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Effect of agro-climatic conditions on near infrared
spectra of extra virgin olive oils*
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Abstract

Authentication of extra virgin olive oil requires fast and cost-effective analytical procedures, such
as near infrared spectroscopy. Multivariate analysis and chemometrics have been successfully
applied in several papers to gather qualitative and quantitative information of extra virgin olive
oils from near infrared spectra. Moreover, there are many examples in the literature analysing
the effect of agro-climatic conditions on food content, in general, and in olive oil components,
in particular. But the majority of these studies considered a factor, a non-numerical variable,
containing this meteorological information. The present work uses all the agro-climatic data with
the aim of highlighting the linear relationships between them and the near infrared spectra. The
study begins with a graphical motivation, continues with a bivariate analysis and, finally, applies
redundancy analysis to extend and confirm the previous conclusions.
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1. Introduction

Spain is the first worldwide producer of extra virgin olive oil (EVOO), where Andalu-
sia encompasses 80% of the national production. EVOO is an edible oil very much
appreciated by its flavour and benefits for health. Its high quality could be affected by
frauds in marketing, such as adulteration with other cheaper oils (for example, palm,
corn, hazelnut or refined olive oil) or with the indication of a false geographical ori-
gin. These practices considerably modify its quality indexes. Therefore, authentication
of EVOO requires fast, reliable and cost-effective analytical procedures which require
no or little sample manipulation, such as near infrared spectroscopy (NIR). Contrary to
classical separation techniques (for example, gas chromatography), NIR spectra provide
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continuous information rich in both isolated and overlapping bands and their analysis re-
quires the application of multivariate statistics (see Oztiirk, Yal¢in and Ozdemir, 2010).

There are in the literature many examples of the application of chemometrics to de-
termine qualitative and quantitative information of EVOO from NIR spectra, specially,
with the aim of its authentication. For instance, Bertran et al. (2000) apply NIR and
pattern recognition as screening methods for the authentication of EVOO of very close
geographical origins. Mailer (2004) shows a rapid evaluation of olive oil quality by NIR
reflectance spectroscopy. Galtier et al. (2007) determine geographic origins and com-
positions of EVOO by chemometric analysis of NIR spectra. Woodcock, Downey and
O’Donnell (2008) show a confirmation of declared provenance of European EVOO sam-
ples by NIR spectroscopy. Casale et al. (2012) present a characterization of Protected
Designations of Origin (PDO) olive oil Chianti Classico by non-selective (UV-visible,
NIR and MIR (mid-infrared) spectroscopy) and selective (fatty acid composition) ana-
Iytical techniques. Finally, some previous papers of our research group (see Sanchez-
Rodriguez et al. (2013) and Sanchez-Rodriguez et al. (2014)) show new chemometric
approaches to empathize the potential of NIR and MIR spectra to determine the fatty
acid profile of EVOO, the fatty acids being its major components and considered as a
quality parameter in order to its authentication. Therefore, NIR and MIR spectra contain
valuable and diverse information about EVOO.

Moreover, there are in the literature many works analysing the influence of weather,
agro-climatic or meteorological' conditions on food content, in general, or in EVOO
components, in particular. Thus, for example, Martinez-Herrera et al. (2006) analyse
the chemical composition of Jatropha curcas L., a multipurpose shrub of significant
economic importance because of its several potential industrial and medicinal uses, from
different agro-climatic regions of Mexico. Jarvis et al. (2008) and Khokhar et al. (2017)
study the influence of agro-climatic conditions on wheat in western Canada and India,
respectively. Zheng et al. (2012) show the effects of latitude and weather conditions
on the contents of black currant, while Yang et al. (2017) analyse the same effects on
Finnish berries. Falasca, Ulberich and Ulberich (2012) develop an agro-climatic zoning
model to determine potential production areas for castor bean. Luciano et al. (2013)
treat the effects of the weather and the soil on the composition of grapes. Rymbai et
al. (2014) study the physiological characteristics of mango in different agro-climatic
regions of India. Edmunds et al. (2015) analyse the relationships of preharvest weather
conditions and soil factors to susceptibility of sweetpotato. Dorey et al. (2016) model
sugar content of pineapple under agro-climatic conditions on Reunion Island. Finally,
there are many papers treating the effect of weather and agro-climatic conditions on oils
(such as Leskinen, Suomela and Kallio, 2009a and Leskinen et al., 2009b), especially
the numerous studies of olive oils: for example, Sacco et al. (2000), D’Imperio et al.

1. Climatology deals with the scientific study of climate, that is, the processes and phenomena of the atmosphere
over relatively long periods of time. However, Meteorology studies the characteristics of the atmosphere over a short
period of time, especially as a means of forecasting the weather. The agro-prefix placed before both terms refers to the
interrelationship between Climatology and Meteorology with the processes of agricultural production.
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(2007), Cornejo, Bueno and Gines (2012), Awan (2014), Alowaiesh, Singh and Kailis
(2016), Ozdemir (2016), Veizi, Peci and Lazaj (2016), Zaied and Zouabi (2016) and
Merchak et al. (2017). But there are few studies considering NIR data to study this
agro-climatic influence on oils or other food products.

Regarding the multivariate statistical technique being applied, the majority of the
studies included in the literature consider a single factor, a non-numerical variable, to
establish different meteorological or agro-climatic zones — see, for example, Alowaiesh
et al. (2016), Cornejo et al. (2012), Leskinen et al. (2009a) and Leskinen et al. (2009b),
Merchak et al. (2017) or Zheng et al. (2012). If this factor is used as an independent
variable in a statistical model, ANOVA (or MANOVA) and a post-hoc test can be used
to compare the means corresponding to the defined zones in a numeric variable. The
agro- climatic factor can also be used as a dependent variable in the linear discrimi-
nant analysis (LDA), where the high dimensionality of the independent variables can
be reduced by previously applying principal component analysis (PCA) or partial least
squares (PLS). However, the present study rather uses the complete agro- climatic data
base obtained from the official webpage of the Automatic Weather Stations (AWEs) of
Andalusia. In particular, the historical daily information from 2005 to 2010 has been
downloaded for the following variables: temperature, humidity, wind speed, radiation,
precipitation and evapotranspiration.

In this case, the agro-climatic data are aggregated in different ways and associated
to the EVOO (taking into account the nearest AWE) by using computational programs
designed by the powerful free software R-project (R Core Team (2018)). The aim of the
study is to explore the linear relationships between agro-climatic and EVOO NIR data:
firstly, by using bivariate correlation analysis and, then, generalizing the procedures to
multivariate analysis with the application of Redundancy Analysis (RDA).

In particular, Section 2 describes the process of acquisition of NIR and agro-climatic
data, the statistical bivariate and multivariate methodology and the computational im-
plementation. Section 3 shows the results and discussion: firstly, the graphical analysis
of NIR (original and derivative) spectra and the series of agro-climatic data; secondly,
the results of the correlation analysis between the agro-climatic measurements and the
spectral absorbance are shown; thirdly, some of the previous conclusions are confirmed
and extended by the application of the multivariate technique of RDA. Finally, Section
4 includes the main conclusions of the work.

2. Materials and methods

2.1. Data
2.1.1. NIR data

Olive oil was extracted by the producers through a two-phase centrifugation system.
Information from 222 Andalusian extra virgin olive oils, collected from consecutive
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harvests from 2005-06 to 2010-11 (denoted H1, H2,..., H6, respectively), is available.
The chemical data from each EVOO have been provided by near-infrared (NIR) spec-
troscopy by the staff of the Organic Chemistry Department of the University of Cordova
(Spain). The instruments employed for spectra collection were available at Central Ser-
vice of Analyses (SCAI) and included a Spectrum One NTS FT-NIR spectrophotome-
ter (Perkin Elmer LLC, Shelton, USA) equipped with an integrating sphere module.
Samples were analysed by transflectance by using a glass petri dish and a hexagonal
reflector with a total transflectance pathlength of approximately 0.5 mm. A diffuse re-
flecting stainless steel surface placed at the bottom of the cup reflected the radiation
back through the sample to the reflectance detector. The spectra were collected by using
Spectrum Software 5.0.1 (Perkin Elmer LLC, Shelton, USA). The reflectance (log 1/R)
spectra were collected with two different reflectors. Data correspond to the average of
results with both reflectors, thus ruling out the influence of them on variability of the
obtained results. Moreover, spectra were subsequently smoothed using the Savitzky-
Golay technique, which performs a local polynomial least squares regression in order
to reduce the random noise of the instrumental signal (Savitzky and Golay (1964)).
Once pre-treated, NIR data of 1237 measurements for each case (representing energy
absorbed by olive the oil sample at 1237 different wavelengths, from 800.62 to 2499.64
nm) were supplied to the Department of Statistics (University of Cordova) in order to
be analysed (Figure 1).
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Figure 1: NIR spectrum of an extra virgin olive oil.
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2.1.2. Agro-climatic data

The agro-climatic data used in the work has been obtained of the official website of
the Andalusian Institute of Agricultural, Fisheries, Agrifood and Organic Production
Research and Training (IFAPA). In this webpage, the long-run information registered
in the Automatic Weather Stations (AWEs) can be accessed’. These stations have a
suitable plan of maintenance and an exhaustive review of the records that supply the
sensors. There are approximately 120 AWEs in all the Andalusian provinces, though in
this work only the historical daily information corresponding to the 28 AWEs specified
in Table 1 (see Appendix A), for the period 2005-2010 (years before the considered
harvest years), has been downloaded. These AWEs have been selected due to their
proximity with the point of extraction of the available oils.
Information about the following variables has been considered in this study:

e Temp: Daily average temperature, in °C. The temperature is measured by a sen-
sor Pt1000 whose functioning is based on the variation of the resistance of the
platinum element by the temperature.

e Hum: Daily average relative humidity, in %. The measurement of the relative
humidity is realized by a capacitive device of solid condition: sensor HUMICAP
180, plastic polymer that tends to absorb humidity. The sensor changes its electri-
cal characteristics by the variations of humidity, in such a way that diminishes its
electrical capacity by the absorption of dampness.

e WSpe: Daily average wind speed, in meters per second. Its measurement is real-
ized by a weather vane, in which the rotation of a propeller produces an electrical
sign in alternating current, of frequency proportional to the wind speed.

e Rad: Daily average radiation, in MJ per m?>. The measurement is realized by
a pyrometer constituted by a photoelectric cell of silicon being sensitive to the
radiation from 350 to 1100 nm, orientated in a southerly direction and ensuring
that another sensor or accessory of the tripod does not cast shade on it.

e Precip: Daily precipitation, in mm. The AWE has a device of swinging small
containers to measure the volume of rainfall, that is measured by the number of
contacts with a tab of the device (each one equivalent to 0.20 mm) that are pro-
duced by the overturning of the rain water from one container to the other.

e ETy. The potential evapotranspiration (PET) is the loss of dampness (in mm per
day) of a surface for direct evaporation together with the water loss for perspira-
tion of the vegetation. PET represents the maximum quantity of water that can
evaporate from a soil completely covered with vegetation, which develops in ideal
conditions and supposing that there are no limitations in the availability of water.
ETy, denoted here as ETo for purposes of labelling, is similar to the ETP though

2. The link is https://www.juntadeandalucia.es/agriculturaypesca/ifapa/ria/servlet/FrontController, where the histori-
cal data can be downloaded by clicking on the name of the station and selecting the agro-climatic measurements and the
start and end dates [accessed on 02 October 2018].
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it is applied to a specific or standard cultivation, habitually cereals or alfalfa, from
8 to 15 cm of uniform height, of active growth, totally covering the soil and not
being submitted to water deficit.

2.2. Methodology

2.2.1. Bivariate analysis

Pearson’s linear correlation coefficient, r, determines the degree of linear association
existing between two numerical variables, being higher as the coefficient is closer to
1 in absolute value. Assuming bivariate normality of the variables, and under the null
hypothesis of zero correlation, the statistic = rv/(n— 2)/(1 — r?) has 7-Student distri-
bution with n — 2 degrees of freedom, where n is the sample size, equal to 222 in this
study. Using a significance level of o = 0.05, values of r such as —0.1317 < r < 0.1317
show no statistical evidence for rejecting the hyothesis of zero correlation.

2.2.2. Redundancy analysis

Canonical redundancy analysis (RDA) and canonical correspondence analysis (CCA)
are two forms of asymmetric canonical analysis, where asymmetric means that the ma-
trices involved in the analysis, X and Y, do not play the same role: Y is a matrix of
response variables —in this case, containing the spectral information — and X is the ma-
trix of explanatory variables —in this study, the agro-climatic measurements. This aspect
contrasts with canonical correlation analysis where the two matrices play the same role
in the analysis and so can be interchanged. X is used to explain the variation in Y, as in
regression analysis, in two steps® *:

1. Multivariate regression of Y on X, which is equivalent to a series of multiple linear
regressions of the individuals variables of Y on X and produces a matrix of fitted
values Y.

2. Principal component analysis (PCA) of Y in order to reduce its dimension. PCA
components of Y, called RDA components or redundancy axes, are obtained as a
reduced number of linear combinations of the variables of Y, orthogonal among
themselves, explaining a maximum percentage of their variability.

Therefore, in RDA the variability of the variables of Y are explained from PCA
components (factors or latent variables) depending on the variables of X and so RDA
can be seen as a constrained version of PCA.

3. Xand Y are generally standardized to eliminate the effect of the measurement units.

4. The main assumptions of the data are linearity between the variables of matrix Y and the variables of the matrix X
and the variance homogeneity of each set of data.
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Each eigenvalue of the correlation matrix of the variables of Y, A jforj=1,...,g,
represents the variance of each redundancy axis, whose direction is calculated from the
corresponding eigenvector. The proportion of the total variance of Y explained by a
redundancy axis k, k =1,...,g, is given by:

Ak
5:1 Aj

The redundancy index of the model (similar to a coefficient of determination) is defined

by:
R — Zj:l Aj
" f’:l /\j’

being m the number of redundancy axes (among the possible g RDA components) to
retain.

The results of the applications of RDA analysis are usually shown by representing
both matrices, X and Y, in a space of reduced dimension: the two or three-dimensional
space formed by the first RDA components. Variables or cases with the highest coor-
dinates (scores) in a RDA component or redundancy axis are very useful to interpret it,
showing the variables and/or cases that are discriminated by this RDA component. Be-
sides, the proximity between variables, cases or RDA components represents the high
association between them.

Redundancy analysis as an alternative for canonical correlation analysis was pre-
sented by authors such as Rao (1964) and van den Wollenberg (1977). More recently,
Legendre, Oksanen and ter Braak (2011), test the significance of the redundancy axes in
RDA.

2.2.3. Functional data analysis

For some years, the computing applied to different areas has caused a major tech-
nological change due to the addition of faster and more precise measuring equipments.
This fact affects one of the paradigms on classical statistics: the number of data should
be greater than the number of variables. Currently, large databases corresponding to
observations of random variables taken over a continuous interval (or increasingly ex-
tensive discretizations of this continuous interval). This kind of data, named functional
data, appear in a natural way in fields such as the spectrometry, where the measure-
ment result is a curve, a spectrum (see, for example, Aguilera et al. (2010) or Saeys, De
Ketelaere and Darius, 2008).

Moreover, in chemometrics, the treatment of a spectrum in the context of functional
data analysis, as a continuous function, enables the obtaining of the spectral derivatives
as any differentiable function must be continuous at every point in its domain. Many
studies of different fields, in particular, of olive oil have proven that the first or second
derivative of NIR spectra provide valuable qualitative or quantitative information about
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oil that, however, the original spectra do not show (see, for example, Chen et al. (2015)
or Woodcock et al. (2008)). Although the original spectral curves overlap, sometimes
those ones associated to a high content in a concrete compound or having the effect of an
external factor show show higher variability. Therefore, these variations or discrepan-
cies are appreciated more clearly in the first derivative of the spectra than in the original
spectra.

2.2.4. Computational implementation

The agro-climatic data corresponding to the year previous to the olive harvest and to
the nearest AWE (or the average of the nearest AWEs) are associated to each oil sam-
ple. A procedure has been programmed, using R, that permits to select the considered
agro-climatic variable (Temp, Hum, WSpe, Rad, Precip, ETo) and accumulates the daily
measurements corresponding to several days or months. In particular, the following
function has been defined:

AGR-CLIM-function(station, harvest, monthl, month2, agro-climatic measurement),
with the following arguments:

- station: among the 28 observed AWESs, the case has associated the code of the
nearest geographically (see Table 1),

- harvest years, from 1 (2005-06) to 6 (2010-11),

- given the station and the harvest, the period of time (from monthl to month2) can
be selected to aggregate the daily agro-climatic measurements,

- agro-climatic measurement, distinguishing among the 6 previously described: Temp,
Hum, WSpe, Rad, Precip, ETo,

The function returns as value the aggregated agro-climatic measurement according
to the selected months and the established meteorological criterion.

Having extracted the data, Pearson’s linear correlation is computed between the dif-
ferent agro-climatic measurement, aggregated for different months, and some spectral
values of absorbance for the original spectra or their (first or second) derivatives. The
graphical procedures will mark in all cases the correlation coefficients which are (or not)
statistically different from zero (with o = 0.05). As stated above, for the sample size
n = 222 they are the values outside the range (—0.1317,0.1317).

The packages of R-project ‘fda’ (Ramsay et al. (2017)) and ‘fda.usc’ (Febrero-Bande
and Oviedo de la Fuente, 2012) have been used to obtain the spectral derivatives and the
multivariate analysis of RDA has been developed by using the package ‘vegan’ (Oksa-
nen et al. (2018)). Detailed information of the code of the programs designed to read the
agro-climatic and chemical data, including the above-mentioned function, and to obtain
the diverse range of graphics considered in the study can be seen in the Supplementary
Material.
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3. Results and discussion

3.1. Graphical analysis

3.1.1. Analysis of NIR spectra

NIR spectra are the representation of the absorbance, that is, the quantity of energy
absorbed by an oil at each wavelength (from 800.62 to 2499.64 nm, 1237 measures in
total). As indicated above, the continuous treatment of a spectrum, instead of an ex-
tensive discretization, permits the obtaining of its derivatives that, in occasions, contain
valuable information about olive oil compositions.

Thus, in Figure 2 the original spectra as well as their two first derivatives are rep-
resented, where the spectra are grouped in the same colour corresponding to a same
harvest. The visual analysis highlights the separation or divergence of some spectra, es-
pecially those corresponding to the last harvest (H6, depicted in pink). This discrepancy
is more pronounced in some ranges of wavelengths of derivative spectra, whose detail is
represented in Figure 3 (where the points of maximum discrepancy are denoted by Py,
P, ..., Py for future analysis).

In addition, in Figure 4 the transposes of the original spectra and their two first
derivatives are shown, i.e., the curves are represented as a function of the case. This
graphic also highlights the structural change corresponding to the last harvest, H6; this
change is especially evident by the view of the derivative spectra.
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3.1.2. Analysis of series of agro-climatic data

In this section, the series of the six agro-climatic measurements (Temp, Hum, WSpe,
Rad, Precip, Eto) are represented for the six harvests. The daily values are accumulated
for each month (afterwards, the reason is explained) and then standardized in order
to eliminate the effect of the measurement units of each variable. So, dimensionless
series are obtained that can be represented and compared in the same graphic. These
standardized values are represented in Figure 5 which shows a cyclical tendency for all
the considered variables. In general, the proximity of the trajectories of evolution of
the variables Temp, WSpe, Rad and Eto, on the one hand, and Hum and Precip, on the
other, is observed, noting also the symmetry among them. With regard to the relation
between precipitation and radiation, Bradley et al. (2011) use cross-spectral analysis
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to show that precipitation has a role to play in the maintenance of phenology cycles
because it maintains constant vegetation growth reducing so the seasonal impact of the
solar radiation.

As fundamental irregularity of Figure 5, the especially high values of the variables
that represent the wind speed (WSPe, in green) and the volume of precipitation (Precip,
in pink) at the beginning of the 4th harvest and at the beginning and the end of the 6th
harvest (H6) can be highlighted. This fact corroborated the work of Back and Bretherton
(2005) which studied the relationship between wind speed and precipitation in the Pa-
cific and found a significant correlation between these variables. The specially irregular
behaviour of the Precip variable in H6, whose accumulated mean values are specially
high, can also be deduced from the observation of Figure 6.

Therefore, the anomalous accumulated precipitation (or wind speed) values corre-
sponding to the sixth harvest together with the anomalous derivative NIR spectra cor-
responding to the same harvest justify the formulation of the following question: What
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is the effect of the precipitation or the wind speed, in particular, or the agro-climatic
conditions, in general, on NIR spectra or on the chemical compounds of EVOQO?
Finally, Figure 7 depicts the standardized mean values for the six agro-climatic mea-
surements for the 28 automatic weather stations. The obvious discrepancies among the
mean values corresponding to the different AWEs makes reasonable the assignation the
agro-climatic measurements associated to the nearest AWE to each olive oil (case).

3.2. Bivariate analysis

The following function:
AGR-CLIM-function(station, harvest, monthl, month2, agro-climatic measurement),

described in Section 2.2 (Methodology) and whose code is included in the Supplemen-
tary Material, has been applied to each EVOO (222, in total), considering the nearest
AWE (station) and the corresponding harvest. The six agro-climatic measurements pre-
viously downloaded (Temp, Hum, WSpe, Rad, Precip and Eto) have been accumulated
for each month, from January to December. Therefore, a list of 12 matrices of dimen-
sion 222x6, [X;|X,|---|Xz], is available. Moreover, Y is the matrix of dimension
222x10 whose columns contain the absorbance associated to the 10 peaks of maximum
discrepancy (Py, P», ..., Pjg) represented in Figure 3.

The aim of aggregating the agro-climatic measurements has been to relate them more
adequately to the phenological cycle of the olive grove, which will directly influence the
composition of the oil. As shown in Figure 8, this cycle is not distributed equally,
and in this way the months of interest in each case could be studied independently. In
the bibliography, authors such as Orlandi et al. (2012), in the study of the influence of
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Figure 8: Phenological stages of olive.

climate data on oil production in southern Italy, also consider meteorological variables
on a monthly basis.

3.2.1. Correlations between the agro-climatic measurements
and the discrepancy spectral peaks

In this section, Pearson’s linear correlation coefficients are calculated between each of
the six agro-climatic measurements, accumulated for each month, and the discrepancy
spectral peaks denoted in Figure 3. The results are shown in Figures B.1-B.4 (in Ap-
pendix B), where the light grey lines of points mark the correlations -0.5 and 0.5 and the
dark grey lines of points show the frontier between the values being different (or not)
statistically from zero for a = 0.05.

The following fundamental conclusions can be deduced from the observation of Fig-
ures B.1-B.4:

e There are many high correlations, next to —1 or 1, specially for the accumulated
agro-climatic measurements corresponding to January, February, March, June and
November. Therefore, the lowest correlations between the discrepancy spectral
peaks and the aggregate agro-climatic measurements appear for the months of the
phenological stages corresponding to the development and the maturation of olives
(see Figure 8). And so it may be interpreted that the highest effect of the meteo-
rological conditions (in particular, of the precipitation), reflected in NIR spectra,
takes place not on the fruit but on the tree.

e From the observation of the different agro-climatic measurements, the precipita-
tion (Precip, in pink) and the radiation (Rad, in blue) are the variables showing,
in general, the highest (positive or negative) correlations, having opposite sign.
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As shown in Bradley et al. (2011), precipitation and radiation have negative linear
correlation and now Figures B.1-B.4 highlight that both agro-climatic measure-
ments have a contrary effect on the discrepancy spectral peaks. Besides, the sign
of the pairwise correlations between Precip-Rad and the peaks P,, P3, Ps, P; are
the same, and the opposite of the sign of the correlations between the rest of the
peaks. By coincidence, these peaks are the relative maxima of the derivative NIR
spectra while the other peaks are the relative minima.

e Some agro-climatic variables are almost uncorrelated between the discrepancy
spectral peaks for many months but, nevertheless, shown values closer to 1 (in
absolute terms) for a concrete month. These are the case, for example, of the
evapotranspiration (E7o, in yellow) or the humidity (Hum, in red) in March or
November, whose influence on the spectral peaks is the contrary. The negative or
inverse correlation between both variables can be intuited from the observation of
Figure 5. Besides, in March and November, the standardized values for E7o and
Hum are quite similar and, however, the effect on the discrepancy spectral peaks
is the highest.

3.2.2. Correlations between the agro-climatic measurements
and the spectral absorbance

In this section, Pearson’s linear correlation coefficients between the monthly accumu-
lated agro-climatic measurements and the spectral absorbance are calculated. The re-
sults, that coincide with the ones obtained from Figures B.1-B.4, are shown in Figures
C.1-C.4 (in Appendix C).

The following general conclusions can be obtained:

e January and December are the months showing, in general, the highest correlations
(in absolute terms) and April is the one with the correlation values nearest to zero.
This fact confirms, newly, that the highest correlations appear in the phenological
stage of winter resting of olive tree (see Figure 8).

e Taking into account the different agro-climatic measurements, the precipitation
(Precip, in pink) and the radiation (Rad, in blue) are the variables showing the
highest correlations, being the opposite the sign of their linear correlation. In
general, the sign of the correlation for the radiation and the evapotranspiration
(ETo, in yellow) is the same, and the opposite to the sign of the correlation for all
other variables.

3.3. Multivariate analysis

In this section, redundancy analysis (RDA) is applied to generalize the previous results
and highlight the cause and effect relationships between two data matrices: one of them,
the matrix of explanatory variables, containing in its columns the six accumulated agro-
climatic measurements for a specific month (X;, i = 1,...,12) and the other, the matrix
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of response variables (Y), formed by the spectral absorbance associated to the 10 peaks
of maximum discrepancy (Py,P,, ... ,P1;) represented in Figure 3.

The results of the application of each RDA are shown in the two-dimensional space
formed by the two first RDA components (RDA1 and RDA?2), where both matrices, X;
and Y, are represented. The results are drawn, for each month, in Figure 9. Each individ-
ual representation shows: a) the cases, using different colors for the different harvests
(black, red, green, blue, cyan and pink for H1,H2....,H6, respectively); b) the response
variables: the absorbance for the spectral peaks (Y, in orange); c) the explanatory vari-
ables: the agro-climatic measurements for each month (X;, i = 1,...,12, in gray). The
redundancy index is greater than 0.95 for all the months (as it is shown at the top right
of each graphic), which indicates that the percentage of the total variance of Y (spectral
peaks) explained by the two first RDA components is greater than 95%.

In general lines, the conclusions obtained from the observation of Figure 9 confirm
some of the above-mentioned ones, deduced from the bivariate analysis. More in par-
ticular, the following results can be enumerated:

e Cases analysis: The cases corresponding to the last harvest (H6, in pink) are
clearly discriminated or separated from the remaining harvests for all the months:
cases of H6 have high scores (in absolute terms) in RDAT1 for all the months
whereas all the other cases have scores near zero in this axis. RDA2 permits to
discriminate the harvest H5 (in cyan) from the others: cases of H5 have high (abso-
lute) scores in RDA2. Cases of H6 have also high scores in RDA2 for months such
as October but the groups of cases can be discriminated by the scores in RDAI.
The cases associated to H1, H2, H3 and H4 are, in general, overlapped and, so,
they are not discriminated by RDA1 and RDA?2 (the most important redundancy
axes), showing scores near zero in both redundancy axis, in general. RDA sta-
tistically modelled the situation previously represented in Figure 3, where spectra
corresponding to H6 (and H5, to a lesser degree) are clearly discriminated from
the others for some ranges of the original spectra or their first two derivatives.

e Response variables analysis: P,, P3, Ps, P; are clearly discriminated from the
other spectral peaks in all the months (being all of them depicted in orange). For
all months, the peaks have scores greater than one, in absolute terms, in RDAI,
whereas the scores in RDA?2 are near zero. In this case, RDA has also a clear
correspondence with the representation of Figure 3, as P,, P3, P5, Py are relative
maxima of the derivative spectra while Py, P4, Ps, Psg, P9 and Py are relative
minima.

e Explanatory variables analysis: As in bivariate analysis, taking into account the
different agro-climatic measurements (represented in gray), the radiation (Rad)
and the precipitation (Precip) are the variables having the highest scores (in abso-
lute terms) in RDA1 (especially, in February, June and December). The sign of
the scores (and, so, the correlation) is the opposite for these two variables (in line
with the observation of Figure 5 and Bradley et al. (2011)). The humidity (Hum)
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and the temperature (Temp) are clearly discriminated by RDA?2 for months such
as May or June, having both agro-climatic measurements opposite scores. The
evolution of these two variables is also the opposite in Figure 5. Finally, with re-
spect to the cases, response and explanatory variables, in months such as January,
March or November, Precip shows high scores, in absolute terms, in RDAT1 close
to the scores of the relative maxima peaks P;, Pz, Ps, P; and the last harvest (H6).
Besides, in March, May or June, Temp shows high (absolute) scores in RDA?2, this
variable being near the cases of HS.

4. Conclusions

During recent years NIR spectroscopy has been commonly used because it is a fast,
reliable and cost-effective chemical technique. Many studies apply chemometrics anal-
ysis to highlight the valuable information contained in NIR spectra of EVOO. Firstly,
studies such as Galtier et al. (2007) or Sdnchez-Rodriguez et al. (2013) and Sanchez-
Rodriguez et al. (2014) show the prediction of the fatty acid profile (quantitative infor-
mation) from NIR spectra. Other authors (Bertran et al. (2000) or Oztiirk et al. (2010))
highlight the potentiality of NIR spectra to analyse the traceability of EVOO in order to
their authentication. Casale et al. (2012) characterize PDO olive oil (qualitative infor-
mation) from NIR spectra.

Moreover, this paper highlights the effect of agro-climatic conditions on spectra of
olive oils. In particular, the study show the structure of linear relationships being be-
tween two sets of Big Data: NIR spectra of EVOO and agro-climatic data downloaded
from the official Andalusian Automatic Weather Stations (AWESs). The graphical anal-
ysis of both data sets detects, firstly, an irregular behaviour of (original and derivative)
NIR spectra corresponding to the last harvest of extraction of EVOO (H6), in particu-
lar, ten peaks of maximum discrepancy, Py, P, ..., Pyo, are determined. Secondly, the
graphical analysis of the series of agro-climatic data shows irregularities in the volume
of precipitation (Precip) or the wind speed (WSpe) accumulated for the previous year.
This fact motivates the question about what is the effect of the agro-climatic conditions
on NIR spectra or on the chemical compounds of EVOO (as NIR spectra are useful
to determine quantitative information of EVOO). The answer is obtained, initially, by
using bivariate analysis between the agro-climatic measurements and the spectral ab-
sorbance and, then, by extending the previous results by applying RDA. The first RDA
component or redundancy axis (obtained when the matrix of spectral absorbance is the
response and the matrix of agro-climatic measurements contains the explanatory vari-
ables) clearly discriminate the cases of EVOO corresponding to H6 whereas the cases
corresponding of HS are discriminated by the second RDA component. As final con-
clusions from bivariate and multivariate analysis, the variables monthly accumulating
the precipitation (Precip) and the radiation (Rad) show, in general, the highest (in abso-
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lute terms) linear correlation between the spectral absorbance, but having opposite sign.
The correlation coefficients associated to wind speed (WSpe) are the closest to zero and
so, unlike precipitations, the irregularities of the series of WSpe at the beginning of the
harvest H6 can not be associated with the discrepancy of the EVOO NIR spectra of this
harvest.

Therefore, the main contributions of this work are the treatment of the original agro-
climatic data, instead of defining a factor with levels associated to the meteorological
conditions, and the computational implementation in R to analyse the structure of corre-
lations between this set of Big Data and the EVOO spectral data and efficiently represent
the results (see the designed programs in the Supplementary Material). Once the effect
of agro-climatic conditions on EVOO NIR spectra has been highlighted by using the Big
Data and since NIR spectra contain important qualitative and quantitative information
of EVOO, a further study could treat the influence of meteorological aspects in some
quality parameters of olive oils, such as the fatty acids content, in order to authenticate
the oils and prevent fraudulent practices.
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Appendix A

Table 1: Automatic weather stations (AWEs).
Province Station Code

Cadiz Villamartin 1

Adamuz 2

Baena 3

Belmez 4

Cabra 5

Cordova Coérdoba 6

El Carpio 7

Hinojosa del Duque 8

Hornachuelos 9

Palma del Rio 10

Santaella 11

Granada Loja 12

Pinos Puente 13

Alcaudete 14

Chiclana de Segura 15

Jaén 16

Higuera de Arjona 17

Jaen Mancha Real 18

Marmolejo 19

Pozo Alcon 20

San José de los Propios 21

Santo Tomé 22

Antequera 23

Malaga Archidona 24

Pizarra 25

Sierra de Yeguas 26

Sevilla Ecija 27

Osuna 28
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