Skip to main content
Log in

Reliability of Birolini’s duplex system sustained by a cold standby unit and subjected to a priority rule

  • Original Paper
  • Published:
TOP Aims and scope Submit manuscript

Abstract

We analyse the survival time of Birolini’s duplex system sustained by a cold standby unit subjected to a priority rule. We employ a stochastic process endowed with time-dependent transition measures satisfying coupled partial differential equations leading to the Laplace transform of the survival function. As an example, we consider Coxian distributions for failure and repair. Some graphs are displayed together with a security interval corresponding to a security level of 90 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Amari SV, Pham H (2010) A new insight into a \(k\)-out-of-\(n\) warm standby model. Int J Perform Eng 6(6):615–617

    Google Scholar 

  • Anisimov V, Sztrik J (1969) Asymptotic analysis of some complex renewable systems in random environments. Eur J Oper Res 41:162–168

    Article  Google Scholar 

  • Apostol TM (1978) Mathematical analysis. Addison-Wesley, London

    Google Scholar 

  • Birolini A (2007) Reliability engineering. Theory and practice. Springer, Berlin. doi:10.1007/978-3-540-49390-7

  • Brémaud P (1991) Point processes and queues. In: Springer series in statistics. Springer, Berlin

    Google Scholar 

  • Cao J (1987) Availability and failure frequency of a multi-unit parallel system. Asia-Pac J Oper Res 4:83–90

    Google Scholar 

  • Cox DR (1955) A use of complex probabilities in the theory of stochastic processes. Math Proc Camb Philos Soc 51:313–319. doi:10.1017/80305004100030231

    Article  Google Scholar 

  • Dhillon BS, Yang N (1969) Availability analysis of a robot with safety system. Microelectronics and Reliability 36(2):169–177

    Article  Google Scholar 

  • Doob JL (1994) Measure theory. Springer, Berlin

    Book  Google Scholar 

  • Epstein B, Weissmann I (2008) Mathematical models for system reliability. Chapman and Hall & CRC Press, Baton Rouge

    Book  Google Scholar 

  • Gakhov LD (1996) Boundary value problems. Pergamon Press, Oxford

    Google Scholar 

  • Gaver DP (1963) Time to failure and availability of paralleled systems with repair. IEEE Trans Reliab 12:30–38

    Article  Google Scholar 

  • Gnedenko BV, Ushakov IA (1995) Probabilistic reliability engineering. In: Falk J (ed). Wiley, New York

  • Kim DS, Lee SM, Jung J-H, Kim TH, Lee S, Park JS (2012) Reliability and availability analysis for an on board computer in a satellite system using standby redundancy and rejuvenation. J Mech Sci Technol 26(7):2059–2063

    Article  Google Scholar 

  • Leung KNF, Zhang YL, Lai KK (2010) A bivariate optimal replacement policy for a cold standby repairable system with repair priority. Naval Res Logist 57:149–158

    Google Scholar 

  • Leung KNF, Zhang YL, Lai KK (2011) Analysis for a two-dissimilar-component cold standby system with priority. Reliab Eng Syst Saf 96:314–321

    Article  Google Scholar 

  • Ohashi M, Nishida T (1980) A two-unit paralleled system with general distributions. J Oper Res Soc Jpn 23(4):313–325

    Google Scholar 

  • Ozaki H, Kara A, Cheng Z (2012) User-perceived reliability of unrepairable shared protection systems with functionally identical units. Int J Syst Sci 45(5):869–883

    Article  Google Scholar 

  • Roos BW (1996) Analytic functions and distributions in physics and engineering. Wiley, New York

    Google Scholar 

  • Ruiz-Castro J, Fernández-Villodre G (2012) A complex discrete warm standby system with loss of units. Eur J Oper Res 219:456–469

    Article  Google Scholar 

  • Ruiz-Castro JE, Pérez-Ocón R, Fernández-Villodre G (2008) Modelling a reliability system by discrete phase-type distributions. Reliab Eng Syst Saf 93:1650–1657

    Article  Google Scholar 

  • Shaked M, Shanthikumar JG (1990) Reliability and maintainability. In: Heyman DP, Sobel MJ (eds) Handbook in operations research and management science, vol 2. Elsevier Science Publishers, Amsterdam.

  • Shao J, Lamberson LR (1988) Impact of BIT design parameters on systems RAM. Reliab Eng Syst Saf 23:219–246

    Article  Google Scholar 

  • Shi DH, Liu L (1996) Availability analysis of a two-unit series system with a priority shut-off rule. Naval Res Logist 43:1009–1024

    Article  Google Scholar 

  • Shingarewa L, Lizarraga-Celaya C (2009) Maple and mathematica: a problem solving approach for Mathematics. Springer, Berlin

    Book  Google Scholar 

  • Ushakov IA (2012) Stochastic reliability models. Wiley, New York

    Google Scholar 

  • Vanderperre EJ (1998) On the reliability of Gaver’s parallel system sustained by a cold standby unit and attended by two repairmen. J Oper Res Soc Jpn 41:171–180

    Google Scholar 

  • Vanderperre EJ (2000) Long-run availability of a two-unit standby system subjected to a priority rule. Bull Belg Math Soc Simon Stevin 7:355–364

    Google Scholar 

  • Vanderperre EJ, Yadavalli VSS, Makhanov SS (2004) On Gaver’s parallel system. S Afr J Ind Eng 13(2):141–147

    Google Scholar 

  • Vanderperre EJ (2008) Long-run availability of a warm standby system. Math Notes 84(5): 623–630. (Published in Russian. Matematicheskie Zametki 84(5):657–667)

  • Vanderperre EJ, Makhanov SS (2012) Risk analysis of a robot-safety device system subjected to a priority rule. Probab Eng Inf Sci 26:295–306

    Article  Google Scholar 

  • Vanderperre EJ, Makhanov SS (2013a) Reliability analysis of a repairable duplex system. Int J Syst Sci. doi:10.1080/00207721.2012.759671

  • Vanderperre EJ, Makhanov SS (2013) Overall availability and risk analysis of a general robot-safety device system. Int J Syst Sci. doi:10.1080/00207721.2013.837592

  • Vanderperre EJ, Makhanov SS (2013c) On the availability of a warm standby system: a numerical approach. J Span Soc Stat Oper Res. doi:10.1007/s11750-013-0285-9

  • Vanderperre EJ, Makhanov SS (2013d) Availability analysis of a repairable duplex system : a \(z\)-dependent Sokhotski–Plemelj problem. J Span Soc Stat Oper Res. doi:10.1007/s11750-013-0307-7

  • Wang HX, Xu GQ (2012) A cold system with two different components and a single vacation of the repairman. Appl Math Comput 219:2614–2657

    Google Scholar 

  • Wu Q (2012) Reliability analysis of a cold standby system attacked by shocks. Appl Math Comput 218:11654–11673

    Article  Google Scholar 

  • Yun WY, Cha JH (2010) Optimal design for a general warm standby system. Reliab Eng Syst Saf 95(8):880–886

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by the Center of Excellence in Biomedical Engineering of Thammasat University, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Makhanov.

Appendices

Appendix A

For direct reference, we propose to state some particular properties of sectionally holomorphic functions and their ramifications for the solution of some boundary value problems on the real line. See Gakhov (1996, pp. 1–40), Roos (1996, pp. 118–242) for proofs and details. Let \(\varphi (\tau )\) be a function satisfying the Hölder (Lipschitz) condition on R and at infinity. In addition, let

$$\begin{aligned} \mathcal {L}^+(u)&:= \lim _{\begin{array}{c} \omega \rightarrow u\\ \omega \in \mathbf {C}^+ \end{array}}\,\,\frac{1}{2\pi i}\,\int _{\Gamma }\,\varphi (\tau )\frac{\mathrm{d}\tau }{\tau -\omega },\,\,u\in \mathbf {R},\\ \mathcal {L}^-(u)&:= \lim _{\begin{array}{c} \omega \rightarrow u\\ \omega \in \mathbf {C}^- \end{array}}\,\,\frac{1}{2\pi i}\,\int _{\Gamma }\,\varphi (\tau )\frac{\mathrm{d}\tau }{\tau -\omega },\,\,u\in \mathbf {R}. \end{aligned}$$

We have

$$\begin{aligned} \mathcal {L}^+(u)&= \frac{1}{2}\varphi (u)+\frac{1}{2\pi i}\,\int _{\Gamma }\,\varphi (\tau )\frac{\mathrm{d}\tau }{\tau -u}.\end{aligned}$$
(9.1)
$$\begin{aligned} \mathcal {L}^-(u)&= -\frac{1}{2}\varphi (u)+\frac{1}{2\pi i}\,\int _{\Gamma }\,\varphi (\tau )\frac{\mathrm{d}\tau }{\tau -u}, \end{aligned}$$
(9.2)

Hence, for \(u\in \mathbf {R}\)

$$\begin{aligned} \mathcal {L}^+(u)-\mathcal {L}^-(u)&= \varphi (u),\end{aligned}$$
(9.3)
$$\begin{aligned} \frac{\mathcal {L}^+(u)+\mathcal {L}^-(u)}{2}&= \frac{1}{2\pi i}\,\int _\Gamma \,\,\varphi (\tau )\,\frac{\mathrm{d}\tau }{\tau -u}. \end{aligned}$$
(9.4)

The relations (9.1)–(9.4) are called the Sokhotski–Plemelj formulas on the real line. The functions \(\mathcal {L}^+(u),\,\mathcal {L}^{-}(u)\) are continuous on R and infinity. The function \(\varphi (\tau )\) has a unique decomposition and the resulting boundary value Eq. (9.3) has a unique regular solution

$$\begin{aligned} \frac{1}{2\pi i}\,\,\int _\Gamma \,\varphi (\tau )\frac{\mathrm{d}\tau }{\tau -\omega }. \end{aligned}$$

valid for all \(\omega \in \mathbf {C}\) and the Cauchy-type integral generates a regular sectionally holomorphic function in C cut along the real line. Furthermore,

$$\begin{aligned} \mathcal {L}^+(\omega )&= \int _\Gamma \,\,\varphi (\tau )\frac{\mathrm{d}\tau }{\tau -\omega },\,\,\omega \in \mathbf {C}^+,\\ \mathcal {L}^-(\omega )&= \int _\Gamma \,\,\varphi (\tau )\frac{\mathrm{d}\tau }{\tau -\omega },\,\,\omega \in \mathbf {C}^-. \end{aligned}$$

Appendix B

To present a comprehensive derivation of the Eqs. (5.1)–(5.5), we first proceed to the Laplace transformation of Eq. (4.7). i.e.

$$\begin{aligned} \int ^\infty _0 \mathrm{e}^{-zt}\left( \lambda _\mathrm{w}+\frac{\partial }{\partial t}-\frac{\partial }{\partial x}\right) p_A^*(t,x)=p_B^*(z,x,0)+p_{B_\mathrm{w}}^*(z,x,0),\,\,\text {Re}\,z>0. \end{aligned}$$

Applying the product rule (partial integration) yields

$$\begin{aligned} \int ^\infty _0 \mathrm{e}^{-zt}\frac{\partial p_A(t,x)}{\partial t} \,\mathrm{d}t=\mathrm{e}^{-zt}p_A(t,x) \biggr |^\infty _0+z\int ^\infty _0 \mathrm{e}^{-zt}p_A(t,x) \,\mathrm{d}t. \end{aligned}$$

Note that the initial condition \(N_0=A, x_0=f\) implies that

$$\begin{aligned} \mathrm{e}^{-zt}p_A(t,x) \biggr |^\infty _0=-p_A(0,x)=-\frac{\mathrm{d}F}{\mathrm{d}x}. \end{aligned}$$

Hence,

$$\begin{aligned} (\lambda _\mathrm{w}\!+\!z)\int ^\infty _0 \mathrm{e}^{-zt}p_A(t,x) \,\mathrm{d}t \!+\! \int ^\infty _0 \frac{\partial p_A(t,x)}{\partial t} \mathrm{d}t \!=\! p_B^*(z,x,0)\!+\!p_{B_\mathrm{w}}^*(z,x,0)\!+\!\frac{\mathrm{d}F}{\mathrm{d}x}.\nonumber \\ \end{aligned}$$
(10.1)

Next, we transform Eq. (10.1). Changing the order of integration, justified by the Tonelli–Hobson test, e.g. Apostol (1978, page 415) and applying the product rule again, taking the property \(p_A(\cdot ,\infty )=0\) into account, entails that

$$\begin{aligned}&(\lambda _\mathrm{w}+z+i\zeta ) \int ^\infty _0 \mathrm{e}^{-zt} \int ^\infty _0 \mathrm{e}^{-\zeta x} p_A(t,x)\,\mathrm{d}x\mathrm{d}t+p_A^*(z,0)\\&\quad =\int ^\infty _0 \mathrm{e}^{-\zeta x} p_B^*(z,x,0)\,\mathrm{d}x+\int ^\infty _0 \mathrm{e}^{-\zeta x} p_{B_\mathrm{w}}^*(z,x,0)\,\mathrm{d}x+\mathbf {E}\mathrm{e}^{i \zeta f}, \,\,\, \text {Im}\,\zeta >0. \end{aligned}$$

Finally, note that the definition and properties of the \(\mathbf {E}\) operator imply that

$$\begin{aligned} \int ^\infty _0 \mathrm{e}^{-\zeta x} p_A(t,x)\,\mathrm{d}x=\mathbf {E}(\mathrm{e}^{-\zeta X_t} \mathbf {1}\{N_t=A\}). \end{aligned}$$

The Eqs. (5.25.5) are obtained in a similar way. For instance, observe that

$$\begin{aligned} \int ^\infty _0 \int ^\infty _0 \mathrm{e}^{-\zeta x} \mathrm{e}^{-\eta y} p_B(t,x,y)\,\mathrm{d}x\mathrm{d}y=\mathbf {E}(\mathrm{e}^{i\zeta X_t}\mathrm{e}^{i\eta Y_t} \mathbf {1}\{N_t=B\}). \end{aligned}$$

independent of the order of integration.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vanderperre, E.J., Makhanov, S.S. Reliability of Birolini’s duplex system sustained by a cold standby unit and subjected to a priority rule. TOP 23, 441–465 (2015). https://doi.org/10.1007/s11750-014-0348-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11750-014-0348-6

Keywords

Mathematics Subject Classification

Navigation