE

As known, the Core of a game is nonempty if and only if the game is balanced, see,
e.g. Bondareva (1963) or Shapley (1967).

Next, we recall some game properties. Game v € GV is monotone if v(E) < v(F)
for all E € F C N. We denote the class of all monotone TU-games on N by QA’\,;.
Game v € GV is superadditive if v(E U F) > v(E) + v(F) forall E, F € N such
that EN F = @. Game v € GV is convex if v(E U F) + v(E N F) > v(E) + v(F)
for all E, F € N. Note that every convex game is superadditive. A game is additive
or inessential if v(E) = ) ; g v({i}) forall E C N.

For two games v, w € GV, the game (v + w) € GV is given by (v + w)(E) =
v(E)+w(E) forall EC N.

For every T € N, T # {, the unanimity game ur is given by ur(E) = 1 if
T C E,and ur(E) = 0 otherwise. It is well known that the unanimity games form a
basis for GV: for every v € GV it holds that v = ZT% Ay(Dur, where Ay(T) =

T

ZEET (—D)ITI=IEly(E) are the Harsanyi dividends, see Harsanyi (1959). Using these
Harsanyi dividends, the Shapley value also can be written as:

Ay (E
Shi(v) = Z% foralli € N.

ECN
ieE

2.2 Games with a permission structure

A game with a permission structure describes a situation where some players in a TU-
game need permission from other players before they are allowed to cooperate with
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Games with a permission structure... 5

other players in a coalition. Formally, a permission structure is adirected graphon N. A
directed graph or digraph is a pair (N, D) where N = {1, ..., n} is a finite set of nodes
(representing the players) and D € N x N is a binary relation on N. We assume the
digraph to be irreflexive, i.e., (i, i) ¢ D foralli € N. Since we take the player set to be
fixed, we simply refer to D for a digraph, and we denote the collection of all irreflexive
digraphs on N by DV. For i € N, the nodes in Sp(i) := {j € N | (i, j) € D}
are called the successors of i, and the nodes in Pp(i) := {j € N | (j,i) € D}
are called the predecessors of i in D. For given D € DV, a (directed) path from
i to j in N is a sequence of distinct nodes (hy, ..., h;) such that hy = i, hyy1 €
Sp(hy) fork = 1,...,t — 1, and h; = j. The transitive closure of D € DV is the
digraph tr(D) given by (i, j) € tr(D) if and only if there is a directed path from
i to j. By §D (i) = Si(p)(i), we denote the set of successors of i in the transitive
closure of D, and refer to these players as the subordinates of i in D. We refer to
the players in FD(i) ={jeN|ice€ §D(j)} as the superiors of i in D. A digraph
D € DV is transitive if D = tr(D). For a set of players E C N, we denote by
Sp(E) = U;eg Sp(i), respectively, Pp(E) = |J;cg Pp(i), the sets of successors,
respectively predecessors of players in coalition E. Also, for E. € N, we denote
Sp(E) = Uieg Sp(i) and Pp(E) = Uicg Pp(i).

A directed path (if,...,i;),t > 2,in D is a cycle in D if (i;,i1) € D. We call
digraph D acyclic if it does not contain any cycle. Note that acyclicity of digraph D
implies that D has at least one node that does not have a predecessor. We refer to these
as fop nodes, and denote the set of top nodes by TOP(D) = {i € N | Pp(i) = #}. A
permission structure D on N is quasi-strongly connected if there exists an iy € N such
that §D (ip) = N \ {io}. A permission structure D on N is hierarchical if it is acyclic
and quasi-strongly connected. We denote the collection of all hierarchical permission
structures on N by DZ.

A triple (N, v, D) with N C N a finite set of players, v € GV a TU-game and
D e DV adigraph on N is called a game with a permission structure. Again, since we
take the player set N to be fixed, we denote a game with a permission structure just as
apair (v, D). In the conjunctive approach as introduced in Gilles et al. (1992) and van
den Brink and Gilles (1996), it is assumed that a player needs permission from all its
predecessors to cooperate with other players. Therefore, a coalition is feasible if and
only if for every player in the coalition all its predecessors are also in the coalition.
So, for permission structure D the set of conjunctive feasible coalitions is given by

@6 ={(EC N|Pp(i) CE foralli € E}.

Forevery E C N, letop,(E) = U{Fed,f)ngE} F=E\ §D(N \ E) be the largest

conjunctive feasible subset” of E in the collection @4,. Then, the induced conjunctive

restricted game of the pair (v, D) is the game ry ;: 2N — R that assigns to every
coalition £ C N the worth of its largest conjunctive feasible subset, i.e.

ry.p(E) =v(0ph(E)) forall EC N. )

2 Every coalition having a unique largest feasible subset follows from the fact that @{, is union closed, see
also Sect. 3.
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6 R. van den Brink

A solution for games with a permission structure is a function f that assigns a payoff
distribution f (v, D) € RY to every game with permission structure (v, D) on N. The
conjunctive (Shapley) permission value ¢°¢ is the solution that assigns to every game
with a permission structure the Shapley value of the conjunctive restricted game, thus

¢“(v, D) = Sh(r p) forall (v, D) € GV x DV,

Alternatively, for hierarchical permission structures’ in the disjunctive approach
as introduced in Gilles and Owen (1994) (see also Gilles 2010) and van den Brink
(1997) it is assumed that a non-top player needs permission from at least one of its
predecessors. Therefore, a coalition is feasible if and only if for every player in the
coalition (except the top player), at least one of its predecessors is also in the coalition.
So, for permission structure D the set of disjunctive feasible coalitions is given by

&l =(EC N|Pp())NE #§ foralli € E\TOP(D)}.

Forevery E C N, let og (E) = U{Fed,%ngE} F be the largest disjunctive feasible

subset* of E in @dD. Then, the induced disjunctive restricted game of the game with
permission structure (v, D) is the game rf)’ D! 2N — R that assigns to every coalition

E C N the worth of its largest disjunctive feasible subset, i.e.
rd p(E) = v(of(E)) forallE C N. 2)

Then, the disjunctive (Shapley) permission value ¢? is the solution that assigns to
every game with a permission structure the Shapley value of the disjunctive restricted
game, thus

¢’ (v, D) = Sh(rd ) forall (v, D) € GV x DY.

Example 1 Consider the game with permission structure (v, D) on N = {1, 2, 3, 4}
givenbyv(E) = 1if4 € E,v(E) = 0if4 ¢ E,and D = {(1, 2), (1, 3), (2, 4), (3, 4)}
(see Fig. 1). The conjunctive feasible coalitions are: {1}, {1, 2}, {1, 3}, {1, 2,3} and
{1,2,3,4}. Additional® disjunctive feasible coalitions are {1, 2, 4} and {1, 3, 4}.

The conjunctive restriction is given by rg’D(E) = 1if E = {1,2, 3,4}, and
r;'yD(E) = 0 otherwise. Thus, ¢“(v, D) = (}1, J—P %, JT). The disjunctive restriction
is given by rff’D(E) =1if £ € {{1,2,4}, {1,3,4}, {1,2,3,4}}, and r,‘f,D(E) =0
otherwise. Thus, (pd(v, D) = (%, % % %). O

3 Although defined for hierarchical permission structures, the disjunctive approach can be extended to
games with an acyclic permission structure in a straightforward way. We define it only for hierarchical
permission structures for notational convenience.

4 Similar as in the conjunctive approach, every coalition having a unique largest feasible subset follows
from the fact that @dD is union closed, see Sect. 3.

5 Note that every conjunctive feasible coalition is also disjunctive feasible: CDB = @% forall D DZ.
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Games with a permission structure... 7

Fig. 1 Permission structure D 1
of Example 1

In Example 1, without any restriction, according to the Shapley value in the unre-
stricted game, player 4 earns the full payoff of one, and the other players all earn zero.
In the conjunctive approach, all three other players are necessary to make player 4
active and, therefore, the restricted game becomes the unanimity game of the grand
coalition N, and the conjunctive permission value allocates the payoff equally over all
four players, giving each a payoff of 4—{. In the disjunctive approach, players 2 and 3
are not necessary to make player 4 active, although at least one of them is necessary.
In the disjunctive permission value, this is reflected in the payoffs, where players 2
and 3 now get only % of the payoffs of players 1 and 4 who both get the same payoff.

Which of the two approaches is most suitable? This depends on the application one
has in mind. In general, to motivate solutions we provide axiomatizations, preferably
‘comparable’ axiomatizations which help in comparing different solutions.

2.3 Axiomatization of the permission values

Since in this paper we focus on the Shapley value, we refer to the conjunctive and
disjunctive (Shapley) permission values often just as conjunctive and disjunctive per-
mission values. Player i € N is inessential in game with permission structure (v, D)
if i and all its subordinates are null players in game v, i.e. if v(E) = v(E \ {j}) for
all EC Nandj € {i} U§D(i). Playeri € N is necessary in game v if v(E) = O for
all E € N\ {i}.

Next, we mention some axioms of solutions for games with a permission structure.
Efficiency and additivity are straightforward generalizations of TU-game solution
axioms. The inessential player property requires that inessential players earn a zero
payoff. The necessary player property requires that necessary players earn at least as
much as any other player if the game is monotone. Notice that a necessary player is a
‘strong’ player in a monotone game.

Efficiency For every v € GV and D € DV, itholds that Y ;_y fi (v, D) = v(N).
Additivity Forevery v, w € G and D € DV, itholds that f (v+w, D) = f(v, D)+
f(w, D).

Inessential player property Forevery v € GV and D € DV, ifi € N is an inessential
player in (v, D) then f;(v, D) = 0.

Necessary player property For every v € QAA,; and D € DV ifi € N is a necessary
player in (N, v) then f;(v, D) > f;(v, D) forall j € N.

Both permission values satisfy these four axioms. We obtain an axiomatization
of the conjunctive permission value by adding the following axiom saying that in
monotone games, players earn at least as much as their successors.
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8 R. van den Brink

Structural monotonicity For every v € QAI\,; and D € DN, if j € Sp(i) then
fi(v, D) > fj(v, D).

Theorem 1 (van den Brink and Gilles 1996) A solution f for games with a permission
structure is equal to the conjunctive permission value ¢° if and only if it satisfies
efficiency, additivity, the inessential player property, the necessary player property
and structural monotonicity.

We remark that the axioms in all axiomatizations mentioned in this paper are logi-
cally independent.

For hierarchical permission structures, the disjunctive permission value satisfies all
these axioms except structural monotonicity. In Example 1, according to the disjunctive
permission value, player 2 earns % while player 4 earns %, showing that structural
monotonicity is not satisfied. Note that player 1 still earns at least as much as player
4, also according to the disjunctive permission value. For hierarchical permission
structures, the disjunctive permission value satisfies the following weaker version of
structural monotonicity.

We say that player i € N dominates player j € N completely if all directed
‘permission paths’ from the top-player i to player j contain player i. We denote the
set of players that player i dominates completely by Sp (i), i.e.

Sp(i) = {j € §D @) | i belongs to every directed path from ij to j } .

Also, define Pp(i) = {j € FD (@ |ie Sp (j)}. Weak structural monotonicity
requires that a player earns at least as much as each of its complete subordinates.

Weak structural monotonicity For every v € QAA,; and D € DV, ifi € N and
j € Sp(i), then f;(v, D) > f;(v, D).

Further, the disjunctive permission value satisfies disjunctive fairness which states
that deleting the arc between two players 4 and j € Sp(h) (with |Pp(j)| > 2) changes
the payoffs of players & and j by the same amount. Moreover, also the payoffs of
all players i that completely dominate player 4 change by this same amount®. For
DeDV,heNand j € Sp(h), we denote the permission structure that is left after
deleting the arc between 4 and j by D_, jy = D\ {(h, j)}.

Disjunctive fairness For every v € GV and D € DY, if h € N and j € Sp(h) with
|Pp())| = 2, then fj(v, D) = fj(v, D—.j)) = fi(v, D) = fi(v, D—,j) for all
i c{hyUPpH).

It can be verified from Example 1 that the conjunctive permission value does not sat-
isfy disjunctive fairness. However, it satisfies the alternative conjunctive fairness which
states that deleting the arc between two players i and j € Sp(h) (with |Pp(j)| > 2)

6 This property is some kind of equal-loss-or-gain property. Since it is related to fairness as introduced in
Myerson (1977) for games with a limited communication structure (see Sect. 4), we refer to this property as
(disjunctive) fairness. Note that in disjunctive fairness we require that the successor on the arc to be deleted
has at least two predecessors, implying that the permission structure that is left after deleting the arc is still
quasi-strongly connected.
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Games with a permission structure... 9

changes the payoffs of player j and any other predecessor g € Pp(j) \ {h} by the
same amount. Moreover, also the payoffs of all players that completely dominate the
other predecessor g change by this same amount.

Conjunctive fairness For every v € GN and D € DY, if h, j,g& € N are such
that h # g and j € Sp(h) N SB(g) then f;(v, D) — fij(v, D_@,j)) = fi(v, D) —
fitv, D_ j)) foralli € {g} U Pp(g).

The axioms described above characterize the two (Shapley) permission values for
games with a hierarchical permission structure.’

Theorem 2 On the class of games with a hierarchical permission structure:

(i) (van den Brink 1997) a solution f is equal to the disjunctive permission value ¢®
if and only if it satisfies efficiency, additivity, the inessential player property, the
necessary player property, weak structural monotonicity and disjunctive fairness.

(i1) (van den Brink 1999) a solution f is equal to the conjunctive permission value
¢ if and only if it satisfies efficiency, additivity, the inessential player prop-
erty, the necessary player property, weak structural monotonicity and conjunctive
fairness.

Theorem 2 gives comparable axiomatizations of the conjunctive and disjunctive
permission values that differ in only one axiom. In particular, an axiom that reflects
some kind of equal treatment with respect to certain players when deleting arcs.

If D = () then there are no restrictions in coalition formation® (and ®¢, = @% =
2V and the conjunctive and disjunctive restricted games are just equal to the original
game v. Consequently, ¢°(v, D) = (pd(v, D) = Sh(v) in that case. Notice that the
three axiomatizations discussed here give the same axiomatization of the Shapley
value for TU-games in case one only considers the empty graph D = . In that case,
efficiency and additivity just boil down to the corresponding axioms for TU-game
solutions. Since no player has subordinates, a player is inessential if and only if it is
a null player and, thus, the inessential player property boils down to the null player
property for TU-game solutions. The necessary player property does not depend on
the permission structure anyway, and can be stated as well for TU-game solutions
by requiring that a necessary player in a monotone game earns at least as much as
any other player.” Efficiency, additivity, the inessential (null) player property and
the necessary player property then give uniqueness as in Shapley (1953). Note that
structural monotonicity, disjunctive fairness and conjunctive fairness have no meaning
when D = .

The two fairness axioms that are mentioned above compare the effects of deleting
the arc between players & and j € Sp(h) on the payoffs of players & and j, respec-
tively, on the payoffs of players g € Pp(j) \ {h} and j. These properties do not
compare the change in payoffs of players 4 and g € Pp(j) \ {h} after deleting the arc

7 Other axiomatizations of the conjunctive permission value for games with an acyclic permission structure
are given in van den Brink and Gilles (1996).

8 Note that D = @ is not quasi-strongly connected, but it is acyclic.

9 Since all players in T € N are necessary players in the unanimity game u7 on 7', they should earn the
same in that game, which in the axiomatization of the Shapley value is guaranteed by symmetry.
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10 R. van den Brink

between h and j. The opposite change property states that deleting the arc between
player h and j € Sp(h) (with |Pp(j)| > 2) changes the payoffs of the two prede-
cessors h and g € Pp(j) \ {h} in opposite direction. The Shapley permission values
do not satisfy this property.'® The Shapley permission values do satisfy this prop-
erty if we restrict ourselves to monotone games. As shown in van den Brink (2010),
the conjunctive and disjunctive Banzhaf permission values (obtained by applying the
Banzhaf value!! to the conjunctive and disjunctive restricted games, do satisfy this
opposite change property. They even satisfy the stronger property of power split neu-
trality which requires that the sum of the payoffs of the two predecessors does not
change.!?

For monotone games, deleting the arc between two players does not increase the
payoff of the predecessor on the arc according to both Shapley permission values. Also,
deleting an arc does not decrease the payoff of any other predecessor of the successor
on the arc. The effect for the successor on the deleted arc depends on the approach.
According to the conjunctive permission value, the payoff of the successor does not
decrease, but according to the disjunctive permission value it does not increase. This
comes from a fundamental difference between the two approaches, where deleting an
arc leads to more feasible coalitions in the conjunctive approach, but to less feasible
coalitions in the disjunctive approach. In the conjunctive approach, deleting an arc
means that the successor on this arc does not need permission from this predecessor
anymore. In the disjunctive approach, deleting an arc means that the successor cannot
use the permission from this predecessor anymore, so now needs permission from at
least one of its other predecessors, which was also sufficient before deleting the arc.
This gives a very different interpretation to an arc: in the disjunctive approach, an
additional arc creates possibilities, but in the conjunctive approach an additional arc
creates restrictions. In both approaches, the feasible coalitions that are lost or gained
contain both players on the arc.

Theorem 3 (van den Brink 1999) For every hierarchical permission structure D €
DY andi, j € N suchthat (i, j) € D, it holds that @, C @, - and @f,  C f.

In the following, we refer to a set of coalitions F C 2N that can be the conjunctive
(respectively disjunctive) feasible set corresponding to some acyclic permission struc-
ture, i.e. there is some acyclic permission structure D such that - = &¢, (respectively
F = <15dD) as a conjunctive (respectively disjunctive) feasible set.

10 Consider, for example, the game with permission structure (v, D) on N = {1, 2, 3,4, 5}, given by v =
U5y — goiqay. and D = {(1,2), (1,3). (1,5), (2.4), (3, 4)}. Then, ¢¢ (v, D) —¢§ (v. D_(2,4)) = — 15
and </J‘31(v, D) — <p‘3i(v, D_@.4) = 7$.

For the conjunctive Shapley permission values ¢5(v, D) — ¢5(v, D_(2.4)) = % and ¢5(v, D) —
95, D_(2.4)) = 135+

1" The Banzhaf value as solution for TU-games is based on the Banzhaf index for voting games (Banzhaf
1965) and is generalized to TU-games games by, e.g. Owen (1975) and Dubey and Shapley (1979).

12 1n van den Brink (2010), these axioms are used to axiomatize the conjunctive and disjunctive Banzhaf
permission values, also applying vertical and horizontal merge neutrality properties.

@ Springer



Games with a permission structure... 11

3 Games on an antimatroid

Games with a permission structure are one way to model games with a hierarchical
structure on the set of players. Are there other ways to model hierarchically struc-
tured player sets? In Algaba et al. (2003a,b, 2004), the structure on the player set is
represented by an antimatroid.

3.1 Antimatroids

Antimatroids are a combinatorial structure introduced by Dilworth (1940) and studied
by Edelman and Jamison (1985).

Definition 1 A set of feasible coalitions A C 2 is an anfimatroid on N if it satisfies

1. de A
2. (Closed under union) If E, F € Athen EUF € A
3. (Accessibility) If E € A, E # (J, then there exists ani € E such that £\ {i} € A.

An antimatroid is a normal antimatroid if, additionally, it satisfies

4. (Normality) For every i € N there exists an E € A such thati € E.

Note that normality and union closedness imply that N € A. In the following, we
refer to normal antimatroids simply as antimatroids. The conjunctive and disjunctive
feasible sets corresponding to an acyclic permission structure are antimatroids.

Theorem 4 (Algaba et al. 2004) If D is an acyclic permission structure on N, then
&Y, and @dD are antimatroids on N.

Next question is if antimatroids are really more general than permission structures.
First, we exactly characterize those antimatroids that can be the conjunctive or disjunc-
tive feasible set of some permission structure. It turns out that conjunctive feasible sets
are exactly those that are closed under intersection. These are well-known structures,
also known as poset antimatroids.

Theorem 5 (Algaba et al. 2004) Let A be an antimatroid. There is an acyclic permis-
sion structure D such that A = @Y, ifand only if ENF € A forevery E, F € A.

An alternative way to characterize poset antimatroids is by using paths. An extreme
player of E € Ais aplayeri € E such that E \ {i} € A. So, extreme players are
those players that can leave a feasible coalition E keeping feasibility. By accessibility,
every feasible coalition has at least one extreme player. Coalition E € A is a path in
A if it has a unique extreme player. The path E € Aisai-pathin Aifithasi € E as
unique extreme player.

The paths form the basis of an antimatroid in the sense that every feasible coalition
in an antimatroid is either a path, or can be written as the union of other feasible
coalitions in the antimatroid. So, if we know the paths, then we generate the full
antimatroid by applying the union operator.
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12 R. van den Brink

Theorem 6 (Algaba et al. 2004) Let A be an antimatroid. There is an acyclic per-
mission structure D such that A = @7, if and only if for every player i € N there is
a unique i-path in A.

This theorem implies that a conjunctive feasible set (poset antimatroid) has exactly n
paths, one for each player. In Example 1, the paths of players 1, 2, 3 and 4, respectively,
are the (feasible) sets {1}, {1, 2}, {1, 3} and {1, 2, 3, 4}. Feasible coalition {1, 2, 3} is
the union of the paths {1, 2} and {1, 3}.

Obviously, in a disjunctive feasible set there can be players that have more than one
path. In Example 1, we see that {1, 2, 4} and {1, 3, 4} are both paths of player 4. On
the other hand, typical for the disjunctive feasible set <D;1) is that, given a path, leaving
out the unique extreme player, we have again a path, see for example the sequence of
paths {1, 2,4}, {1, 2}, {1}, ¥ in Example 1. This is not satisfied by the conjunctive
feasible set @7, since deleting the unique extreme player from the path {1, 2, 3, 4},
we are left with {1, 2, 3} which is not a path since both players 2 and 3 are extreme
players (as we saw above, it is the union of the feasible coalitions {1, 2} and {1, 3}).
It turns out that this ‘path property’ is typical for disjunctive feasible sets. In fact, we
need something stronger.

Theorem 7 (Algaba et al. 2004) Let A be an antimatroid. There is an acyclic permis-
sion structure D such that A = (DdD if and only if

1. Every path E has a unique feasible ordering, i.e. E := (i1 > --- > i;) such that
{i1,...,ix} € Aforall 1 <k < t. Furthermore, the union of these orderings for
all paths is a partial ordering of N.

2. If E, F and E \ {i} are paths such that the extreme player of F equals the extreme
player of E \ {i}, then F U {i} € A.

Next, we show that antimatroids are really more general than permission struc-
tures by giving an example of an antimatroid that does not satisfy the properties of
Theorems 6 and 7.

Example 2 (Ordered partition voting) Consider player set N = {1, 2, 3, 4, 5}. Sup-
pose that the player set is partitioned into two levels: Level 1 consists of players 1,
2 and 3, while Level 2 consists of players 4 and 5. Suppose that all subsets of Level
1 are feasible, but every subset of Level 2 needs approval of a majority (two-player)
coalition of Level 1. So, the set of feasible coalitions is

@, {13, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3},
A=4{1,2,4},{1,2,5}, (1, 3,4}, {1, 3,5}, {2, 3,4}, {2, 3, 5},
{1,2,3,4},(1,2,3,5},{1,2,4,5},{1,3,4,5},{2,3,4,5},{1,2,3,4, 5}

This is an antimatroid. However, it is not a conjunctive feasible set (poset antima-
troid) since {1, 2,4}, {1, 3,4} and {2, 3, 4} are all paths of player 4. It is also not a
disjunctive feasible set since taking out the unique extreme player (4) from the path
{1, 2, 4} gives coalition {1, 2} which is not a path. O

It is not difficult to prove that the conjunctive and disjunctive approach coincides
if and only if the permission structure is a forest.
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Games with a permission structure... 13

Theorem 8 (Algaba et al. 2004) Let D be an acyclic permission structure. Then,
¢ = &9 ifand only if |Pp(i)| < 1 foralli € N.

3.2 Cooperative games on an antimatroid

A game on an antimatroid is a triple (N, v, A) where v € GV is a characteristic
function, and A is an antimatroid on player set N. Since we take the player set to
be fixed, we denote a game on an antimatroid just as a pair (v, A). The antimatroid
is the set of feasible coalitions in the game and, thus, reflects the restricted coopera-
tion possibilities. Since the conjunctive and disjunctive feasible sets derived from an
acyclic permission structure are antimatroids, this model generalizes the games with
a permission structure.

By union closedness, every coalition has a unique largest feasible subset. For anti-
matroids, Korte et al. (1991) introduced the interior operator int 4 : 2N 5 A that
assigns to every set its largest feasible subset, i.e.

inta(E)= | J F forallECN.
(FeA|FCE)}

Using this operator, we can easily generalize the definition of the conjunctive and
disjunctive restricted game for games with a permission structure to games on anti-
matroids. The restriction of game v on antimatroid 4 is the game v 4 that assigns to
every coalition the worth of its largest feasible subset and, thus, is given by

vA(E) = v(inty(E)) forall E € N.

Next, we mention some properties for TU-games that are inherited by the restricted
game.'3 Player i € N is an atom in antimatroid A if {i} € A.Ifalli € N are atoms
in A, then A = 2" and v4 = v for all games v.

Theorem 9 (Algaba et al. 2004) Let A be an antimatroid and v be a monotone game
on N. Then

. U4 IS monotone.

. If v is superadditive, then v 4 is superadditive.

. If v is balanced, then v 4 is balanced. In particular Core(v) € Core(v_4).

. If v is totally balanced, then v 4 is totally balanced.

. If A has a unique atom, then v 4 is monotone, superadditive and totally balanced.

| O R

Since the set of conjunctive and the set of disjunctive feasible coalitions in some acyclic
permission structure are antimatroids, the above theorems also hold for (conjunctive
and disjunctive) restricted games with an acyclic permission structure.

13 Fora study of inheritance properties in a general setting, we refer to Algaba et al. (2001b).
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14 R. van den Brink

3.3 Axiomatization of the restricted Shapley value

A solution f for games on antimatroids assigns a payoff vector f(v, A) € RY to
every game on an antimatroid (v, A) on N. We consider the solution " that assigns,
to every game on an antimatroid, the Shapley value of the restricted game, i.e.

@5 (v, A) = Sh(vq)

Next, we generalize the axioms that characterized the permission values in the previous
section. The first three axioms are straightforward generalizations of the corresponding
axioms for games with a permission structure discussed in the previous section.

Efficiency For every v € GV and antimatroid A4, it holds that Yoien fi 0, A) = v(N).
Additivity For every v, w € GV and antimatroid .4, it holds that f (v 4+ w, A) =
[, A+ f(w, A.

Necessary player property For every v € QAA,; and antimatroid A, if i € N is a
necessary player in monotone game v, then f; (v, A) > f; (v, A) forall j € N.

For antimatroids, an inessential player is a null player such that every player that is
somehow dependent on this player in the coalition formation is also a null player. We
consider a player j dependent on another player i in the coalition formation process if
i is in at least one j-path. We denote by A(j) the set of j-paths for j € N. Therefore,
for antimatroid A on N define P, A7) = Uge Ajy E as the set of players that are in at
least one j-path. Player i € N is an inessential player in (v, A) if player i and every
player j € N such thati € P > 4(j) are null players in v.

Inessential player property For every v € GV and antimatroid A, if i € N is an
inessential player in (v, A) then f; (v, A) = 0.

For structural monotonicity, we require that a player i earns at least as much as
any other player j such that i is in every j-path. For antimatroid A on N define
P4(j) = ﬂEeA(j) E as the set of players that are in every j-path.

Structural moneotonicity For every v € QAA; and antimatroid A, ifi € P A(J), then

fi v, A) = fj (v, A.

Obviously, P 4(j) < P  4(j). Moreover, an antimatroid is a poset antimatroid if
and only if P4(j) = P4(j) forall j € N.

Finally, we generalize both conjunctive as well as disjunctive fairness by requiring
that deleting a feasible coalition from an antimatroid, such that what is left is still an
antimatroid, has the same effect on the payoffs of all players in the coalition that is
deleted. '

Fairness For every v € GV and antimatroid A, if E € A is such that A \ {E} is an
antimatroid on N, then

fi (v, A) — fi (v, A\{EY) = fj (v, A) — f; (v, A\ {E}) forall i, j € E.

14 For a coalition E to be deleted leaving behind an antimatroid, the deleted coalition should be a path
(otherwise, union closedness will be violated) such that there is no path F O E with |F| = |E| + 1
(otherwise, F has no extreme player and accessibility is violated).
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Games with a permission structure... 15

Theorem 10 (Algaba et al. 2003a) A solution f for games on antimatroids is equal
to the restricted Shapley value 3" if and only if it satisfies efficiency, additivity, the
necessary player property, the inessential player property, structural monotonicity
and fairness.

Recall that in the axiomatizations of the conjunctive and disjunctive permission val-
ues in the previous section, we found that the conjunctive permission value satisfied
structural monotonicity, while the disjunctive permission value only satisfied weak
structural monotonicity. Applying structural monotonicity for antimatroids as defined
above to the conjunctive or disjunctive feasible sets yields weak structural monotonic-
ity since we only compare the payoffs of a player j with a player i that is in every
‘permission path’ to the top.

Also, we saw that the conjunctive and disjunctive permission values differ with
respect to the fairness axiom they satisfy: conjunctive fairness and, respectively, dis-
junctive fairness. Fairness for antimatroids as defined above generalizes both these
fairness axioms. The difference is with respect to the changes in the conjunctive and
disjunctive feasible set as a consequence of deleting an arc. As mentioned in Theo-
rem 3, deleting an arc leads to more feasible coalitions in the conjunctive feasible set,
and to less feasible coalitions in the disjunctive feasible set. But in both cases the two
players on the deleted arc are in every coalition that appears, respectively disappears,
from the set of feasible coalitions.

Besides the axiomatization using conjunctive fairness, Theorem 1 axiomatizes the
conjunctive permission value by the stronger structural monotonicity (for games with
a permission structure) and without fairness. Considering the conjunctive feasible
set as an antimatroid, structural monotonicity (for antimatroids) is equivalent to both
weak structural monotonicity as well as structural monotonicity (for games with a
permission structure) since for conjunctive feasible sets every player j has a unique
Jj-path, and thus F% () = ﬁd’i; (j). It turns out that deleting fairness from the above
axiomatization yields an axiomatization of the restricted Shapley value (conjunctive
permission value) on the class of poset antimatroids. This result also allows us to char-
acterize the class of poset antimatroids (among the antimatroids) as those antimatroids
where the Shapley value is characterized by the axioms without fairness.

Theorem 11 (Algaba et al. 2003a)

(1) A solution f for games on poset antimatroids is equal to the restricted Shapley
value ¢S" if and only if it satisfies efficiency, additivity, the necessary player
property, the inessential player property and structural monotonicity.

(ii) Let A be an antimatroid on N. Then, A is a poset antimatroid if and only if
oSt (-, A) is the unique solution satisfying efficiency, additivity, the necessary
player property, the inessential player property and structural monotonicity.

Note that with part (ii) of this theorem, we used an axiomatization of a solution (the
Shapley value) to characterize a class of structures (in this case the class of poset
antimatroids among the antimatroids). Although not done very often, characterizing
network structures as those where an axiomatization of the Shapley value is valid (i.e.
gives uniqueness) can be a useful approach to learn more about network structures.
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16 R. van den Brink

4 Communication versus hierarchies
4.1 Communication graphs

One of the most well-known restrictions on coalition formation are communication
restrictions as introduced in Myerson (1977). In that model, there is a communication
network on the set of players in a cooperative game and a coalition E is feasible if
and only if the players in E are connected within this communication network. This
communication network is represented as an undirected graph on the set of players.

An undirected graph is a pair (N, L) where N is the set of nodes and L <
{{i, j}i,j € N, i # j}is a collection of subsets of N such that every element
of L contains precisely two elements. The elements of L represent undirected bilat-
eral communication links and are referred to as edges or links. Since the nodes in a
graph represent the positions of players in a communication network, we refer to the
nodes as players. A sequence of k different players (i1, ..., i) is a path in (N, L) if
{in,ipy1} € Lforh =1, ..., k—1.Twodistinct playersi and j,i # j, are connected
in graph (N, L) if there is a path (i1, ..., i) withi; =i and iy = j. A graph is con-
nected if any two players are connected in the graph. For graph (N, L) and coalition
E C N, theset L(E) = {{i, j} € LI|{i, j} € E} is the set of links between players
in E. A coalition E C N is connected in graph (N, L) if (N, L(E)) is connected. A
maximally connected subset of coalition E in (N, L) is called a component of E in
that graph, i.e. F C E is a component of E in (N, L) if and only if (i) F is connected
in (N, L(E)) and (ii) for every h € E \ F the coalition F U {h} is not connected in
(N, L(E)).

Atriple (N, v, L) with (N, v) aTU-game and (N, L) an undirected communication
graph is called a communication graph game. Since we take the player set to be fixed,
we denote a communication graph game (N, v, L) just by (v, L). In the communi-
cation graph game (v, L) on N, players can cooperate if and only if they are able to
communicate with each other, i.e. a coalition E is feasible if and only if it is connected
in (N, L). Then, the set of feasible coalitions in a communication graph game (v, L)
is the set of coalitions F; C 2V given by

Fr ={E € N | E is connected in (N, L)}.

We refer to this set as the communication feasible set of communication graph (N, L).
Myerson (1977) introduced the restricted game of a communication graph game (v, L)
as the TU-game (N, vz) in which every feasible coalition E can earn its worth v(E).
Whenever E is not feasible, it can earn the sum of the worths of its components in
(N, L). Denoting the set of components of £ € N in (N, L) by Cr (E), the restricted
game (N, vy) corresponding to communication graph game (v, L) thus is given by!?

v(E)y= Y w(F) forallECN. 3)
FeCr(E)

15 Note that Cr(E) is a partition of E.
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Fig. 2 Communication graph 2
(N, L) of Example 3

As solution, Myerson (1977) proposes to take for every communication graph game
the Shapley value of the corresponding restricted game, a solution that is later named
the Myerson value for communication graph games. Myerson (1977) also axiomatized
this solution by the axioms of component efficiency (meaning that every component
allocates its own worth among its members) and fairness (meaning that deleting an
edge changes the payoffs of the two players on this edge equally).

Example 3 Consider the communication graph (N, L) on N = {1, ..., 5} given by
L = {{1,2}, {1, 3}, {2, 4}, {3, 4}, {4, 5}}, see Fig. 2. Players 1 and 5 are connected
by two paths: (1,2,4,5) and (1, 3,4, 5). Coalition {1, 4, 5} has two components:
{1} and {4, 5}. Considering the unanimity game u; 55, we see that the only feasible
coalitions containing the two unanimity players are {1, 2,4, 5}, {1,3,4,5} and N.
Therefore, the Myerson value, obtained as the Shapley value of the restricted game
VL = u{1,2,4,5) + U{1,3,4,5) — Up, assigns payoffs (%7 35 25> %, %)- O

Le Breton et al. (1992) and Demange (1994, 2004), consider a restricted Core
concept where coalitional stability is required only for feasible coalitions, i.e. they
consider the solution C(v, L) = {x € RV | YicpXi =v(F)forall F € CL(N), and
Y icgXi = v(E) for all E € Fp}. They show that this set of Core payoff vectors
is nonempty if the game is superadditive and the communication graph is cycle-
free'®”,17 respectively a tree.!® This is interesting since superadditivity of a game
v does not guarantee the existence of a Core-stable payoff vector for v. Under the
stronger convexity condition on the game, but weaker cycle-completeness'® on the
graph, van den Nouweland and Borm (1992) show that the restricted game is convex

and, therefore, the Myerson value belongs to the Core of the restricted game.

16 A sequence of players (iy, ..., ig,i1)isacyclein (N, L) if (i1, ..., ig) isapathin (N, L) and {i}, i1} €
L. A graph (N, L) is cycle-free when it does not contain any cycle.

17 Under these conditions, this solution coincides with the (unrestricted) Core of the restricted game
(N, vp,), see also Kaneko and Wooders (1982).

18 Demange (2004) defines explicit solutions that are always in the Core of the restricted game if the
original game is superadditive and the graph is a tree, the so-called hierarchical outcomes. The solution
that assigns to every cycle-free communication graph game the average of these hierarchical outcomes (for
cycle-free graph games) is axiomatized in Herings et al. (2008) using component efficiency and a modified
component fairness.

19° A communication graph is cycle-complete if, whenever there is a cycle, the subgraph restricted to the
players in that cycle is complete. An example of a cycle-complete network is a social quilt considered in,
e.g. Jackson et al. (2012).
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4.2 Characterizing communication feasible sets

Let F C 2V be an arbitrary feasible set. Since all singletons in a communication graph
are connected, it follows that communication feasible sets arising from communication
graphs contain the empty set and satisfy normality, i.e. every player belongs to at least
one feasible set. Further, they also satisfy accessibility. They even satisfy the stronger
property that every feasible coalition with two or more players has at least two players
that can leave the coalition leaving behind a feasible coalition (2-accessibility). This
is easy to see since pending players (i.e. players that have only one neighbour) always
can be deleted. A cycle-free graph has at least two pending players: the ‘worst’ case
is a line-graph but it still has two pending players. If there are cycles, there usually are
more extreme players.

Communication feasible sets are not closed under union (as is illustrated by the
two connected coalitions {1, 2} and {5} in Example 3 which union is not connected).
However, as shown by Algaba et al. (2001a), communication feasible sets satisfy the
weaker union stability meaning that the union of two feasible coalitions that have a
nonempty intersection is also feasible. It turns out that these two properties together
with normality and the emptyset being feasible characterize the communication fea-
sible sets.

Theorem 12 (van den Brink 2012) Let F C 2% be a set of feasible coalitions. Then,
F is the communication feasible set of some communication graph if and only if

1. e F

2. (Union stability) If E, F € Fwith ENF # (Jthen EUF € F

3. (2-Accessibility) If E € F, |E| > 2, then there existi, j € E, i # j, such that
EN{i},E\{j}eF.

4. (Normality) For every i € N there exists an E € F such thati € E.

Usually, the set of links L, being coalitions of size two, is considered as the basis
of a communication graph. Note that by applying 2-accessibility we can gener-
ate these bilateral links from any communication feasible set. Also note that given
2-accessibility, normality implies that {i} € F foralli € N as is the case for commu-
nication feasible sets. Given closedness under union, normality implies that N € F
as is the case for antimatroids. By adding additional properties on a communication
feasible set, we can characterize some special classes of communication graphs that
are often encountered in the economic and OR literature, such as line-graphs, cycle-
complete graphs, cycle-free graphs and trees (for details we refer to van den Brink
2012). To mention one example, adding closedness under intersection (i.e. for any
two feasible coalitions also their intersection is feasible) to the properties of Theo-
rem 12 characterizes the communication feasible sets arising from cycle-complete
communication graphs.

Comparing Theorem 12 with Definition 1, we conclude that communication fea-
sible sets are characterized by similar properties that define hierarchical structures
represented by normal antimatroids. To be specific, besides normality and feasibil-
ity of the empty set, both satisfy an accessibility and a union property. Obviously,
2-accessibility implies accessibility and thus communication feasible sets satisfy a
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stronger accessibility property. But since closedness under union implies union sta-
bility, antimatroids satisfy a stronger union property.

5 Games with a local permission structure

A different type of generalization of games with a permission structure is the games
with a local permission structure. Many applications of games with a permission
structure fall in the special class of peer group games being games with a permission
structure where the game is additive and the digraph is a rooted tree. A digraph 7 € DV
is a rooted tree on N fif it is hierarchical (i.e. acyclic and quasi-strongly connected)
and, moreover, |Pp(i)| = 1 foralli € N \ {ip}. (Alternatively, a digraph is a rooted
tree if it is hierarchical, and for every playeri € N \ {ip} there is a unique path from
the top player to this player i.) Peer group games are also a special class of digraph
games being games derived from digraphs with weights on the nodes and are used,
for example, to rank nodes in a digraph such as ranking teams in sports competitions,
ranking alternatives in a preference profile, or ranking webpages on the internet. In
this section, we discuss a model that generalizes games with a permission structure as
well as digraph games.

5.1 Peer group games and digraph games

Branzei et al. (2002) define a peer group situation as a triple (N, a, T) where N C Nis
asetofplayers, T € DV isarooted tree, anda € Rﬁ is a vector of nonnegative weights
assigned to the players.”? Again, since we take the player set N to be fixed, we denote
a peer group situation just as a pair (a, T'). To every peer group situation (a, T), they
assign the peer group game viT given by v‘ﬁT(E) = ZA ice  aj, E C N.Interms
Pr()cE

of unanimity games, a peer group game can be written as U;T =D ieN Al By ()

In Branzei et al. (2002), it is already mentioned that every peer group situation
(a, T) can be seen as a game with a permission structure (w®, T') where the permission
structure 7 is a rooted tree and the game w is the additive game given by w?(E) =
Y icg ai forall E € N. Then, the peer group game is the conjunctive (or disjunctive)

restricted game.?!

Theorem 13 (Branzei et al. 2002) For every peer group situation (a, T) it holds that
P -
Va1 = Ta, T+
Another model of games with a digraph on the set of players is that of the (weighted)

digraph games introduced in van den Brink and Borm (2002). An irreflexive weighted
directed graph, shortly referred to as weighted digraph, is a triple (N, §, D) where

20 Besides games with a permission structure, another model ‘between’ games on antimatroids and peer
group games are the interior operator games introduced by Bilbao et al. (2005), which are additive games
restricted by an antimatroid.

21 Since for rooted trees the conjunctive and disjunctive approaches coincide, for peer group situations the
conjunctive and disjunctive restricted games and permission values are the same.
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N C N is a set of nodes, D € DV is an irreflexive digraph, and § € }Rﬁ is a
vector of nonnegative weights assigned to the nodes. The (weighted) digraph game
corresponding to (N, 8, D) is the game (N, Vs, p) where the players represent the nodes

and the characteristic function is given by vs p(E) = > iz 8, E € N. So, the
Pp(i)CE
worth of an arbitrary coalition E C N of players (nodes) is the sum of the weights

of the players in that coalition for whom all predecessors belong to the coalition. In
terms of unanimity games, a digraph game canbe writtenas s, p = Y ;cn 8ilt{ijupp(i)-
Again, since we take the player set N to be fixed, we denote a weighted digraph and
weighted digraph game on N as (8, D), respectively, Us p.

A peer group game is a special case of a digraph game where the digraph is transitive.

Theorem 14 (van den Brink and Dietz 2014) For every peer group situation (a, T),
it holds that U{ZT = Vg, 1r(T)-

Since the conjunctive restricted game is the same for a game with permission structure
(v, D) and that game v on the transitive closure ¢ (D), from the above two propositions
we have the following corollary.

Corollary 1 For every peer group situation (a, T), it holds that U:,T = r;a,T =

B T
Twa tr(ry = Va,tr(T)-

In van den Brink and Borm (2002), a relational power measure assigning values to
every node in a weighted digraph is obtained by applying the Shapley value to the
associated weighted digraph game. This power measure is referred to as the 8-measure
and is given by??

8.
Bi(D)=Shi(Ws.p) = » =t
el o UPDGTH D)

Branzei et al. (2002), van den Brink and Borm (2002) and van den Brink and Dietz
(2014) also consider other solutions for peer group games and digraph games.

5.2 Locally restricted games

Comparing games with a permission structure with weighted digraph games, there
are two essential differences, one considering the games and another considering the
effect of the digraph on the restrictions in cooperation. First, games with a permission
structure allow any game, but weighted digraph games only consider additive games.
On the other hand, to have permission to cooperate, a player in a game with (conjunc-
tive) permission structure needs permission from all its superiors, but in a weighted

22 In van den Brink and Gilles (2000), a similar game and measure are defined, but a node does not ‘share’
in the power over itself, i.e. they consider the game vé p(E) = > ien 8 E € N, having Shapley
' Pp()CE

’ _ ’ _ 5_/' : : :
value ; (D) = Sh; (UB’ p) = ZjeSD ) Py (T A disadvantage of this measure is that a node can do better
in the associated ranking after ‘being defeated’ by more other nodes.
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digraph game it needs permission only from its (direct) predecessors. Obviously, the
digraph game associated with a transitive digraph equals the conjunctive restricted
game of the corresponding additive game on that digraph as permission structure. In
this section, we only follow the conjunctive approach.>

Theorem 15 (van den Brink and Dietz 2014) For every weighted digraph (8, D), it
holds that Vs 1y (py = rﬁ)a D’ where w‘S(E) = ZieE 8; for all E C N. In particular, if
D is transitive then Vs p = V;a D

Next, we generalize the (weighted) digraph games as well as games with a permission
structure in the sense that we consider pairs (v, D) where v € G can be any game,
D e DV can be any digraph, but every player needs permission only from its direct
predecessors in order to cooperate. So, a player needs permission from its predecessors
to cooperate with other players, but it can give permission to its own successors without
permission from its predecessors.

Forany E C N, let ab(E) = {i € E | Pp(i) C E} be the subset of players in E
for whom all predecessors also belong to E. We refer to this as the value generating
set of coalition E in D. The locally restricted game rf]’ p associated with the pair

(v. D) € GV x DV is the game r!, , given by

rlh p(E) = v(oh(E)) forall E C N. @)

An important difference with the conjunctive feasible coalitions is the fact that
olD (allj (E)) need not be equal to af)(E).

Example 4 Consider the digraph D on N = {1, 2, 3} given by D = {(1, 2), (2,3)}.
Then, o}, ({2, 3}) = {3} but o, ({3}) = . O

Because of this, the cooperation structure cannot be described just by a set of feasible
coalitions as in the models of the previous sections. In Example 4, the coalition {3} can
be considered not feasible, but there is a coalition, to be specific coalition {2, 3}, such
that {3} is exactly the coalition that generates value. Therefore, we call {3} a value
generating set in D.

Theorem 16 (van den Brink and Dietz 2014) Let (v, D) € GV x DN and E C N be

given.

(i) Forall F suchthat o, (E) € F C E it holds that rE’D(F) =v(op(E))

(i) For all F such that o,(E) U Pp(o},(E)) € F C E it holds that r}, ,(F) =
V(o (E))

Part (i) implies that for conjunctive restricted games, if a coalition of players E is
able to generate its own worth, then it does not need permission from players outside
E to do so; value generation and permission imply one another. For this reason, this
approach can be described in terms of sets of feasible coalitions @7,. This is not the

2 A disjunctive approach is a plan for future research.
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case for locally restricted games as reflected in part (ii). This part states that the value
generating set of a coalition E can generate its worth together with its predecessors
(which are in E), without these predecessors actually generating any value within
this coalition themselves: these coalitions still earn the worth of all) (E). Note that a
coalition containing the value generating set of E, but not all its predecessors, might
generate a different worth. Although it is true that oé)(F ) = olD(E ) for all F such
that oé (E)U Pp (O’b (E)) € F C E, this does not necessarily hold for all F such that
O'ZD(E) C F C E. This is an important difference between the ‘local’ and ‘standard’
conjunctive approach to games with a permission structure.

These two approaches still have in common that forall F C E\op, (E) (respectively
forall F € E \ o},(E)) it holds that r{ ,(F) = 0 (respectively r}, ,(F) = 0).

Example 5 Consider the digraph D on N = {l, 2, 3} given in Example 4, and the
game v = u(3). For coalition £ = {2, 3}, we have that alD(E) U PD(of)(E)) =
{3} U {2} = {2,3} = E. However, taking F = {3} we have GE(E) = F C E, but
rl p(F) = v(o},(F)) = v(#) = 0 while v(o},(E)) = v({3}) = 1. So, indeed the
predecessor of the value generating set of E = {2, 3} is necessary to generate its
worth. O

Next, we introduce some notions to describe the value generation and permission
in games with a local permission structure. For any £ C N, we define &lD(E ) =
olD(E YU Pp (O’é) (E)) as the active set of E. These are the players that are necessary
and sufficient to make the value generating set aé)(E ) of E active.

We call a set E locally feasible in D if &) (E) = E. We denote the set of all locally
feasible sets in D by ¥p. So,

Yp={E C N |ap(E) = E}.

Let the authorizing set of E be given by alD( E) = EU Pp(E), being the set of players
in E together with all their predecessors. This is the set of players that is necessary and
sufficient to make the players in E active. It is clear that for any coalition E, och (E)
is locally feasible.

Example 6 Consider the permission structure D of Example 4 and coalition {2, 3}. We
already saw that its value generating setis {3}. Its active setis &, ({2, 3}) = {2, 3} since
permission of 2 is necessary and sufficient to make its value generating set {3} active.
Its authorizing set is alD({2, 3})) = {1, 2, 3} since player 1 is necessary to make player
2 active who is not value generating in {2, 3} but is still necessary to give permission
to player 3. In this case, @7, = {{1}, {1, 2}, {1, 2, 3}} and ¥p = @}, U {{2, 3}}. O

Again, the active sets and authorizing sets show the separation between value gener-
ation and permission which coincide in the standard conjunctive approach.

Theorem 17 (vanden Brink and Dietz 2014) For every permission structure D € DV,
it holds that ¥, N € Wp and Wy is closed under union.
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The basic elements of ¥p are the sets {i} U Pp(i), i € N. The other elements of ¥p
can be written as the union of two or more basic elements. However, unlike conjunctive
feasible sets, ¥p is not necessarily intersection closed.

Next, we argue that the locally restricted approach to games with a permission struc-
ture generalizes the conjunctive approach as well as digraph games. The conjunctive
restricted game of a game with a permission structure equals the locally restricted
game of that game on the transitive closure of the permission structure. A weighted
digraph game equals the locally restricted game of the additive game determined by
the weights and the digraph as permission structure.

Theorem 18 (van den Brink and Dietz 2014)

(i) For every (v, D) € GN x DV, it holds that r;D = rll)’tr(D). In particular, if
D € DN is transitive, then rep= rll) D
(i1) For every weighted digraph (8, D), it holds that Vs p = ri} 5 pr

5.3 The local permission value

As a solution, van den Brink and Dietz (2014) consider the local (conjunctive) permis-
sion value ¢' being the solution that assigns to every game with a permission structure
the Shapley value of the locally restricted game, i.e.

¢' (v, D) = Sh(r, ;) forall (v, D) € GN x DV,

From the axioms of Theorem I, the local permission value ¢’ satisfies efficiency,
additivity, the necessary player property and the inessential player property. It does
not satisfy structural monotonicity as shown by the following example.

Example 7 Consider the game with permission structures (v, D) on N = {1, 2, 3}
given by D = {(1,2), (2,3)} and v = u). Then, ¢'(v, D) = (0, 3, 3), and thus
player 2 earns more than player 1, although 2 is a successor of 1 and the game is
monotone. O

The local permission value satisfies a weaker version requiring the payoff of a
player to be at least equal to the payoff of any of its successors in a monotone game
if at least one of its successors is a necessary player.

Local structural monotonicity For every v € gﬁ and D € DV,if i € N and
Jj € Sp(i) are such that there exists at least one 4 € Sp (i) who is a necessary player
in v, then f; (v, D) > f;(v, D).

As mentioned above, the local permission value does satisfy the inessential player
property. It satisfies an even stronger version of the inessential player property, requir-
ing the payoff of a null player to be zero as soon as all its successors, but not necessarily
all its subordinates, are null players in the game. We say that player i € N is locally
inessential in game with permission structure (v, D) if i and all its successors are null
players in v, i.e. if v(E) = v(E \ {j}) forall E € N and j € {i} U Sp(i).
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Local inessential player property For every v € GV and D € DV, ifi € Nisa
locally inessential player in (v, D) then f;(v, D) = 0.

It turns out that strengthening the inessential player property in this way and weak-
ening structural monotonicity as done above characterize the local permission value.

Theorem 19 (van den Brink and Dietz 2014) A solution f for games with a local
permission structure is equal to the local permission value ¢' if and only if it satis-
fies efficiency, additivity, the necessary player property, the local inessential player
property, and local structural monotonicity.

Instead of using local structural monotonicity, we can strengthen the necessary player
property by saying that a player earns at least as much as any other player if this player
is necessary or has at least one necessary successor in a monotone game.

Strong necessary player property For every v € QAA,; and D e DV, if at least
one of the players in {i} U Sp(i) is a necessary player in v then f;(v,D) >
fi(v, D) forall j € N.

Theorem 20 (van den Brink and Dietz 2014) A solution f for games with a local
permission structure is equal to the local permission value ¢' if and only if it satisfies
efficiency, additivity, the strong necessary player property and the local inessential

player property.

Another interesting difference between the conjunctive and local permission value
is the following. Stated informally, the conjunctive permission value satisfies veto
monotonicity meaning that if a predecessor is going to veto one of its successors, then
this does not harm that predecessor. But the local permission value does not satisfy this
property. This is because a player who is necessary but also has a necessary successor
will share the payoff resulting from its own necessity with its predecessor. So, in case
at least one of the successors of a player is necessary, it is better for that player not to
be necessary since then it will still have its share in the payoff (because it needs to give
permission to a necessary successor), but because the player itself is not necessary it
does not have to share with its own predecessors.>*

6 Applications

Many applications of games with a permission structure are in the special class of peer
group games mentioned in the previous section. Applications of peer group games are,
e.g. polluted river games (Ni and Wang (2007) and Dong et al. (2012)), liability games
(Dehez and Ferey 2013), the duals of airport games (Littlechild and Owen 1973),
auction games (Graham et al. 1990) and ATM games (Bjorndal et al. 2004). From

24 Consider the game with permission structure (v, D) on N = {1, 2, 3} given by D = {(1, 2), (2, 3)} and
v = u(3). When player 2 vetoes player 3 (see, e.g. Haller (1994), Malawski (2002) and Casajus 2014), we

obtain the unanimity game U 3). So, gol(v, D) = (0, %, %) while (pl(u[2’3}, D) = (%, %, %), and thus in

(v, D) player 2 earns more than in (u3 3}, D).
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the many applications of games with a permission structure, we will briefly discuss
two: auction games (which are an application of peer group games), and hierarchically
structured firms.

6.1 Auction games

An allocation situation is a pair (N, V) where N = {1, ..., n} is a set of agents or
players and V € Rf is a vector which ith component V; € Ry is the non-negative
valuation of player i € N with respect to some indivisible good. Because the good is
indivisible, it can be allocated to only one of the players in N. The player who gets the
good can compensate the others by giving them an amount of some numeraire good.
We assume that all players value each unit of the numeraire good at the same value,
normalized to be 1. Since we again take the set of players N fixed, we represent an
allocation situation (N, V') just by its valuation vector V.

An allocation—compensation scheme for an allocation situation is a pair (i, ¢) €
N X Rﬁ where i € N denotes the player who gets the good and ¢ € RV, satisfying
> jen¢j = 0, is the vector of compensations. So ¢;, j # i, is the amount of the
numeraire good that player i gives to player j as compensation, and c¢; is the total
compensation that has to be paid by i to the other players. The value of allocation—
compensation scheme (i, c¢) is the vector ¢ (i, ¢) € Rf withe; (i, c) = c¢;if j € N\{i},
and ¢; (i, ¢) = V; + ¢;. Main question in such an allocation situation is who gets the
indivisible good and what is a ‘fair’ way to compensate the others. Without loss of
generality, we assume that V] < ... < V.

Such allocation problems can be ‘solved’ using auctions. Graham et al. (1990)
describe a process of bidder ring formation in Second-price sealed-bid and English
open auctions, where for every coalition £ C N of bidders they define a strategic two-
player game between the ‘players’ E and N\ E.> They show that the dominant strategy
of E in the Second-price sealed-bid auction game is to bid v*(E) = max;cg V;, and
for N\ E a dominant strategy is to bid v*(N \ E) = maxjey\g Vj.% From this, they
derive the worth of coalition E C N in the corresponding auction game v to be equal
to

v(E) = max {r_naxVi — max Vj,O}. (@)
ieE JEN\E
Note that this is a peer group game associated with the peer group situation (a, T')
witha; = V; = Vi—y, i € N,with Vo =0, and T = Jy_,{(k,k — D} = {(n,n —
1),(n—1,n-2),...,,(2, 1)}. Interms of unanimity games, we have v = ZieN(Vi —
Vi—ugii+1,....i,}- Applying the Shapley value to this game yields

i
Vi—-Vi_1
Shiw) =Y —L—'= foralli e N. (6)
o +1

25 Graham and Marshall (1987) support collusion in Second-price sealed-bid and English open auctions
by some incentive-compatible mechanism.

26 Similar, the dominant strategy for E in the English open auction game is to remain active until the
bidding reaches v*(E), and for N \ E to remain active until the bidding reaches v*(N \ E).
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In Algaba et al. (2003a), the axioms of Theorem 1 are modified and it is shown that this
gives uniqueness on the class of auction games. The axioms can be directly applied to
auction situations, except additivity. Additivity can only be applied to two valuation
vectors that have the same ordering of the players with respect to their valuations.
Further, note that a player is an inessential player in the auction game if and only if its
valuation is zero, and is a necessary player if and only if it has the maximal valuation.
An allocation rule for auction situations is a function f: Rf — R that assigns
to every auction situation the value of an allocation—compensation scheme. We state
the axioms directly in terms of the auction situation, and refer to the allocation rule
Fo Rﬁ — RY that assigns to every valuation vector V € Rﬁ the Shapley value
Sh(v) of the associated auction game v as the Shapley rule.

An allocation rule f satisfies efficiency if for every allocation situation V € RY , it
holds that Zie y Ji(V) = max;cn V;. Anallocationrule f satisfies restricted additiv-
ity if for every pair of allocation situations V, W € Rﬁ such that V; > V; if and only
if W; > W foralli, j € N,itholds that f(V + W) = f(V) + f(W). An allocation
rule f satisfies the inessential player property if for every allocation situation V € Rﬁ
and i € N such that V; = 0 it holds that f;(V) = 0. An allocation rule f satisfies
the necessary player property if for every allocation situation V € Rﬁ andi € N
such that V; = max jey V;, it holds that f; (V) > f;(V) forall j € N. An allocation
rule f satisfies structural monotonicity if for every allocation situation V e RY, if
Vi = Vjthen fi(N,V) = fj(N, V).

Theorem 21 (Algaba et al. 2003a) An allocation rule f for allocation situations is
equal to the Shapley rule if and only if it satisfies efficiency, restricted additivity, the
inessential player property, the necessary player property and structural monotonicity.

Auction games are dual airport games.?” Oishi et al. (2016) discuss anti-duality rela-
tions between the classes of auction games, airport games, polluted river games and
liability games. Similar as in games with a permission structure, there is an exogenous
ordering on the player set in polluted river games (determined by the location along a
river) and liability games (determined by the position in a sequence of wrongful acts).
On the other hand, in airport games and auction games, the order is endogenously
determined by the valuations (respectively costs) of the players. Therefore, on the
class of polluted river games and liability games, the Shapley value satisfies additiv-
ity, while for auction games and airport games it only satisfies the weaker restricted
additivity. Similar, the cost sharing problems of Moulin and Shenker (1992) can be
modeled using peer group games (but with some adaptation), and axiomatizations of
their serial cost sharing rule can be given, see also Albizuri et al. (2002).

Another class of peer group games is the class of star graph peer group games where
the rooted tree is a star graph. Applications of this are, e.g the ATM games of Bjorndal
et al. (2004).

27 Recall that the Shapley value is self-dual, i.e. Sh(v) = Sh(v*) where the dual game v* of game v is
given by v*(E) = v(N) —v(N \ E) forall E C N.
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6.2 Hierarchically structured firms

In van den Brink (2008) and van den Brink and Ruys (2008), games with a permission
structure are applied to model hierarchically structured firms. This is a special class
of games with a permission structure that are not peer group games.

Most firms have a hierarchical structure, and not all wages are equal. Within a
particular hierarchical level, there can be wage differences because of differences in
the importance of the tasks done or the scarcity of the labor inputs that are able to
perform the different tasks. Besides these horizontal wage differences within levels,
there are also vertical wage differences between different levels. As in most part of the
firm literature, we assume that the firm has a tree structure. A hierarchically structured
firm can be modeled by a game with a permission structure (N, v, D) where the set
of players N represents the set of employees in the firm (workers and managers), v
is a cooperative production game describing the potential production possibilities of
the employees in the firm, and D is a rooted tree with root (top-player) io representing
the hierarchical structure of the firm. Since we take the firm structure to be fixed,?8
we represent a hierarchical production game as a pair (v, D).

By D having a tree structure, it follows that there always exist employees that
have no successors. These employees are the workers in D and the set of workers
in D is denoted by Wp = {i € N | Sp(i) = (}. We assume that these workers
operate the production process in the firm. The other employees are the managers or
coordinators who do not actively produce but who coordinate the production process.
The set of managers in D is denoted by Mp = N\ Wp. For amanageri € Mp, the set
Sp(i) = §D (i) N Wp is the set of workers that are (directly or indirectly) subordinate
to . For notational convenience, we denote Sp (i) = {i} for every worker i € Wp.

Since the production process is carried out by the workers in Wp, its power set is the
domain of a (cooperative) production game v: 2P — R_.. The value v(E) € R is
the non-negative production output value that can be generated if exactly the workers
in E € Wp are active in the production process. So, it is assumed that every worker
i € Wp can choose either to provide all its labor effort or to provide nothing at all.
Alternatively, we can think that firm positions can be occupied by employees or be
vacant.

We extend the production game ¥ on the set of workers Wp to a game v € GV on
the set of all employees N by adding the managers as null players, i.e. v € GV is given
by v(E) = v(E N Wp) for all E C N. The pair (v, D) is a game with permission
structure and is referred to as a hierarchical production game on N. We require that a
fully employed firm produces a positive production output value, i.e. v(Wp) > 0. We
also assume the production game to be convex.>’

A wage function ¢ assigns a non-negative wage ¢; (v, D) to every employee i € N
in the corresponding hierarchical production game (v, D). We can apply any solution
for games with a permission structure, in particular the Shapley permission value

28 In van den Brink and Ruys (2008) this model is applied to endogenously determine firm size, and to
determine a corporate market equilibrium.

29 Mil grom and Roberts (1994) stress the importance of coordination for convex (also often called super-
modular) production technologies.
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(note that again, the conjunctive and disjunctive permission value are the same since
the hierarchy is a rooted tree.)

In the literature, it is often argued that the wage of a manager in a firm is at least as
high as the wage of any of its subordinates. This property is expressed by structural
monotonicity. Moreover, if the production game is also convex, then according to the
permission value the wage of a manager does not exceed the sum of the wages of its
successors.>’

Theorem 22 (van den Brink 2008) Consider a hierarchical production game (v, D)
and manageri € Mp.

(1) If v is monotone then (piSh (v, D) > wfh(v, D) forall j € Sp(i);
(i1) If v is monotone and convex then gpiSh (v, D) < ZjeSD(i) ga}sh (v, D).

If firm (v, D) has constant span of control, meaning that every manager has the same
number of successors s, then Theorem 22 implies that the ratio between the wage of
a manager and the average wage of its successors (if positive) lies between one and
the span of control s. If moreover, the workers in Wp are symmetric, meaning that
v(E) = v(F) forall E, F € Wp with |E| = |F|, Theorem 22 yields the following
corollary.

Corollary 2 For every hierarchical production game (v, D) with monotone and con-
Sh

vex v, symmetric workers and constant span of control s, it holds that 1 < % <
j 9

foralli € Mp and j € Sp(i) with gofh(v, D) > 0.

The bounds in this corollary are often assumed in the literature, see, e.g. Williamson
(1967). They are sharp bounds in the sense that there are hierarchical production
games such that the inequalities are equalities. We first characterize two types of
subordinates of a manager. Successor j of manager i is indispensable for i if every
worker # that is coordinated by i, but not by j, does not increase the productivity of
any set of workers that does not contain workers coordinated by j (or j if j itselfis a
worker), i.e. j € Sp(i) is indispensable fori € Mp if v(E) = v(E \ {h}) for every
h € Sp(i)\ Sp(j) and every E C Wp with EN Sp(j) = 2.

Second, worker £ is a dummy worker if it increases the productivity of every set of
workers by the value v({h}) which it also can produce on its own, i.e. h € Wp is a
dummy worker if v(E) = v(E \ {h}) +v({h}) forevery E C Wp withh € E.

It turns out that a manager earns the same wage as one of its successors if this
successor is indispensable for the manager. A manager earns the sum of the wages of
its successors if all its subordinate workers are dummy workers.

Theorem 23 (van den Brink 2008) Consider a hierarchical production game (v, D)
and manageri € Mp.

30 For the first inequality to hold, we do not need the assumption that only workers that have no successors
are productive. The second inequality needs this assumption. However, allowing productive workers in all
levels we can prove in a similar way that <pl$h (v, D) < ZjeS(i) (p}sh (v, D) whenever i € Mp is a null

player in the production game v defined on 2N,
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(1) If j € Sp(i) is indispensable for i in (v, D) then (piSh(v, D) = gojsh (v, D);
(i) If every h € Sp(i) is a dummy worker in (v, D) then (pl.Sh(v, D) =
Y jesp @ (V> D).

Applied to the famous constant elasticity of substitution (CES) production functions,
the wage difference increases with the substitutability of labor inputs.

Example 8 Applying the famous constant elasticity of substitution (CES) production
functions yield the following production games. A production function with n inputs
givenby f: Rﬁ_’ — R, is a convex CES production function if there exists p € (0, 1],

y >0andaj,...,0, > Owith )7, o; = 1 such that f(x) =y (Z?:l oei(xi)/’)%.
The parameter y is a scale parameter and p is a parameter expressing the substitutabil-
ity of the inputs.3! In our model, the n inputs are the |Wp | labor inputs. Then, x; > 0
is the amount of labor that is provided by worker i € Wp. Since we assume that work-
ers can be either fully active or inactive, we represent the situation in which exactly
the workers in the set E € Wp are active by the labor input vector xE e {0, 1}|WD|

given by xiE = 1ifi € E, and xiE = 0 otherwise. Assuming symmetric workers

(e.a; = %, i € {l,...,n}) and constant span of control, the CES production game

IE]|
[Wpl
tion game with constant span of control and symmetric workers, the results in this
section imply that the ratio between the wage of a manager and the wage of each of
its successors is equal to the span of control s in case we have a linear production
game with substitutable labor inputs (i.e. p = 1), while it is equal to one in case the
production game is a Cobb—Douglas production game with indispensable labor inputs
(i.e. p — 0). O

1
then can be written as v, (E) = y ( )p . For a hierarchical convex CES produc-

It turns out that the axioms of Theorem 1 also characterize the Shapley value as wage
system for hierarchical production games.> In the context of hierarchical production
games, they boil down to the following. Efficiency boils down to budget neutrality for
firms meaning that the sum of the wages equals the total production value v(N) =
v(Wp). Additivity now can be directly applied to hierarchical production games. (So,
unlike auction games it need not be restricted because the hierarchical structure on
the employees is fixed.) An employee i is an inessential employee in hierarchical
production game (v, D) if and only if every worker that is coordinated by i, or i itself
if it is a worker, does not add anything in the production process. The inessential
employee property states that an inessential employee earns zero. A worker 7 is a
necessary worker if without its labor effort nothing can be produced. The necessary
worker property states that necessary workers always earn at least as much as any
other employee in the firm in case the production game is monotone.

31 We need p > 0 to obtain a convex production function.

32 In firm models, the Shapley value has been applied in, e.g. Hart and Moore (1990) and Rajan and Zingales
(1998). In van den Brink (2008), a more general class of wage systems is considered. In Ruys et al. (2000),
different wage systems are related to the cultural dimensions of Hofstede (1980).

@ Springer



30 R. van den Brink

Theorem 24 (van den Brink 2008) A wage function f is equal to " if and only if it
satisfies budget neutrality, additivity, the inessential employee property, the necessary
worker property and structural monotonicity.

7 Concluding remarks

This survey discussed several results on games with a permission structure and some
generalizations and applications. We mainly focussed on solutions based on the Shap-
ley value. Other solutions can be applied. For example, van den Brink (2010) applies
the Banzhaf value to the conjunctive and disjunctive restricted games. Axiomatiza-
tions use collusion neutrality properties that are based on those of Haller (1994) for
TU-games. Derks and Gilles (1995) consider the Core of the restricted games. Similar
as the Myerson value for communication graph games need not be in the Core of the
restricted game, also the conjunctive, respectively disjunctive, (Shapley) permission
values need not be in the Core of the corresponding restricted game. For permis-
sion tree games (where the permission structure is a rooted tree but the game can be
any game), van den Brink et al. (2015) introduce the Average Tree permission value,
which is obtained by applying the Average tree solution (introduced in Herings et al.
(2008) for cycle-free communication graph games) to the communication graph game
(rg’ p» L D) where "5, p 18 the conjunctive restricted game of (v, D) and L p is the undi-
rected graph obtained from digraph D by ignoring the orientation of the arcs. They
show that in case the original game is monotone, the Average Tree permission value
belongs to the Core of the restricted game. Recently, other solutions for permission
tree games are introduced in, e.g. van den Brink et al. (2016) and Alvarez-Mozos et al.
(2015). Note that peer group games are a special case of permission tree games, and
thus permission tree games seem to be very useful for applications.

Besides axiomatization, it turns out that games with a permission structure are
also useful for computation of solutions for applications. For peer group games,
Branzei et al. (2005) provide a polynomial time algorithm for computing the nucle-
olus (Schmeidler 1969) of the restricted game. In van den Brink et al. (2010, 2011)
polynomial time algorithms for two subclasses of games with a permission structure,
both generalizing peer group situations, are developed. These algorithms also might
help to axiomatically characterize the nucleolus for games with a permission structure.
Next to axiomatization and computation, also strategic implementation of solutions
for games with a permission structure is future research.

In this survey, we also discussed several generalizations of games with a permis-
sion structure, such as games on antimatroids and local permission structures. As
mentioned, the restricted game approach is based on the fact that the conjunctive and
disjunctive feasible sets, as any antimatroid, are union closed. In van den Brink et al.
(2011), two different Shapley type values for games on union closed systems are intro-
duced and axiomatized. For these systems, they only require them to be union closed
(so they do not require accessibility), guaranteeing that every coalition has a unique
largest feasible subset. Other models that generalize games with a permission struc-
ture are, e.g. the before mentioned games on union stable systems (see Algaba et al.
2000), games on augmenting systems (see Bilbao 2003; Bilbao and Ordofiez 2009 and
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Algabaetal. 2010), and games on regular set systems (see Honda and Grabisch (2006),
Lange and Grabisch (2009) and Grabisch 2013). Another type of generalization is by
considering more general forms of cooperation in coalitions, such as fuzzy coalitions
in Gallardo et al. (2014) and Jiménez-Losada et al. (2010).

Instead of applying restricted games as done in the models discussed in this paper,
an alternative way to take account of cooperation restrictions in cooperative games
is to restrict the set of admissible permutations as done in Faigle and Kern (1992).
Initially defined for partially ordered sets, also this approach has been generalized to
more general structures.

As mentioned above, next to axiomatization of the Shapley permission values and
other solutions, future research will be directed to strategic implementation and com-
putation of solutions for games with a permission structure and its generalizations.
Also relations with other models, such as the digraph games mentioned in Sect. 4,
extend the possibilities of application, for example to ranking alternatives in a social
choice situation, ranking teams in sports competitions and ranking webpages on the
internet.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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