Skip to main content
Log in

Dependence of locally linear embedding on the regularization parameter

  • Original Paper
  • Published:
TOP Aims and scope Submit manuscript

Abstract

This paper deals with a method, called locally linear embedding (LLE). It is a nonlinear dimensionality reduction technique that computes low-dimensional, neighborhood-preserving embeddings of high-dimensional data and attempts to discover a nonlinear structure (including manifolds) in high-dimensional data. In practice, the nonlinear manifold learning methods are applied in image processing, text mining, etc. The implementation of the LLE algorithm is fairly straightforward, because the algorithm has only two control parameters: the number of neighbors of each data point and the regularization parameter. The mapping quality is quite sensitive to these parameters. In this paper, we propose a new way of selecting a regularization parameter of a local Gram matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput 15(6):1373–1396

    Article  Google Scholar 

  • Cristianini N, Taylor JS (2000) An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press, Cambridge

    Google Scholar 

  • DeCoste D (2001) Visualizing Mercer kernel feature spaces via kernelized locally linear embeddings. In: Proceedings of the eighth international conference on neural information processing, Shanghai, China, 14–18 November 2001

  • Donoho DL, Grimes C (2005) Hessian eigenmaps: New locally linear embedding techniques for high-dimensional data. Proc Natl Acad Sci 102(21):7426–7431

    Article  Google Scholar 

  • Dzemyda G (2001) Visualization of a set of parameters characterized by their correlation matrix. Comput Stat Data Anal 36(10):15–30

    Article  Google Scholar 

  • Gantmacher FR (1988) The theory of matrices. Nauka, Moscow (in Russian)

    Google Scholar 

  • Ge S, Yang Y, Lee TH (2006) Hand gesture recognition and tracking based on distributed locally linear embedding. In: Proceedings of IEEE conference on robotics, automation and mechatronics, pp 1–6, ISBN:1-4244-0025-2

  • Hadid A, Kouropteva O, Pietikäinen M (2002) Unsupervised learning using locally linear embedding: experiments with face pose analysis. ICPR (1):111–114

  • Jain V, Saul LK (2004) Exploratory analysis and visualization of speech and music by locally linear embedding. In: Proceedings of IEEE international conference on acoustics, speech, and signal processing (ICASSP No 29), vol 5, pp 984–987, ISBN:0-7803-8484-9

  • Karbauskaitė R, Kurasova O, Dzemyda G (2007) Selection of the number of neighbours of each data point for the locally linear embedding algorithm. Inf Technol Control 36(4):359–364. ISSN 1392-124X. Kaunas: Technologija

    Google Scholar 

  • Kouropteva O, Okun O, Pietikainen M (2002) Selection of the optimal parameter value for the locally linear embedding algorithm. In: Proceedings of 2002 international conference on fuzzy systems and knowledge discovery, pp 359–363

  • Li HG, Li XG (2004) Gait analysis using LLE. In: Proceedings of the 7th international conference on signal processing: (ICSP’04), vol 3, pp 1423–1426. ISBN:0-7803-8406-7

  • Li HG, Shi CP, Li XG (2005) LLE based gait recognition. In: Proceedings of 2005 international conference on machine learning and cybernetics, vol 7, pp 4516–4521. ISBN:0-7803-9091-1

  • Liou CY, Kuo YT (2002) Economic states on neuronic maps. In: Proceedings of the 9th international conference on neural information processing (ICONIP’02), vol 2, pp 787–791

  • Liu K, Weissenfeld A, Ostermann J (2006) Parameterization of mouth images by LLE and PCA for image-based facial animation. In: ICASSP06, Toulouse, France, IEEE proceedings, vol 5, pp 461–464

  • Mekuz N, Bauckhage C, Tsotsos JK (2005) Face recognition with weighted locally linear embedding. In: Proceedings of the 2nd Canadian conference on computer and robot vision, pp 290–296. ISBN:0-7695-2319-6

  • Ridder DD, Kouropteva O, Okun O, Pietikinen M, Duin RPW (2003) Supervized locally linear embedding. Comput Sci 2714:333–341

    Google Scholar 

  • Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290:2323–2326

    Article  Google Scholar 

  • Saul LK, Roweis ST (2003) Think globally, fit locally: Unsupervised learning of low dimensional manifolds. J Mach Learn Res 4:119–155

    Article  Google Scholar 

  • Siegel S, Castellan NJ (1988) Nonparametric statistics for the behavioral sciences, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  • Taylan P, Weber GW, Yerlikaya F (2010) A new approach to multivariate adaptive regression spline by using tikhonov regularization and continuous optimization. TOP Off J Spanish Soc Stat Oper Res

  • Tenenbaum JB, Silva V Langford JC (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290:2319–2323

    Article  Google Scholar 

  • Tikhonov AN, Arsenin AV (1977) Solution of Ill-posed problems. Winston & Sons, Washington. ISBN: 0-470-99124-0

    Google Scholar 

  • Varini C, Nattkemper TW, Degenhard A, Wismuller A (2004) Breast MRI data analysis by LLE. In: Proceedings of 2004 IEEE international joint conference on neural networks, vol 3, pp 2449–2454. ISBN:0-7803-8359-1

  • Zhang Z, Zha H (2004) Principal manifolds and nonlinear dimensionality reduction via local tangent space alignment. SIAM J Sci Comput 26(1):313–338

    Article  Google Scholar 

  • Zhao Q, Zhang D, Lu H (2005) Supervised LLE in ICA space for facial expression recognition. In: Proceedings of international conference on neural networks and brain, ICNN&B ’05, vol 3, pp 1970–1975. ISBN:0-7803-9422-4

  • Zhu L, Zhu SA (2006) Face recognition based on extended locally linear embedding. In: Proceedings of 2006 1st IEEE conference on industrial electronics and applications, pp 1–4. ISBN:0-7803-9514-X

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasa Karbauskaitė.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karbauskaitė, R., Dzemyda, G. & Marcinkevičius, V. Dependence of locally linear embedding on the regularization parameter. TOP 18, 354–376 (2010). https://doi.org/10.1007/s11750-010-0151-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11750-010-0151-y

Keywords

Mathematics Subject Classification (2000)

Navigation