Skip to main content
Log in

The congruence frame and the Madden quotient for partial frames

  • Published:
Algebra universalis Aims and scope Submit manuscript

Abstract

Nuclei and prenuclei have proved popular for providing quotients in frame theory; moreover the collection of all nuclei is itself a frame with useful functorial properties. Another natural approach to quotients in the frame setting, much used by algebraists, uses congruences as a tool. In partial frames, nuclei no longer suffice for constructing quotients, but congruences do, and it is to these that we turn in this paper. Partial frames are meet-semilattices in which not all subsets need have joins; a selection function, \(\mathcal {S}\), specifies, for all meet-semilattices, certain subsets under consideration; an \(\mathcal {S}\)-frame then must have joins of all such subsets and binary meet must distribute over these. Examples of these are \(\sigma \)-frames, \(\kappa \)-frames and frames themselves. The first part of this paper investigates the structure and functorial properties of the congruence frame of a partial frame; the second constructs the least dense quotient, which we call the Madden quotient, in three different ways. We include some functoriality properties in the subcategory of partial frames with skeletal maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adámek, J., Herrlich, H., Strecker, G.: Abstract and Concrete Categories. Wiley, New York (1990)

    MATH  Google Scholar 

  2. Banaschewski, B.: \(\sigma \)-frames (1980). http://mathcs.chapman.edu/CECAT/members/Banaschewski_publications. Accessed 12 Feb 2017

  3. Banaschewski, B.: The frame envelope of a \(\sigma \)-frame. Quaest. Math. 16(1), 51–60 (1993)

    Article  MathSciNet  Google Scholar 

  4. Banaschewski, B., Gilmour, C.R.A.: Pseudocompactness and the cozero part of a frame. Comment. Math. Univ. Carolinae 37(3), 577–587 (1996)

    MathSciNet  MATH  Google Scholar 

  5. Banaschewski, B., Gilmour, C.R.A.: Realcompactness and the cozero part of a frame. Appl. Categ. Struct. 9, 395–417 (2001)

    Article  MathSciNet  Google Scholar 

  6. Banaschewski, B., Pultr, A.: Variants of openness. Appl. Categ. Struct. 2, 331–350 (1994)

    Article  MathSciNet  Google Scholar 

  7. Banaschewski, B., Pultr, A.: Booleanization. Cah. Topol. Géom Différ. Catég. 37(1), 41–60 (1996)

    MathSciNet  MATH  Google Scholar 

  8. Ebrahimi, M.M.: Equational compactness of sheaves of algebras on a Noetherian locale. Algebra Univers. 16(1), 318–330 (1983)

    Article  MathSciNet  Google Scholar 

  9. Erné, M., Zhao, D.: Z-join spectra of z-supercompactly generated lattices. Appl. Categ. Struct. 9(1), 41–63 (2001)

    Article  MathSciNet  Google Scholar 

  10. Frith, J., Schauerte, A.: An asymmetric characterization of the congruence frame. Topol. Appl. 158(7), 939–944 (2011)

    Article  MathSciNet  Google Scholar 

  11. Frith, J., Schauerte, A.: Uniformities and covering properties for partial frames (I). Categ. General Alg. Struct. Appl. 2(1), 1–21 (2014)

    MATH  Google Scholar 

  12. Frith, J., Schauerte, A.: Uniformities and covering properties for partial frames (II). Categ. General Alg. Struct. Appl. 2(1), 23–35 (2014)

    MATH  Google Scholar 

  13. Frith, J., Schauerte, A.: Completions of uniform partial frames. Acta Math. Hungar. 147(1), 116–134 (2015)

    Article  MathSciNet  Google Scholar 

  14. Frith, J., Schauerte, A.: Compactifications of partial frames via strongly regular ideals. Math. Slov. 68(2), 285–298 (2016)

    Article  MathSciNet  Google Scholar 

  15. Frith, J., Schauerte, A.: The Stone-Čech compactification of a partial frame via ideals and cozero elements. Quaest Math. 39(1), 115–134 (2016)

    Article  MathSciNet  Google Scholar 

  16. Frith, J., Schauerte, A.: Coverages give free constructions for partial frames. Appl. Categ. Struct. 25(3), 303–321 (2017)

    Article  MathSciNet  Google Scholar 

  17. Frith, J., Schauerte, A.: One-point compactifications and continuity for partial frames. Categ. General Alg. Struct. Appl. 7((Special issue on the occasion of Banaschewski’s 90th birthday (II))), 57–88 (2017)

    MathSciNet  MATH  Google Scholar 

  18. Frith, J.L.: Structured frames. Ph.D. thesis. University of Cape Town, Cape Town (1987)

    Google Scholar 

  19. Glivenko, V.: Sur quelque points de la logique de M Brouwer. Acad. Royal Belg. Bull. Sci. 15, 183–188 (1929)

    MATH  Google Scholar 

  20. Isbell, J.R.: Atomless parts of spaces. Math. Scand. 31, 5–32 (1972)

    Article  MathSciNet  Google Scholar 

  21. Johnstone, P.T.: Factorization theorems for geometric morphisms ii. In: Categorical Aspects of Topology and Analysis, LNM 915, pp. 216–233. Springer, Berlin, Heidelberg (1982)

    Google Scholar 

  22. Johnstone, P.T.: Stone spaces. Cambridge University Press, Cambridge (1982)

    MATH  Google Scholar 

  23. Johnstone, P.T.: The art of pointless thinking: a student’s guide to the category of locales. In: Herrlich, H., Porst, H-E. (eds.) Category Theory at Work, Research and Exposition in Math. Volume 18, pp. 85–107. Heldermann Verlag, Berlin (1991)

  24. Johnstone, P.T.: Complemented sublocales and open maps. Ann. Pure Appl. L. 137(1–3), 240–255 (2006)

    Article  MathSciNet  Google Scholar 

  25. Joyal, A., Tierney, M.: An Extension of the Galois Theory of Grothendieck, Memoirs of Amer. Math. Soc., vol. 309. Amer. Math. Soc., Providence RI (1984)

  26. Klinke, O.: A presentation of the assembly of a frame by generators and relations exhibits its bitopological structure. Algebra Univers. 71, 55–64 (2014)

    Article  MathSciNet  Google Scholar 

  27. Lane, S.M.: Categories for the working mathematician. Springer, Heidelberg (1971)

    Book  Google Scholar 

  28. Lawvere, F.W.: Toposes, algebraic geometry and logic. LNM 274. Springer, Berlin, Heidelberg (1972)

    Google Scholar 

  29. Madden, J.J.: \(\kappa \)-frames. J. Pure Appl. Alg. 70, 107–127 (1991)

    Article  Google Scholar 

  30. Paseka, J.: Covers in generalized frames. In: General Algebra and Ordered Sets (Horni Lipova 1994), pp. 84–99. Palacky Univ., Olomouc (1994)

  31. Picado, J., Pultr, A.: Frames and Locales. Springer, Basel (2012)

    Book  Google Scholar 

  32. Plewe, T.: Higher order dissolutions and Boolean coreflections of locales. J. Pure Appl. Alg. 154, 273–293 (2000)

    Article  MathSciNet  Google Scholar 

  33. Plewe, T.: Sublocale lattices. J. Pure Appl. Alg. 168, 309–326 (2002)

    Article  MathSciNet  Google Scholar 

  34. Simmons, H.: A framework for topology. Stud. L. Found. Math. 96, 239–251 (1978)

    Article  MathSciNet  Google Scholar 

  35. Zenk, E.R.: Categories of partial frames. Algebra Univers. 54, 213–235 (2005)

    Article  MathSciNet  Google Scholar 

  36. Zhao, D.: Nuclei on \(z\)-frames. Soochow J. Math. 22(1), 59–74 (1996)

    MathSciNet  MATH  Google Scholar 

  37. Zhao, D.: On projective \(z\)-frames. Canad. Math. Bull. 40(1), 39–46 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anneliese Schauerte.

Additional information

A. Schauerte acknowledges support from the NRF.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frith, J.L., Schauerte, A. The congruence frame and the Madden quotient for partial frames. Algebra Univers. 79, 73 (2018). https://doi.org/10.1007/s00012-018-0554-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00012-018-0554-4

Mathematics Subject Classification

Keywords

Navigation