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1 Introduction

Linear programming is the workhorse of modern optimization, but despite its impor-
tance, we still face plenty of open mathematical questions about it. Dantzig’s simplex
method is certainly one of the most popular algorithms for solving linear programs.
Its intuitive geometry is quite simple. The simplex method searches the graph of the
polyhedron, from a vertex of the one-skeleton to a better neighboring one according
to some pivot rule, which selects an improving neighbor. Geometrically, the simplex
method traces a path on the graph of the polytope. The diameter of the graph of a
polytope is the length of the longest shortest path among all possible pairs of ver-
tices.

The historic results of Francisco Santos disproving the Hirsch bound on the diam-
eter (Santos 2012), mentioned in the main article (see Sect. 4 of Santos 2013), have
dramatically advanced the understanding of the geometry of the simplex method and
motivated new active research. Santos’ present article in TOP is a wonderful snap-
shot of what we know today about the diameter problem and the power of the abstract
point of view on dealing with optimization problems (which recently has seen active
work, see De Loera et al. (2013) and the many references therein). Today, we still
do not know exact bounds for the growth of the diameter; Santos lower-bound is far
from the best upper bounds discussed in Sect. 3 of Santos 2013. Here, I would like to
make just three comments about his excellent article.
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Comment 1: There is also very rich geometry in other algorithms for linear
programming, with plenty of open questions waiting for us, also

Indeed, there are plenty of alternatives to the simplex method. There is the Ellipsoid
method of Hačijan (1979), the first polynomial time algorithm for linear program-
ming. There is the simple and beautiful Fourier–Motzkin elimination process, which
can be used to prove the duality theory of linear programs. There is the Criss-Cross
method, pivoting methods that are allowed to go out of the feasible region, walking
not on the graph of it the polytope, but rather on the graph of the hyperplane ar-
rangement defining it (Fukuda and Terlaky 1997). There is the family of Relaxation
methods based on linear projections (Agmon 1954; Motzkin and Schoenberg 1954;
Betke and Gritzmann 1992; Betke 2004; Goffin 1982; Telgen 1982) and many many
other methods of solution and analysis (see, e.g., Bertsimas and Vempala 2004;
Bárász and Vempala 2010; Borgwardt 2009; Chubanov 2012; Dunagan and Vem-
pala 2008; Spielman and Teng 2004) all based on different geometric principles. We
could really fill an entire book on the geometry of all linear programming algorithms.

To prove my point, let me take a quick look at one lovely geometric challenge that
arises from the main competitors of the simplex method, the interior point methods.
To state the results, let us consider the pair of linear programming problems in primal
and dual formulation:

Maximize cT x subject to Ax = b and x ≥ 0; (1)

Minimize bT y subject to AT y − s = c and s ≥ 0. (2)

Here, A is an m × n matrix. The primal-dual interior point methods are among
the most computationally successful algorithms for linear optimization. While the
simplex methods follow an edge path on the boundary, the interior point methods
follow the central path. The famous primal-dual central path is given by the following
system of quadratic and linear polynomial equations:

Ax = b, AT y − s = c, and xisi = λ for i = 1,2, . . . , n. (3)

The system has several properties: For all λ > 0, the system of polynomial equations
has a unique real solution (x∗(λ),y∗(λ), s∗(λ)) with the properties x∗(λ) > 0 and
s∗(λ) > 0. The point x∗(λ) is the optimal solution of the logarithmic barrier function
for (1), which is defined as

fλ(x) := cT x + λ

n∑

i=1

logxi.

Any limit point (x∗(0),y∗(0), s∗(0)) of these solutions for λ → 0 is the unique solu-
tion of the complementary slackness constraints, and thus yields an optimum point.

Optimization workers only look at the central path as connecting the optimal so-
lution of the linear programs in question with its analytic center within one single
cell, with xi, si ≥ 0 (a cell of the arrangement is the polyhedron defined by a choice
of signs in the constraints); but the central path is a portion of an algebraic curve that
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extends beyond a single feasibility region (given by sign constraints on variables xi ,
si ). Instead of studying the problem with only constraints xi, si ≥ 0, one can ask for
all feasible programs arising from any set of sign conditions. There are at most

(
m−1

n

)

such feasible sign vectors; (A,b) is said to be in general position if this number is
attained. Then the central curve passes through all the vertices of a hyperplane ar-
rangement.

In practical computations, interior point methods follow a piecewise-linear ap-
proximation to the central path. One way to estimate the number of Newton steps
needed to reach the optimal solution is to bound the total curvature of the central
path. The intuition is that curves with small curvature are easier to approximate with
fewer line segments. This idea has been investigated by various authors (see, e.g.,
Monteiro and Tsuchiya 2008; Sonnevend et al. 1992/1991; Vavasis and Ye 1996;
Zhao and Stoer 1993), and has yielded interesting results. For example, Vavasis and
Ye (1996) found that the central path contains no more than n2 turning points. This
finding led to an interior-point algorithm whose running time depends only on the
constraint matrix A. Thus, in a way, curvature can be regarded as the continuous
analogue of the diameter in the simplex method.

Dedieu et al. (2005) first investigated the differential geometric properties of
the central curve of interior point methods. Their main theorem is as follows: Let
(A,b, c) be as above with (A,b) in general position. Then the average total curva-
ture of the primal, the dual, and the primal-dual central paths of the strictly feasible
polytopes defined by (A,b) is at most 2π(n − 1) (primal), at most 2πn (dual), and
at most 2πn (primal-dual), respectively. In particular, it is independent of the number
m of constraints. Although traditionally the central path is only followed approxi-
mately by interior point methods with some kind of Newton steps in De Loera et al.
(2012) the authors obtained explicit exact algebraic formulas for the primal central
curve and gave improved bounds for the total curvature in terms of the degree of the
Gauss maps of the curve. It is surprising that the formulas can be read from a matroid
associated to the matrix A and the cost vector c.

Of course, for practical applications the more relevant quantity is not the average
total curvature but rather the curvature in a single feasible region. This has been
investigated by A. Deza, T. Terlaky, and Y. Zinchenko in a series of papers. Dedieu
et al. conjectured that the curvature (in a single cell) could only grow linearly in the
dimension, but Deza et al. (2009) constructed central paths that are forced to visit
small neighborhoods near of all vertices of a cube, “à la Klee–Minty.” In Deza et al.
(2008), they proved that even for d = 2 the total curvature can grow linearly in the
number of facet constraints. They have conjectured the following curvature analogue
of diameter:

Conjecture 1 The curvature of a polytope, defined as the largest possible total cur-
vature of the associated central path with respect to the various cost vectors, is no
more than 2πm, where m is the number of facets of the polytope.

This is a pretty conjecture that combines both the differential geometry of the
central curve and the combinatorics of the input polyhedra. Many more of these kinds
of challenges await us for each of the different linear programming algorithms.
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Comment 2: We still need to work harder to understand the geometry of pivot-
ing

The simplex method is governed by a chosen pivoting rule, i.e., a method of choos-
ing adjacent vertices with better objective function value. Starting with the historical
1972 construction of Klee and Minty (1972), showing that Dantzig’s original pivot-
ing rule could require exponentially many steps, researchers have discarded many of
the popular pivot rules as good candidates for polynomial behavior. By 2010, almost
all known natural deterministic pivoting rules were known to require an exponen-
tial number of steps to solve some linear programs (see Amenta and Ziegler 1999;
Ziegler 2004), but three conspicuous pivot rules resisted the attacks of researchers
until then. The most famous “untamed” pivot rules were Zadeh’s rule (also known
as the least entered rule) 2009, the randomized pivot rules of Random-Edge origi-
nally proposed by G. Dantzig, and Random-Facet proposed by Kalai (1992), and in
a different form by Matoušek et al. (1996).

At any nonoptimal vertex, the Zadeh pivot rule chooses the decreasing edge that
leaves the facet that has been left least often in the previous moves. In case of ties,
a tie-breaking rule is used to determine the decreasing edge to be taken. Any other
pivot rule can be used as a tie-breaking rule. The rule was proposed by Norman Zadeh
in a 1980 technical report from the department of operations research of Stanford
University. It has now appeared reprinted in Zadeh (2009). Now, the random edge
pivot rule chooses, from among all improving pivoting steps (or edges) from the
current basic feasible solution (or vertex), one uniformly at random. The description
of Random-Facet pivoting is a bit more complicated as there are several versions:
roughly, at any nonoptimal vertex v choose one facet F containing v uniformly at
random and solve the problem restricted to F by applying the algorithm recursively
to one of its facets. The recursion decreases the dimension of the polytope at each
iteration, thus it will eventually restrict to a one-dimensional face, which is solved by
following that edge. One repeats the process until reaching an optimum.

No nonpolynomial lower bounds were known until recently for these three
pivot rules. Prior evidence of exponential behavior was given in Matoušek (1994)
and Matoušek and Szabó (2006) that both the random edge and random facet pivot
rules do not have a polynomial bound when used in a certain class of oriented
graphs, which include the graph of a polyhedron oriented by an objective func-
tion. Morris (2002) showed bad behavior existed for random edge in the related
setting of linear complementarity problems (see also Avis and Moriyama 2009;
Gärtner and Kaibel 2007 for more on abstract graphs). But there was also evidence
of good behavior in special cases (e.g., Balogh and Pemantle 2007; Kaibel et al.
2004/05) and the random facet rule can be shown to perform an expected subexpo-
nential number of steps in the worst case (Kalai 1992; Matoušek et al. 1996). This
outperforms the deterministic pivot rules so far.

The results that these pivot rules are not always polynomial for specific simple
LPs is an exciting breakthrough in the theory of the simplex method. The break-
through came in two nice papers. The team of Friedmann et al. (2011) provided
the first lower bound of the form 2Ω(nα), for some α > 0, for both the Random-
Edge and the Random-Facet pivot rule in the one-pass variant. Based on Fearn-
ley (2010), Friedmann et al. (2011) and Friedmann (2009), Friedmann constructed
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an exponential lower bound for the number of steps in Zadeh’s rule (Friedmann
2011). Their new constructions use the close relation between simplex-type algo-
rithms for solving linear programs and the policy iteration algorithms for the stochas-
tic 1-player games called Markov decision processes or MDPs Bertsekas 2005;
Puterman 1994). It should be remarked that the diameter of the resulting polytopes is
actually smaller than the Hirsch bound. Curiously, Ye (2011) showed that the simplex
method using Dantzig’s pivot rule (where one chooses the entering variable with the
largest reduced cost coefficient). is strongly polynomial for the linear programs de-
rived from Markov Decision Processes with Fixed Discount (which is not the setting
for the other papers, but is an important case of MDPs).

Ye’s result has inspired others to revisit the classical analysis of pivot rules. In
the case of pivot rule of Dantzig, and based on Ye’s analysis, Kitahara and Mizuno
(2011, 2012) have shown bounds for the number of basic feasible solutions (BFSs)
visited by the simplex method with Dantzig’s pivot rule. The bounds uses the relative
sizes of the nonzero coordinates of the vertices: Given a linear program of the form
max{cT x : Ax = b, x ≥ 0} where A is a real d × n matrix, the number of different
BFSs generated by this version of the simplex method is bounded by n�d γ

δ
log(d

γ
δ
)�,

where δ and γ are the minimum and the maximum values of all the positive elements
of primal BFSs and �a� denotes the smallest integer greater than a. Interestingly, they
also presented a variant of Klee–Minty’s LP, for which the number of iterations for
this variant is equal to the ratio γ

δ
.

Beyond the theoretical analysis of pivot rules, there are a number of things we
can learn from experiments. Ziegler (2004) reported on studies analyzing some of the
well-known NETLIB collection of benchmark problems using the shadow boundary
method, a pivot rule guided by the two-dimensional projection of the polytope. This
pivot rule deserves more investigation and plays an interesting role in the smoothed
analysis of linear programs (Spielman and Teng 2004). There is so much we still to
understand.

Comment 3: There are many interesting special polyhedra, which already
present a worthy challenge to determine their diameter

It is clear that some additional structure can always help and I think one can ex-
ploit this even more that we have done so far. Indeed, as mentioned in Sect. 4.5
of Santos’ article, some families of bounded coefficients on the vertices have been
shown to satisfy (low-degree) polynomial diameter bounds (Brightwell et al. 2006;
De Loera et al. 2009), but we it is frustrating that we do not know whether the Hirsch
conjecture holds for them. A rather interesting family is the special case in which A is
a totally unimodular matrix, which recently had a great improvement and it contains
all network polytopes, in particular the classical transportation polytopes. As already
stressed in Theorem 4.28 of the article, the bounds by Bonifas et al. (2011) provided
a bound that is polynomial in the dimension and the largest absolute value of a sub-
determinant of the defining integer matrix A. They exploited the metric information
of the problem. For unimodular matrices, this gives the beautiful bound O(d4 logd)

and O(d3.5 logd) for general or unbounded polytopes. This greatly improves over
the previous best bound for totally unimodular matrices by Dyer and Frieze (1994).
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For the specific case of transportation polytopes, one is truly very close of the
Hirsch bound. The current record is the theorem of Hurkens:

Theorem 1 (Hurkens 2013) The diameter of every p × q transportation polytope is
at most 4(p + q − 2).

The big question is can we close the gap further to reach the Hirsch bound in the
case of transportation problems? In other words, is the diameter of p ×q transporta-
tion always less than or equal to p + q − 1.

The Hirsch conjecture holds for all known many cases of special transportation
polytopes that restrict the margins. For example, the conjecture is true for Birkhoff’s
polytope and for some special right-hand sides (see, e.g., Borgwardt 2013). Our work
continues today to try to settle this important instance.
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