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The paper by Izmailov and Solodov provides an excellent overview of recent research
on a phenomenon of slow convergence of optimization algorithms. The phenomenon
was unknown about 10years ago. For me, one of the most striking outcomes of this
research is that the phenomenon may cause serious problems to software if applied
to certain optimization problems. Although the occurrence of the phenomenon also
depends on the point where an algorithm starts from, the sole existence of a critical
multiplier frequently forces an algorithm to show this slow convergence. By now, this
behavior is not fully understood and remedies are sought. The invited paper is well
suited for researchers to become interested in the topic.

In the remainder of the discussion, I would like to first make a short excursion to a
research problem that started to attract people in the second half of the nineties. Then,
I will raise some questions related to both the excursion and the phenomenon of slow
convergence.

A root of the invited paper’s topic goes back to about 20years. At that time,
researchers thought about algorithmically dealing with optimization problems whose
set of Lagrange multipliers associated to a stationary point contains more the one
element (degenerate case). More in detail, let us consider the optimization problem

minimize f(x) subjectto g(x) <0, h(x) =0, (D

where f : R" — R, g : R” — R”, and R” — R/ are sufficiently smooth functions.
For the sake of simplicity, Izmailov and Solodov deal with equality constraints only.
Here, inequality constraints are involved as well. A point x € R" is called stationary
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for problem (1), if x together with some multipliers = € R” and A € R! satisfy the
Karush—Kuhn-Tucker (KKT) system

9
a(f(x) + (. g(x)) + (A, h(x)>) =0, h(x)=0,
u=>0, gx)=<0, (u,gkx))=0. (2)

The set of Lagrange multipliers associated to x is denoted by M (x). Our notation
is close to that of Izmailov and Solodov. Moreover, references from their paper will
appear as [IS #].

The construction of locally superlinearly convergent methods for problems where
the set M (x) of Lagrange multipliers has infinitely many (nonisolated) elements was
not an easy task in general. Note that classical conditions for superlinear convergence
of methods for problem (1), like SQP-type methods in Robinson (1974) and Wilson
(1963), or algorithms based on the reformulation of the KKT system (2) as a nonsmooth
system of equations (Facchinei et al. 1998a; Qi and Jiang 1997), imply the local
uniqueness of a KKT point. A review of some early works on the topic of dealing
with nonunique multipliers can be found in Fischer (1999). For further references we
just refer the reader to the invited paper by Izmailov and Solodov. Here, we would
like to mention only two approaches that, in a wider sense, might be useful to deal
with inequality constraints in the degenerate case. The first one (Ralph and Wright
1997, 2000) is based on an interior point technique for solving monotone variational
inequalities and allows local superlinear convergence under conditions that do not
imply the uniqueness of the multiplier. A related result for not necessarily convex
optimization problems is given in Vicente and Wright (2002). The second approach
is about identifying active inequality constraints at a stationary point x if problem
(1) is degenerate. Such techniques may help to locally replace inequality constraints
by equations. They were developed, applied, and extended in several contexts, for
example see Dan et al. (2002), De Leone and Lazzari (2010), Facchinei et al. (1998b),
Izmailov and Solodov (2008), Oberlin and Wright (2006) and Wright (2003). A basic
ingredient of many identification techniques is a computable local error bound that
holds in some neighborhood of the set of KKT points or, similarly, in the neighborhood
of a certain particular KKT point. In the latter case, such an error bound is a function
§ : R"xR™xR! — [0, 0o) which, for some KKT point (&, ji, ») and some y € (0, 1],
C > 0, satisfies

8(x, 1, 1)V = Cdist [(x, u, 1), {x} x M(X)],

for all (x, u, A) in a neighborhood of (x, i, %). The locally correct identification of
active inequalities according to Facchinei et al. (1998b) works for any y € (0, 1].
Interestingly, if an error bound with y = 1 is available, it can be used to construct
algorithms that converge locally superlinearly to a KKT point of a degenerate opti-
mization problem. The first algorithm of this kind is the stabilized SQP method in [IS
51]. For more discussion and developments see Sect. 4 of the paper by Izmailov and
Solodov. It is worth noting that the existence of an error bound around the KKT point
(X, it, &) with y = 1 is equivalent to requiring that (1, 1) is noncritical [IS 10]. Thus,
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for starting points sufficiently close to a noncritical multiplier, critical multipliers do
not spoil those stabilized algorithms.

It is certainly not by chance that, in a more general sense, the use of error bounds
plays a very important role for solving KKT systems or other problems that have
nonisolated solutions. Such problems with nonisolated solutions may arise, for exam-
ple, if we consider optimization problems with nonisolated primal solutions, systems
of equations and inequalities, complementarity problems, multicriteria optimization,
KKT conditions or Fritz John conditions (Dorsch et al. 2013) for generalized Nash
equilibrium problems. In such cases a first task is to design appropriate algorithms
that allow a certain stabilization or regularization (for example see Behling and Fis-
cher 2012; Dong and Fischer 2006; Facchinei et al. 2014; Kanzow et al. 2004, [IS
13]), where we would like to explicitly mention the breakthrough in Yamashita and
Fukushima (2001) by means of an appropriate regularization within the Levenberg—
Marquardt method. In some cases, it is also not obvious how one can construct a
computable local error bound (with y = 1) or under which sufficient conditions such
a bound exists, see Dreves et al. (2014), Facchinei et al. (1998b), Fischer and Shukla
(2008), Izmailov and Solodov (2014) and [IS 11] for corresponding results.

In view of these works on problems with nonisolated solutions the question arises
whether in those more general problems a criticality notion is useful or not. More
importantly, do globally convergent algorithms for those problems exhibit the tendency
to converge slowly to certain solutions. In analogy to the case of nonunique multipliers
one could think that criticality of a solution of a more general problem means that,
for this solution, there is no local error bound with y = 1. However, before making
a conjecture, it appears to be advisable to further clarify the criticality of multipliers
and their influence on the global convergence behavior of algorithms. Also note that
by another description of the feasible set the degeneracy may vanish.

I do not expect that one will be able to completely avoid the phenomenon that algo-
rithms “like” to converge to critical multipliers. Therefore, as Izmailov and Solodov
say, it might be helpful “to improve the efficiency in the case of convergence to critical
multipliers”. There are several attempts to accelerate the linear rate of convergence of
algorithms applied to somehow singular problems, see Griewank (1980), Izmailov and
Solodov (2002), Oberlin and Wright (2009) and references therein. Another direction
of thinking is whether it can be useful to somehow avoid dealing with multipliers.
Some of the restoration techniques (see Martinez and Pilotta 2000; Fischer and Fried-
lander 2010) do not use multipliers (with the effect of local slow convergence). Results
in Birgin and Martinez (2005) and Izmailov et al. (2014) show that superlinear conver-
gence is possible (by means of multipliers). Maybe a higher (but expensive) accuracy
when dealing with feasibility could help.
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