Skip to main content
Log in

P-algorithm based on a simplicial statistical model of multimodal functions

  • Original Paper
  • Published:
TOP Aims and scope Submit manuscript

Abstract

A well-recognized one-dimensional global optimization method is generalized to the multidimensional case. The generalization is based on a multidimensional statistical model of multimodal functions constructed by generalizing computationally favorable properties of a popular one-dimensional model—the Wiener process. A simplicial partition of a feasible region is essential for the construction of the model. The basic idea of the proposed method is to search where improvements of the objective function are most probable; a probability of improvement is evaluated with respect to the statistical model. Some results of computational experiments are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bundfuss S, Dür M (2008) Algorithmic copositivity detection by simplicial partition. Linear Algebra Appl 428(7):1511–1523

    Article  Google Scholar 

  • Calvin J, Žilinskas A (1999) On the convergence of the P-algorithm for one-dimensional global optimization of smooth functions. J Optim Theory Appl 102:479–495

    Article  Google Scholar 

  • Calvin J, Žilinskas A (2000) On one-dimensional P-algorithm with convergence rate O(n(−3+delta)) for smooth functions. J Optim Theory Appl 106:297–307

    Article  Google Scholar 

  • Dür M, Stix V (2005) Probabilistic subproblem selection in branch-and-bound algorithms. J Comput Appl Math 182(1):67–80

    Article  Google Scholar 

  • Fishburn P (1964) Decision and value theory. Wiley, New York

    Google Scholar 

  • Gonçalves E, Palhares R, Takahashi R, Mesquita R (2006) Algorithm 860: SimpleS—an extension of Freudenthal’s simplex subdivision. ACM Trans Math Softw 32:609–621

    Article  Google Scholar 

  • Gutmann H (2001) A radial basis function method for global optimization. J Glob Optim 19:201–227

    Article  Google Scholar 

  • Hansen P, Jaumard B (1995) Lipschitz optimization. In: Horst R, Pardalos PM (eds) Handbook of global optimization. Springer, Berlin, pp 404–493

    Google Scholar 

  • Holmström K (2008) An adaptive radial basis algorithm (ARBF) for expensive black-box global optimization. J Glob Optim 41:447–464

    Article  Google Scholar 

  • Hooker J (1995) Testing heuristics: we have it all wrong. J Heuristics 1:33–45

    Article  Google Scholar 

  • Horst R (1997) On generalised bisection of n-simplices. Math Comput 66:691–698

    Article  Google Scholar 

  • Horst R, Tuy H (1996) Global optimization—deterministic approaches, 3rd edn. Springer, Berlin

    Google Scholar 

  • Jones D (2001) A taxonomy of global optimization methods based on response surfaces. J Glob Optim 21:345–383

    Article  Google Scholar 

  • Kushner H (1962) A versatile stochastic model of a function of unknown and time-varying form. J Math Anal Appl 5:150–167

    Article  Google Scholar 

  • Mockus J (1988) Bayesian approach to global optimization. Kluwer, Dordrecht

    Google Scholar 

  • Mockus J, Eddy W, Reklaitis G (1996) Bayesian heuristic approach to discrete and global optimization. Kluwer, Dordrecht

    Google Scholar 

  • Paulavičius R, Žilinskas J (2007) Analysis of different norms and corresponding Lipschitz constants for global optimization in multidimensional case. Inf Technol Control 36(4):383–387

    Google Scholar 

  • Paulavičius R, Žilinskas J (2008) Improved Lipschitz bounds over multidimensional simplex. Math Model Anal 13(4):553–563

    Article  Google Scholar 

  • Paulavičius R, Žilinskas J, Grothey A (2010) Investigation of selection strategies in branch and bound algorithm with simplicial partitions and combination of Lipschitz bounds. Optim Lett 4(2):173–183

    Article  Google Scholar 

  • Pinter J (1996) Global optimization in action: Continuous and Lipschitz optimization: algorithms, implementations and applications. Kluwer, Dordrecht

    Google Scholar 

  • Santler T, Wiliams B, Notz W (2003) The design and analysis of computer experiments. Springer, Berlin

    Google Scholar 

  • Sergeyev Y, Kvasov D (2006) Global search based on efficient diagonal partitions and a set of Lipschitz constants. SIAM J Optim 16(3):910–937

    Article  Google Scholar 

  • Stein M (1999) Interpolation of spatial data: some theory of kriging. Springer, Berlin

    Google Scholar 

  • Strongin R, Sergeyev Y (2000) Global optimization with non-convex constraints. Kluwer, Dordrecht

    Google Scholar 

  • Törn A, Žilinskas A (1989) Global optimization. Lect Notes Comput Sci 350:1–252

    Google Scholar 

  • Zhigljavsky A, Žilinskas A (2008) Stochastic global optimization. Springer, Berlin

    Google Scholar 

  • Žilinskas A (1985) Axiomatic characterization of a global optimization algorithm and investigation of its search strategies. Oper Res Lett 4:35–39

    Article  Google Scholar 

  • Žilinskas A (1992) A review of statistical models for global optimization. J Glob Optim 2:145–153

    Article  Google Scholar 

  • Žilinskas J (2007) Reducing of search space of multidimensional scaling problems with data exposing symmetries. Inf Technol Control 36(4):377–382

    Google Scholar 

  • Žilinskas J (2008) Branch and bound with simplicial partitions for global optimization. Math Model Anal 13(1):145–159

    Article  Google Scholar 

  • Žilinskas A, Žilinskas J (2002) Global optimization based on a statistical model and simplicial partitioning. Comput Math Appl 44(7):957–967

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antanas Žilinskas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Žilinskas, A., Žilinskas, J. P-algorithm based on a simplicial statistical model of multimodal functions. TOP 18, 396–412 (2010). https://doi.org/10.1007/s11750-010-0153-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11750-010-0153-9

Keywords

Mathematics Subject Classification (2000)

Navigation