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CLASSIFICATION OF REAL SOLVABLE LIE ALGEBRAS

WHOSE SIMPLY CONNECTED LIE GROUPS HAVE ONLY

ZERO OR MAXIMAL DIMENSIONAL COADJOINT ORBITS

ANH VU LE, VAN HIEU HA, ANH TUAN NGUYEN,
TRAN TU HAI CAO, AND THI MONG TUYEN NGUYEN

Abstract. We study a special subclass of real solvable Lie algebras having

small dimensional or small codimensional derived ideals. It is well-known

that the derived ideal of any Heisenberg Lie algebra is 1-dimensional and the
derived ideal of the 4-dimensional real Diamond algebra is 1-codimensional.

Moreover, all the coadjoint orbits of any Heisenberg Lie group as well as
4-dimensional real Diamond group are orbits of dimension zero or maximal

dimension. In general, a (finite dimensional) real solvable Lie group is called

an MD-group if its coadjoint orbits are zero-dimensional or maximal dimen-
sional. The Lie algebra of an MD-group is called an MD-algebra and the

class of all MD-algebras is called MD-class. Simulating the mentioned above

characteristic of Heisenberg Lie algebras and 4-dimensional real Diamond al-
gebra, we give a complete classification of MD-algebras having 1-dimensional

or 1-codimensional derived ideals.

1. Classification of solvable Lie algebras: a quick introduction

Classifying all Lie algebras of dimension less than 4 is an elementary exercise.
However, when considering Lie algebras of dimension n (n ≥ 4), complete clas-
sifications are much harder. As it has long been well known, there exist three
different types of Lie algebras: the semisimple, the solvable, and those which are
neither semi-simple nor solvable. By the Levi-Maltsev theorem [18] (1945), any
finite-dimensional Lie algebra over a field of characteristic zero can be expressed
as a semidirect sum of a semi-simple subalgebra and its maximal solvable ideal. It
reduces the task of classifying all finite-dimensional Lie algebras to obtaining the
classification of semi-simple and of solvable Lie algebras.

The problem of classifying semi-simple Lie algebras over the complex field was
completely solved by E. Cartan [3] in 1894; and over the real field, by F. R. Gant-
makher [9] in 1939.
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Although several classifications of solvable Lie algebras of small dimension are
known, the problem of the complete classification of the (real or complex) solv-
able Lie algebras is still open. There are at least two ways of proceeding in the
classification of solvable Lie algebras: by dimension or by structure.

Firstly, we list some results about the classification of solvable Lie algebras in
the dimensional approach:

• All solvable Lie algebras up to dimension 6 over the complex field C and
the real field R were classified by G. M. Mubarakzyanov [19] in 1963 and
by P. Turkowski [26] in 1990.

• All solvable Lie algebras up to dimension 4 over any perfect field were
classified by J. Patera and H. Zassenhaus [20] in 1990.

• Some incomplete classifications of solvable Lie algebras in dimension 7 and
nilpotent algebras up to dimension 8 were given by G. Tsagas [24] in 1999.

It seems to be very difficult to proceed by dimension in the classification of
Lie algebras of dimension greater than 6. However, it is possible to proceed by
structure, i.e. to classify solvable Lie algebras with some specific given properties.
Now, we list some results about the classification of solvable Lie algebras in the
structural approach:

• In 1973, M. A. Gauger [10] gave a complete classification of metabelian
Lie algebras of dimension no more than 7 and nearly complete results for
dimension 8.

• In 1995, D. Arnal, M. Cahen, and J. Ludwig [1] gave the list of all solvable
Lie algebras such that the coadjoint orbits of the connected Lie groups
corresponding to them are of dimension zero or two. But they have not
classified them yet, up to isomorphism.

• In 1999, L. Yu. Galitski and D. A. Timashev [8] completely classified all
of metabelian Lie algebras of dimension 9.

• In 2007, R. Campoamor-Stursberg [4] gave a complete classification of nine-
dimensional Lie algebras with nontrivial Levi decomposition.

• In 2007, I. Kath [11] classified the class of nilpotent quadratic Lie algebras
of dimension no more than 10.

• In 2010, another class of Lie algebras relating to the nilradicals has been
classified by L. S̆nobl [21].

• In 2012, M. T. Duong, G. Pinczon, and R. Ushirobira [7] gave a classifica-
tion of solvable singular quadratic Lie algebras.

• In 2012, L. Chen [5] classified a class of solvable Lie algebras with triangular
decompositions.

In an attempt to classify solvable Lie algebras by structure, we study in this
paper a special subclass of real solvable Lie algebras having small dimensional
or small codimensional derived ideals. This idea comes from an investigation of
Kirillov’s Orbit Method on the (2m+ 1)-dimensional Heisenberg Lie algebras (0 <
m ∈ N) and the 4-dimensional real Diamond Lie algebra. Recall that, in 1962,
A. A. Kirillov [12] introduced the Orbit Method which quickly became the most
important method in the theory of representations of Lie groups and Lie algebras.
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The key of Kirillov’s Orbit Method is the coadjoint orbits or K-orbits (i.e., orbits in
the coadjoint representation) of Lie groups. We emphasize that any K-orbit of the
(2m+1)-dimensional Heisenberg Lie group and the 4-dimensional real Diamond Lie
group has dimension zero or maximal. Hence, it is reasonable to consider the class
of solvable Lie groups (and corresponding algebras) having the similar property. A
(finite dimensional) real solvable Lie group is called an MD-group (in term of N. D.
Do [6]) if its K-orbits are orbits of dimension zero or maximal dimension. The Lie
algebra of an MD-group is called an MD-algebra and the class of all MD-algebras
is called MD-class. In particular, if the maximal dimension of the K-orbits of some
MD-group G is equal to dimG then G is called an SMD-group and its Lie algebra
is called an SMD-algebra. The class of all SMD-algebras is called SMD-class. It is
clear that SMD-class is a subclass of MD-class.

The investigation of MD-class was suggested for the first time by N. D. Do [6]
in 1982. Now, we list the main results about MD-class:

• In 1984, H. V. Ho [27] completely classified all of SMD-algebras (of arbi-
trary dimension).
• In 1990, A. V. Le [13–15] gave a complete classification of all 4-dimensional

MD-algebras.
• In 1995, D. Arnal, M. Cahen, and J. Ludwig [1] gave the list of all MD-

algebras such that the maximal dimension of K-orbits of corresponding
MD-groups is just 2. However, they have not yet classified them up to
isomorphism.
• Up to 2012, A. V. Le et al. [16, 17] had classified (up to isomorphism) all

of MD-algebras of dimension 5.
• In 2013, the MD-class was listed as a specific attention in classification of

Lie Algebras by L. Boza, E. M. Fedriani, J. Núñez, and A. F. Tenorio [2].

The investigation of general properties of MD-class, in particular the complete
classification of MD-class, is still open up to now.

As we say above, the (2m+ 1)-dimensional real Heisenberg Lie algebra and the
4-dimensional real Diamond Lie algebra are MD-algebras. The real Lie Heisen-
berg algebras and their extensions are investigated by a lot of mathematicians
because of their physical origin and applications. Moreover, the first derived ideal
of the Heisenberg Lie algebra is 1-dimensional and the first derived ideal of the
4-dimensional Diamond Lie algebra is 1-codimensional. We will generalize these
properties to consider MD-algebras having the first derived ideal of dimension 1
or codimension 1. For convenience, we shall denote by MD(∗, 1) or MD(∗, ∗ − 1)
the subclasses of MD-algebras having 1-dimensional or 1-codimensional derived
ideals, respectively. If G belongs to MD(∗, 1) or MD(∗, ∗ − 1) then it is called
an MD(∗, 1)-algebra or MD(∗, ∗ − 1)-algebra, respectively. In particular, every
MD(∗, 1)-algebra or MD(∗, ∗ − 1)-algebra of dimension n is called an MD(n, 1)-
algebra or MD(n, n− 1)-algebra, respectively. Of course, the (2m+ 1)-dimensional
Heisenberg Lie algebra belongs to MD(2m + 1, 1) and the 4-dimensional real Di-
amond Lie algebra belongs to MD(4, 3). The main purpose of this paper is to
completely classify, up to isomorphism, MD(∗, 1)-class and MD(∗, ∗− 1)-class. We

Rev. Un. Mat. Argentina, Vol. 57, No. 2 (2016)



122 ANH VU LE ET AL.

also prove that any real solvable Lie algebra having 1-dimensional derived ideal
belongs to MD(∗, 1) and give a sufficient and necessary condition in order that a n-
dimensional real solvable Lie algebra having 1-codimensional derived ideal belongs
to MD(n, n− 1) with n > 4.

The next part of the paper will be organized as follows: Section 2 gives some
basic concepts, especially we recall the Lie algebra of the group of the affine trans-
formations of the real straight line, the real Heisenberg Lie algebras and the real
Diamond Lie algebras. Section 3 deals with some well-known remarkable classifi-
cations of some subclasses of MD-algebras. The main results about the complete
classifications of MD(∗, 1)-class and MD(∗, ∗− 1)-class are given in Section 4. The
last section is devoted to the discussion of some open problems.

2. Some basic concepts

First of all, we recall in this section some preliminary results and notations which
will be used later. For details we refer the reader to the book [12] of A. A. Kirillov
and the book [6] of N. D. Do.

2.1. The coadjoint representation and coadjoint orbits. Let G be a Lie
group, G = Lie(G) be the corresponding Lie algebra of G, and G∗ be the dual
space of G. For every g ∈ G, we denote the internal automorphism associated with
g by A(g), and hence, A(g) : G → G can be defined as follows: A(g) := g.x.g−1,
∀x ∈ G.

This automorphism induces the map A(g)∗ : G → G, which is defined as follows:

A(g)∗ (X) :=
d

dt

[
g. exp (tX) .g−1

]
|t=0 , ∀X ∈ G.

This map is called tangent map of A(g).

Definition 2.1. The action

Ad : G→ Aut (G)

g 7→ A(g)∗

is called the adjoint representation of G in G.

The coadjoint representation is the dual of the adjoint representation. Namely,
we have the following definition.

Definition 2.2. The coadjoint representation or K-representation

K : G→ Aut (G∗)
g 7→ K(g)

of G in G∗ is defined by〈
K(g)F,X

〉
:=
〈
F,Ad

(
g−1

)
X
〉
, (F ∈ G∗, X ∈ G) ,

where 〈F, Y 〉 denotes the value of a linear functional F ∈ G∗ on an arbitrary vector
Y ∈ G.
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A geometrical interpretation of the coadjoint representation of G is as the action
by left-translation on the space of right-invariant 1-form on G.

Definition 2.3. Each orbit of the coadjoint representation of G is called a K-orbit
of G.

We denote the K-orbit containing F by ΩF . For every F ∈ G∗, the K-orbit
containing F can be defined by ΩF :=

{
K(g)F | g ∈ G

}
. The dimension of every

K-orbit of an arbitrary Lie group G is always even. In order to define the dimension
of the K-orbits ΩF for each F in the dual space G∗ of the Lie algebra G = Lie(G), it
is useful to consider the following (skew-symmetric bilinear) Kirillov form BF on G
corresponding to F : BF (X,Y ) = 〈F, [X,Y ]〉 for all X,Y ∈ G. Denote the stabilizer
of F under the co-adjoint representation of G in G∗ by GF and GF := Lie(GF ).

We shall need in the sequel the following result.

Proposition 2.4 ([12, Section 15.1]). Under the above notations, we have that
kerBF = GF and dim ΩF = dimG − dimGF = rankBF .

2.2. MD-groups and MD-algebras and some of their properties.

Definition 2.5. An n-dimensional MD-group or, for brevity, an MDn-group is an
n-dimensional real solvable Lie group such that its K-orbits are orbits of dimension
zero or maximal dimension. The Lie algebra of an MDn-group is called an MDn-
algebra. MD-class and MDn-class are the sets of all MD-algebras (of arbitrary
dimension) and MDn-algebras, respectively.

Definition 2.6. An MD(n,m)-algebra is an MDn-algebra whose first derived ideal
is m-dimensional with m,n ∈ N and 0 < m < n. MD(n,m)-class is the set of all
MD(n,m)-algebras. In particular, MD(∗, 1)-class and MD(∗, ∗ − 1)-class are the
sets of all MD-algebras (of arbitrary dimension) having the first derived ideal of
dimension 1 and codimension 1, respectively.

Remark 2.7. Note that all the Lie algebras of dimension n (n 6 3) are MD-algebras,
and moreover they can be listed easily. So we only take interest in MDn-algebras
for n > 4.

For any real Lie algebra G, as usual, we denote the first and second derived
ideals of G by G1 := [G,G] and G2 := [G1,G1], respectively. Now, we introduce
some well-known properties of MD-algebras.

Firstly, the following proposition gives a necessary condition for a Lie algebra
belonging to MD-class.

Proposition 2.8 ([27, Theorem 4]). Let G be an MD-algebra. Then its second
derived ideal G2 is commutative.

We point out here that the converse of the above result is in general not true.
In other words, the above necessary condition is not a sufficient condition.

Proposition 2.9 ([6, Proposition 2.1]). Let G be an MD-algebra. If F ∈ G∗ is not
vanishing perfectly in G1, i.e. there exists U ∈ G1 such that 〈F,U〉 6= 0, then the
K-orbit ΩF has maximal dimension.
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Proposition 2.10 ([17]). There is no MD-algebra G such that its second derived
ideal G2 is not trivial and dimG2 = dimG1 − 1. In other words, if 0 < dimG2 =
dimG1 − 1 then G is not an MD-algebra.

To illustrate and show the role of the MD-class, in the rest of this section we
will introduce some typical examples and counter-examples of MD-algebras.

2.3. The Lie algebra of the group of affine transformations of the real
straight line. The Lie algebra aff(R) of the group Aff(R) of affine transforma-
tions of the real straight line R is the unique non-commutative real Lie algebra of
dimension 2 and it is defined as follows:

aff(R) := Span(X,Y ); [X,Y ] = Y.

Remark 2.11. Clearly, every real Lie algebra of dimension n 6 3 is an MD-algebra.
In particular aff(R) is an MD(2, 1)-algebra.

2.4. The real Heisenberg Lie algebras. The (2m+1)-dimensional real Heisen-
berg Lie algebra (0 < m ∈ N) is the following real Lie algebra:

h2m+1 := Span (Xi, Yi, Z | i = 1, 2, . . . ,m) , [Xi, Yi] = Z, i = 1, 2, . . . ,m;

the other Lie brackets are trivial.

Remark 2.12. The first derived ideal h1
2m+1 = R.Z = Span(Z) of h2m+1 is 1-

dimensional and coincides with the center of h2m+1.

Let (X∗1 , Y
∗
1 , . . . , X

∗
m, Y

∗
m, Z

∗) be the dual basis of (X1, Y1, . . . , Xm, Ym, Z) in the
dual space h∗2m+1 of h2m+1, and

F = a1X
∗
1 + b1Y

∗
1 + · · ·+ amX

∗
m + bmY

∗
m + cZ∗ ≡ (a1, b1, . . . , am, bm, c)

be an arbitrary element in h∗2m+1. Then the Kirillov form BF is given by the
following matrix:

BF =



0 c 0 0 · · · 0 0 0
−c 0 0 0 · · · 0 0 0
0 0 0 c · · · 0 0 0
0 0 −c 0 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · 0 c 0
0 0 0 0 · · · −c 0 0
0 0 0 0 · · · 0 0 0


= diag(Λ, · · · ,Λ, 0)

with m blocks Λ =

[
0 c
−c 0

]
.

In view of Proposition 2.4, it is a simple matter to get the following proposition.

Proposition 2.13. h2m+1 is a MD(2m+1, 1)-algebra and the maximal dimension
of K-orbits in h∗2m+1 is 2m. Moreover, for F = (a1, b1, . . . , am, bm, c) ∈ h∗2m+1, we
have

(i) K-orbits containing F is of dimension 0 if and only if c = 0.
(ii) K-orbits containing F is of dimension 2m if and only if c 6= 0.
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2.5. The real Diamond Lie algebras. The (2m+ 2)-dimensional real Diamond
Lie algebra (0 < m ∈ N) is one semi-direct extension of the (2m + 1)-dimensional
Heisenberg Lie algebra by R, namely it is the following real Lie algebra:

R.h2m+1 := Span(Xi, Yi, Z, T | i = 1, 2, . . . ,m),

where the Lie structure is given by

[Xi, Yi] = Z, [T,Xi] = −Xi, [T, Yi] = Yi, i = 1, 2, . . . ,m;

the other Lie brackets are trivial.

Remark 2.14. The (2m + 1)-dimensional real Heisenberg Lie algebra is the first
derived ideal of the (2m+ 2)-dimensional real Diamond Lie algebra. In particular,
the first derived ideal of R.h2m+1 is of codimension 1.

Let (X∗1 , Y
∗
1 , . . . , X

∗
m, Y

∗
m, Z

∗, T ∗) be the dual basis of (X1, Y1, . . . , Xm, Ym, Z, T )
in the dual space (R.h2m+1)∗ of R.h2m+1 and F = a1X

∗
1 + b1Y

∗
1 + · · ·+ +amX

∗
m +

bmY
∗
m+cZ∗+dT ∗ ≡ (a1, b1, . . . , am, bm, c, d) be an arbitrary element in (R.h2m+1)∗.

Then we get the Kirillov form BF as follows:

BF =



0 c 0 0 · · · 0 0 0 a1

−c 0 0 0 · · · 0 0 0 −b1
0 0 0 c · · · 0 0 0 a2

0 0 −c 0 · · · 0 0 0 −b2
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 0 c 0 am
0 0 0 0 · · · −c 0 0 −bm
0 0 0 0 · · · 0 0 0 0
−a1 b1 −a2 b2 · · · −am bm 0 0


.

By virtue of Proposition 2.4, one can verify the following proposition.

Proposition 2.15. The (2m+2)-dimensional real Diamond Lie algebra R.h2m+1 is
an MD(2m+2, 2m+1)-algebra if and only if m = 1. That means the 4-dimensional
real Diamond Lie algebra is an MD(4, 3)-algebra and the (2m+2)-dimensional real
Diamond Lie algebra is not an MD-algebra for every natural number m > 1.

3. Some subclasses of MD-class

In this section, we would like to introduce some well-known remarkable results
of classification of MD-class. Firstly, we recall that all of the MD-algebras of
dimension 4 or 5 were classified, up to isomorphism, by A. V. Le et al. [13,15,16].
However, to illustrate the general results which will be given in the last section of the
paper, we will introduce here the classification of MD(n, 1)-class and MD(n, n−1)-
class for small n, namely n = 4 or n = 5.
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3.1. Classification of MD(4, 1)-class and MD(4, 3)-class.

Proposition 3.1 (Classification of MD(4, 1)-algebras, see [15]). Let G be an
MD(4, 1)-algebra. Then G is decomposable and we can choose a suitable basis
(X,Y, Z, T ) of G such that G1 = Span(Z) = R.Z, and G is isomorphic to one
of the following Lie algebras:

1. G4,1,1 := h3 ⊕ R.T, [X,Y ] = Z; the other Lie brackets are trivial.
2. G4,1,2 := aff(R)⊕R.Z ⊕R.T, [X,Y ] = Y ; the other Lie brackets are trivial.

Proposition 3.2 (Classification of MD(4, 3)-algebras, see [15]). Let G be an
MD(4, 3)-algebra. Then G must be indecomposable and we can choose a suitable
basis (X,Y, Z, T ) of G such that G is isomorphic to one of the following Lie algebras:

1. G1 = Span(X,Y, Z) ≡ R3, adT ∈ AutR
(
G1
)
≡ GL3(R)

1.1. G4,3,1(λ1,λ2): adT =

λ1 0 0
0 λ2 0
0 0 1

 ; λ1, λ2 ∈ R \ {0}.

1.2. G4,3,2(λ): adT =

λ 1 0
0 λ 0
0 0 1

 ; λ ∈ R \ {0}.

1.3. G4,3,3: adT =

1 1 0
0 1 1
0 0 1

.

1.4. G4,3,4(λ,ϕ): adX1
=

cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 λ

 ; λ ∈ R \ {0}, ϕ ∈ (0, π).

2. G1 = Span(X,Y, Z) = h3, adT ∈ EndR
(
G1
)
≡ Mat3(R)

2.1. G4,4,1: adT =

 0 1 0
−1 0 0
0 0 0

.

2.2. G4,4,2 = R.h3 (the 4-dimensional Diamond Lie algebra):

adT =

−1 0 0
0 1 0
0 0 0

 .
3.2. Classification of MD(5, 1)-class and MD(5, 4)-class.

Proposition 3.3 (Classification of MD(5, 1)-algebras, see [16, 17]). Let G be an
MD(5, 1)-algebra, Then we can choose a suitable basis (X1, X2, X3, X4, X5) of G
such that G1 = Span(X5) = R.X5 and G is isomorphic to one of the following Lie
algebras:

1. G5,1,1 = h5 (the 5-dimensional real Heisenberg Lie algebra): [X1, X2] =
[X3, X4] = X5; the other Lie brackets are trivial. In this case, G is inde-
composable.

2. G5,1,2 = aff(R)⊕R.X1⊕R.X2⊕R.X3: [X4, X5] = X5; the other Lie brackets
are trivial. In this case, G is decomposable.
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Proposition 3.4 (Classification of MD(5, 4)-algebras, see [16]). Let G be an
MD(5, 4)-algebra. Then G must be indecomposable, and G1 is commutative. More-
over, we can choose a suitable basis (X1, X2, X3, X4, X5) of G such that G1 =
Span(X2, X3, X4, X5) ≡ R4, adX1

∈ Aut(G1) ≡ GL4(R), and G is isomorphic to
one of the following Lie algebras:

4.1. G5,4,1(λ1,λ2,λ3): adX1
=


λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 1

, λ1, λ2, λ3 ∈ R \ {0, 1}, λ1 6=

λ2 6= λ3 6= λ1.

4.2. G5,4,2(λ1,λ2): adX1 =


λ1 0 0 0
0 λ2 0 0
0 0 1 0
0 0 0 1

, λ1, λ2 ∈ R \ {0, 1}, λ1 6= λ2.

4.3. G5,4,3(λ): adX1
=


λ 0 0 0
0 λ 0 0
0 0 1 0
0 0 0 1

, λ ∈ R \ {0, 1}.

4.4. G5,4,4(λ): adX1
=


λ 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, λ ∈ R \ {0, 1}.

4.5. G5,4,5: adX1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

.

4.6. G5,4,6(λ1,λ2): adX1
=


λ1 0 0 0
0 λ2 0 0
0 0 1 1
0 0 0 1

, λ1, λ2 ∈ R \ {0, 1}, λ1 6= λ2.

4.7. G5,4,7(λ): adX1 =


λ 0 0 0
0 λ 0 0
0 0 1 1
0 0 0 1

, λ ∈ R \ {0, 1}.

4.8. G5,4,8(λ): adX1
=


λ 1 0 0
0 λ 0 0
0 0 1 1
0 0 0 1

, λ ∈ R \ {0, 1}.

4.9. G5,4,9(λ): adX1
=


λ 0 0 0
0 1 1 0
0 0 1 1
0 0 0 1

, λ ∈ R \ {0, 1}.
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4.10. G5,4,10: adX1
=


1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1

.

4.11. G5,4,11(λ1,λ2,ϕ):

adX1 =


cosϕ − sinϕ 0 0
sinϕ cosϕ 0 0

0 0 λ1 0
0 0 0 λ2

 , λ1, λ2 ∈ R \ {0}, λ1 6= λ2, ϕ ∈ (0, π).

4.12. G5,4,12(λ,ϕ):

adX1 =


cosϕ − sinϕ 0 0
sinϕ cosϕ 0 0

0 0 λ 0
0 0 0 λ

 , λ ∈ R \ {0}, ϕ ∈ (0, π).

4.13. G5,4,13(λ,ϕ):

adX1
=


cosϕ − sinϕ 0 0
sinϕ cosϕ 0 0

0 0 λ 1
0 0 0 λ

 , λ ∈ R \ {0}, ϕ ∈ (0, π).

4.14. G5,4,14(λ,µ,ϕ):

adX1
=


cosϕ − sinϕ 0 0
sinϕ cosϕ 0 0

0 0 λ −µ
0 0 µ λ

 , λ, µ ∈ R, µ > 0, ϕ ∈ (0, π).

In the next subsection, we introduce a noticeable result of D. Arnal, M. Cahen
and J. Ludwig [1] in 1995.

3.3. List of MD-algebras whose simply connected MD-groups have only
coadjoint orbits of dimension zero or two. In an attempt to classify solvable
Lie algebras by structure, in 1995 D. Arnal, M. Cahen and J. Ludwig [1] listed, up
to a direct central factor, all Lie algebras (solvable or not) such that the maximal
dimension of K-orbits of corresponding connected and simply connected Lie groups
is just two. However, they have not yet classified, up to isomorphism, these Lie
algebras.

Proposition 3.5 ([1]). Let G be a connected, simply connected solvable Lie group
whose coadjoint orbits have dimension smaller or equal to two. Let G be the Lie
algebra of G. Then, up to a direct central factor, G belongs to the following list of
algebras:

(i) R.T ⊕ a, where a is an abelian ideal and adT ∈ End(a).
(ii) R.T ⊕ h3, where h3 is the 3-dimensional Heisenberg Lie algebra spanned by

(X,Y, Z) with [X,Y ] = Z and

Rev. Un. Mat. Argentina, Vol. 57, No. 2 (2016)



CLASSIFICATION OF REAL SOLVABLE LIE ALGEBRAS. . . 129

• either [T,X] = X, [T, Y ] = −Y , [T,Z] = 0 (the 4-dimensional Dia-
mond Lie algebra),

• or [T,X] = Y , [T, Y ] = −X, [T,Z] = 0.
(iii) G is 5-dimensional with basis (X1, X2, X3, Y1, Y2) and the multiplicative law

reads

[X1, X2] = X3, [X1, X3] = Y1, [X2, X3] = Y2.

(iv) G is 6-dimensional with basis (X1, X2, X3, Y1, Y2, Y3) and the nonvanishing
brackets are

[X1, X2] = Y3, [X2, X3] = Y1, [X3, X1] = Y2.

Remark 3.6. Clearly we have the two following remarks:

(i) There is an infinite family of non-isomorphic MD-algebras in part (i) of
Proposition 3.5. Namely, part (i) of Proposition 3.5 includes all MD(4, 1)-
algebras, MD(5, 1)-algebras, MD(5, 4)-algebras except the 5-dimensional
Heisenberg Lie algebra. Furthermore, the last two MD(4, 3)-algebras in
Proposition 3.2 coincide with two algebras in part (ii) of Proposition 3.5,
but the remaining four MD(4, 3)-algebras in Proposition 3.2 are included
in part (i) of Proposition 3.5.

(ii) However, it should be noted that the indecomposable MD(2, 1)-algebras
aff(R) and h3, the decomposable MD(4, 1)-algebras h3 ⊕ R.T (in Propo-
sition 3.1), aff(R) ⊕ R.Z ⊕ R.T , and the decomposable MD(5, 1)-algebra
aff(R)⊕R.X1⊕R.X2⊕R.X3 are not included in the list of Proposition 3.5,
although it is obvious that all coadjoint orbits of the Lie groups correspond-
ing to h3 ⊕ R.T , aff(R) ⊕ R.Z ⊕ R.T , aff(R) ⊕ R.X1 ⊕ R.X2 ⊕ R.X3 have
dimension zero or two. So that was one shortcoming in Arnal’s list.

4. Classification of MD(∗, 1)-class and MD(∗, ∗ − 1)-class

Now we will introduce the complete classification, up to isomorphism, of all
MD-algebras (of arbitrary dimension) having the first derived ideal of dimension 1
or codimension 1. These results are generalizations of Propositions 3.1, 3.2, 3.3
and 3.4 in Section 3.

4.1. The main results.

Theorem 4.1 (The complete classification of MD(∗, 1)-class). MD(∗, 1)-class co-
incides with the class of all real solvable Lie algebras whose first derived ideal is
1-dimensional; moreover MD(∗, 1) includes only the Lie algebra of the group of
affine transformations of the real straight line, the real Heisenberg Lie algebras and
their direct extensions by the real commutative Lie algebras. In other words, if G
is an n-dimensional real solvable Lie algebra whose first derived ideal G1 := [G,G]
is 1-dimensional (2 6 n ∈ N) then G is an MD(n, 1)-algebra and G is isomorphic
to one and only one of the following Lie algebras:

(i) The Lie algebra aff(R) of the group Aff(R) of all affine transformations on
R; n = 2.
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(ii) aff(R)⊕ Rn−2; 3 6 n.
(iii) The real Heisenberg Lie algebra h2m+1; 3 6 n = 2m+ 1.
(iv) h2m+1 ⊕ Rn−2m−1; 3 6 2m+ 1 < n.

It is clear that Theorem 4.1 can be formulated in another way in the following
consequence which gives a new character of the real Heisenberg Lie algebras.

Corollary 4.2 (A new character of the real Heisenberg Lie algebras). Let G be a
real Lie algebra of dimension n (3 6 n ∈ N). Then the following conditions are
equivalent:

(i) G is indecomposable and has the first derived ideal G1 = [G,G] ∼= R.
(ii) G is an indecomposable MD(n, 1)-algebra.
(iii) G is the n-dimensional Heisenberg Lie algebra (in particular, n is odd).

The next theorem gives one necessary and sufficient condition to recognize one
MD(n, n− 1)-algebra (4 6 n ∈ N).

Theorem 4.3 (Necessary and sufficient conditions for MD(∗, ∗ − 1)-class). Let G
be a real solvable Lie algebra of dimension n (3 6 n ∈ N) such that its first derived
ideal G1 is (n− 1)-dimensional.

(i) If G1 is commutative then G is an MD(n, n − 1)-algebra, moreover G is
indecomposable.

(ii) If n > 4 and G is an MD(n, n− 1)-algebra then G1 is commutative.

Remark 4.4. When n 6 4, assertion (ii) is not true. Namely, if n < 4, all the
n-dimensional Lie algebras are MD-algebras, and moreover, they can be listed
easily. If n = 4, as previously indicated, the first derived ideal of the 4-dimensional
real Diamond Lie algebra is the 3-dimensional Heisenberg Lie algebra which is
non commutative and 1-codimensional. In fact, all MD4-algebras were completely
classified in 1990 by A. V. Le [14,15], and the classifications of MD(4, 1)-class and
MD(4, 3)-class were recalled in Propositions 3.1 and 3.2.

The last theorem will characterize every MD(n, n − 1)-algebra by an invert-
ible real (n − 1)-square matrix and reduces the task of classifying MD(n, n − 1)-
class to obtaining the well-known classification of equivalent of proportional sim-
ilar matrices. Let G be an MD(n, n − 1)-algebra (3 6 n ∈ N) generated by a
basis (X1, X2, . . . , Xn) such that the first derived ideal G1 is 1-codimensional and
spanned by (X1, X2, . . . , Xn−1). It is obvious that the Lie structure of G is well
understood by the invertible real (n− 1)-square matrix of map adXn considered as
an automorphism of G1 for the basis (X1, X2, . . . , Xn−1).

Theorem 4.5. Let G be a real vector space of dimension n (3 6 n ∈ N) generated by
a basis (X1, X2, . . . , Xn) and G1 := Span(X1, X2, . . . , Xn−1) be the 1-codimensional
subspace of G. Then we have the following assertions:

(i) Each invertible real (n−1)-square matrix A always defines one Lie structure
on G such that G is an MD(n, n − 1)-algebra whose first derived ideal is
commutative, exactly equal to G1 and A is exactly the matrix of adjoint
map adXn

on G1 in the chosen basis (X1, X2, . . . , Xn−1).
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(ii) Two invertible real (n− 1)-square matrices A,B define two Lie structures
on G which are isomorphic if and only if there exist a non-zero real number
c and an invertible real (n− 1)-square matrix C so that cA = CBC−1.

Remark 4.6. In view of Theorem 4.5, we have the following remarks:

(i) Two invertible real square matrices A,B of the same order are called pro-
portional similar if (and only if) there exist a non-zero real number c
and an invertible real square matrix C of the same order as A,B so that
cA = CBC−1. In fact, assertion (ii) of Theorem 4.5 gives the classification
of MD(n, n− 1)-algebras (n > 4) by using the well-known classification of
invertible real matrices in proportional similar equivalent relation.

(ii) The classification of indecomposable MD(5, 4)-algebras in Proposition 3.4
of this paper gives one concrete illustration of Theorem 4.5 when n =
5. In principle, it is not hard to list all non-isomorphic indecomposable
MD(n, n − 1)-algebras by applying Theorem 4.5 for n small, for example
n = 6, 7, . . .

4.2. Proof of Theorem 4.1. In this section, we always consider G as a real
solvable Lie algebra of dimension n > 3 whose first derived ideal G1 = [G,G] is
1-dimensional, in particular G1 is commutative. Without loss of generality, we can
choose a suitable basis such that

G = Span (X1, X2, . . . , Xn) , G1 = Span (Xn) = R.Xn.

Let G be the connected, simply connected Lie group corresponding to G.
When n = 2, it is obvious that the part (i) in Theorem 4.1 holds because aff(R)

is an MD(2, 1)-algebra (see Remark 2.11) and it is the unique non-commutative
real Lie algebra of dimension 2. Therefore, in the rest of this subsection, we can
suppose that n > 3. Denote

[Xi, Xn] = aiXn, [Xi, Xj ] = aijXn (ai, aij ∈ R); i, j = 1, 2, . . . , n− 1.

Evidently, the Lie structure on G is well understood by the vector

a := (a1, a2, . . . , an−1)

and the skew-symmetric real (n− 1)-square matrix A := (aij)i,j=1,2,...,n−1. There
are two cases to consider for the values of the vector a: a = 0 or a 6= 0.

First case: a 6= 0. Firstly, we consider the case a 6= 0, i.e. there exists i ∈
{1, . . . , n − 1} such that ai 6= 0; that means Xn is not in the center Z(G) of G.
Renumbering the chosen basis if necessary, we can always suppose that an−1 6= 0.
Then [Xn−1, Xn] = an−1Xn 6= 0. In this case, we will show that G is a trivial
extension of the Lie algebra aff(R). Namely, we have the following lemma.

Lemma 4.7. If a 6= 0 then G is an MD(n, 1)-algebra which is isomorphic to
aff(R)⊕ Rn−2 when n > 3.

Proof. Using the change of basis

Yi = Xi −
ai
an−1

Xn−1, Yn−1 =
1

an−1
Xn−1, Yn = Xn; i = 1, 2, . . . , n− 2
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we get
[Yi, Yn] = 0, [Yn−1, Yn] = Yn; i = 1, 2, . . . , n− 2.

Hence, without loss of generality, we can now assume

[Xi, Xn] = 0, [Xn−1, Xn] = Xn; i = 1, 2, . . . , n− 2.

Using the Jacobi identities for triples (Xi, Xj , Xn−1), 1 6 i < j 6 n− 2, we get

[[Xi, Xj ], Xn−1] + [[Xn−1, Xi], Xj ] + [[Xj , Xn−1], Xi] = 0

⇒ aij [Xn, Xn−1] = 0⇒ −aijXn = 0⇒ aij = 0

⇒ [Xi, Xj ] = aijXn = 0; i, j = 1, 2, . . . , n− 2.

Now, using the change of basis

Zi = Xi + ai,n−1Xn, Zn−1 = Xn−1, Zn = Xn; i = 1, 2, . . . , n− 2

we get [Zi, Zn−1] = 0, i = 1, 2, . . . , n− 2. So we can suppose now that

[Xi, Xn−1] = 0, i = 1, 2, . . . , n− 2.

Hence, in this case, G is isomorphic to the Lie algebra

aff(R)⊕ Rn−2 = Span (X1, X2, . . . , Xn) , [Xn−1, Xn] = Xn,

where the other Lie brackets are trivial. Obviously, the K-orbits of G is of dimen-
sion 0 or 2. This means that G is an MD(n, 1)-algebra. �

Second case: a = 0. Now, we consider the case a = 0, i.e. [Xi, Xn] = 0 for all
i = 1, 2, . . . , n−1; in particular Xn ∈ Z(G). Then the Lie structure of G is uniquely
defined by the skew-symmetric real (n − 1)-square matrix A = (aij)i,j=1,2,...,n−1,
which is called the structure matrix of G. Since G1 = Span(Xn) is 1-dimensional,
A is non-trivial and 0 < rankA is even. We have the following lemma.

Lemma 4.8. If a = 0, i.e. [Xi, Xn] = 0 for all i = 1, 2, . . . , n− 1, then the Lie
algebra G is an MD(n, 1)-algebra and the maximal dimension of the K-orbits of G
is the rank of the structure matrix A.

Proof. Let G∗ ≡ Rn be the dual space of G with dual basis (X∗1 , X
∗
2 , . . . , X

∗
n) and

F = f1X
∗
1 + f2X

∗
2 + · · · + fnX

∗
n ≡ (f1, f2, . . . , fn) be an arbitrary element of G∗.

The Kirillov form BF is given as follows:

BF := (〈F, [Xi, Xj ]〉)i,j=1,n = fn


a11 . . . a1,n−1 0
...

. . .
...

...
an−1,1 . . . an−1,n−1 0

0 . . . 0 0

 = fn

[
A 0
0 0

]

and rankBF ∈ {0, 2k}, where 2k = rankA is the rank of the structural matrix.
More precisely,

• rankBF = 0 if and only if fn = 0, i.e. F = (f1, f2, . . . , fn−1, 0).
• rankBF = rankA = 2k > 0 if and only if fn 6= 0.

Hence, in view of Proposition 2.4, G is an MD(n, 1)-algebra and the maximal
dimension of K-orbits of G is the rank of the structure matrix. �
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Now, we will consider whether G is decomposable in the second case.

Lemma 4.9. If a = 0, i.e. [Xi, Xn] = 0 for all i = 1, 2, . . . , n − 1, then the Lie
algebra G is decomposable if and only if the dimension of the center of G is greater
than 1.

Proof. Denote Z(G) to be the center of G. Obviously, Xn is in Z(G) because
[Xi, Xn] = 0 for all i = 1, 2, . . . , n− 1, i.e. dimZ(G) > 0.

(=⇒) Suppose that G is decomposable, i.e. G = A⊕B in which A,B are non-trivial
proper Lie subalgebras of G. Put Xn = Xa + Xb ∈ Z(G) with some Xa ∈ A
and some Xb ∈ B. Let us consider an arbitrary element Y = Ya + Yb ∈ G with
Ya ∈ A, Yb ∈ B. We have

0 = [Xn, Y ] = [Xa +Xb, Ya + Yb] = [Xa, Ya] + [Xb, Yb]

⇒ [Xa, Ya] = [Xb, Yb] = 0⇒ Xa, Xb ∈ Z(G).

• If Xa 6= 0 6= Xb then they are of course linearly independent. This means
dimZ(G) > 1.
• If Xa or Xb is 0, then without loss of generality, we can suppose that
Xa = 0, i.e. Xn = Xb ∈ B. In particular, G1 = Span(Xn) ⊆ B. Let
X 6= 0 ∈ A be an arbitrary element. Obviously, [X,Z] = 0 for every
Z ∈ B. On the other hand, we have

[X,T ] ∈ A ∩ G1 ⊆ A ∩ B = 0⇒ [X,T ] = 0, ∀T ∈ A.
This means that X commutes with any element of G = A ⊕ B, i.e. X ∈
Z(G). Because of X ∈ A, Xn ∈ B so X,Xn are linearly independent and
dimZ(G) > 1.

Hence, dimZ(G) > 1 in any case.

(⇐=) Suppose dimZ(G) > 1. There exists X ∈ Z(G) such that X,Xn are inde-
pendent. We can add T1, . . . , Tn−2 in {X,Xn} to get a new basis of G. Note that
[Ti, Tj ] ∈ G1 = Span(Xn) ⊂ Span(Xn, T1, . . . , Tn−2); 1 6 i < j 6 n − 2. Then we
have

G = Span(X)⊕ Span(Xn, T1, . . . , Tn−2).

Therefore G is decomposable. �

Remark 4.10. The center of the Heisenberg Lie algebra is 1-dimensional, so its
indecomposability is unsurprising.

Recall that each MD(n, 1)-algebra G in the second case above is always defined
uniquely by an (n− 1)-square (skew-symmetric) structure matrix A. Now we will
consider whether two structures A and B give us isomorphic Lie algebras.

Lemma 4.11. Let A = (aij)i,j=1,2,...,n−1 and B = (bij)i,j=1,2,...,n−1 be skew-
symmetric real (n − 1)-square matrices and GA,GB be MD(n, 1)-algebras which
are defined by A,B respectively. Then

GA ∼= GB ⇔ ∃c ∈ R \ {0},∃C ∈ GLn−1(R) such that cA = CTBC,

where CT is the transpose of C.
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Proof. (=⇒) Let f : GA → GB be an isomorphism. Since f
(
G1
A

)
= G1

B , there is a
non-zero real number c so that f(Xn) = cXn. Clearly the matrix of f in the basis
(X1, X2, . . . , Xn−1, Xn) is given as follows:

M =


c11 · · · c1,n−1 0
...

. . .
...

...
cn−1,1 · · · cn−1,n−1 0
cn1 · · · cn,n−1 c

 =

[
C 0
∗ c

]
,

in which C = (cij)i,j=1,2,...,n−1 is a real (n− 1)-square matrix, and ∗ is the vector
(cn1, . . . , cn,n−1). Because f is an isomorphism, M is invertible and so is C. Hence,
the linear map f is a Lie isomorphism if and only if

f([Xi, Xj ]A) = [f(Xi), f(Xj)]B

⇔ f(aijXn) =

[
n−1∑
k=1

ckiXk + cniXn,

n−1∑
l=1

cljXl + cnjXn

]
B

⇔ caijXn =

n−1∑
k=1

cki.

n−1∑
l=1

clj [Xk, Xl]B

⇔ caijXn =

 n−1∑
k,l=1

cki.bkl.clj

Xn

⇔ caij =

n−1∑
k,l=1

cki.bkl.clj

⇔ cA = CTAC,

where i, j = 1, 2, . . . , n− 1.

(⇐=) Conversely, suppose that there exist a non-zero real number c and an invert-
ible real (n − 1)-square matrix C = (cij)i,j=1,2,...,n−1 such that cA = CTBC. Let
f : GA → GB be a linear map which is defined, in the basis (X1, X2, . . . , Xn), by
the matrix M ′ as follows:

M ′ =


c11 · · · c1,n−1 0
...

. . .
...

...
cn−1,1 · · · cn−1,n−1 0

0 · · · 0 c

 =

[
C 0
0 c

]
.

Since C is invertible and c 6= 0, f is a linear isomorphism. Moreover, it is easy to
check that f is also a Lie homomorphism. Therefore, f is a Lie isomorphism. �

Remark 4.12. Recall that two real (n − 1)-square matrices A,B are said to be
congruent if there exists an invertible (n − 1)-square matrix C such that B =
CTAC. Furthermore, any non-zero skew-symmetric real square matrix can be
always transformed into the canonical form. More precisely, for any non-zero skew-
symmetric real (n − 1)-square matrix A, there exists a real orthogonal matrix C

Rev. Un. Mat. Argentina, Vol. 57, No. 2 (2016)



CLASSIFICATION OF REAL SOLVABLE LIE ALGEBRAS. . . 135

such that
CTAC = diag(Λ1,Λ2, . . . ,Λm, 0, . . . , 0),

where Λj :=

[
0 λi
−λi 0

]
and {±iλ1, . . . ,±iλm} (i is the imaginary unit in the

complex field C) is the set of all multiple eigenvalues of A. For example, the real
Heisenberg Lie algebra

h2m+1 := 〈Xi, Yi, Z : i = 1, 2, . . . ,m〉, [Xi, Yi] = Z, i = 1, 2, . . . ,m

has the structure matrix H = diag(I, . . . , I) including n blocks I =

[
0 1
−1 0

]
. This

matrix H has exactly two m-multiple eingenvalues ±i and H has no eigenvalue 0.

Proof of Theorem 4.1. Recall that we need only to show parts (ii), (iii), (iv) of
Theorem 4.1. Lemmas 4.7, 4.8 and 4.9 show that the considered Lie algebra G
belongs to MD(n, 1)-class. Moreover, part (ii) of Theorem 4.1 is implied directly
from Lemma 4.7. We only need to prove parts (iii) and (iv).

In the basis (X1, X2, . . . , Xn), the structure matrix of G is A. We will choose a
new basis to get the standard form B = CTAC. By Lemma 4.11, the Lie algebra
defined by the matrix B is isomorphic to G.

If B has no zero eigenvalue, i.e. B = diag(Λ1,Λ2, . . . ,Λm), 2m = n− 1, put

D := diag

(
1,

1

λ1
, 1,

1

λ2
, . . . , 1,

1

λm

)
.

Then we get the structure matrix H = DTBD of the (2m + 1)-dimensional real
Heisenberg algebra h2m+1, 2m+1 = n. By Lemma 4.11, G is isomorphic to h2m+1.
So part (iii) is proved.

If B has eigenvalues 0, i.e. 0 < 2m < n− 1, then Z(G) is generated by the
basis X2m+1, . . . , Xn whose dimension is greater than 1. By Lemma 4.9, G is
decomposable, namely G is isomorphic to h2m+1⊕Rk, where k = n− (2m+1) > 0.
Actually, the direct summand Rk is the commutative Lie subalgebra of G generated
by (X2m+2, . . . , Xn) and h2m+1 is generated by (X1, X2, . . . , X2m;X2m+1). So part
(iv) is proved and the proof of Theorem 4.1 is complete. �

4.3. Proof of Theorem 4.3. In this section, we always consider G as a real
solvable Lie algebra of dimension n > 3 with the 1-codimensional first derived
ideal G1 = [G,G]. Assume that dimG2 = dim([G1,G1]) = k 6 n− 2. Without loss
of generality, we can choose a suitable basis such that

G = Span (X1, X2, . . . , Xn) ,

G1 = [G,G] = Span (X1, X2, . . . , Xn−1) ,

G2 =
[
G1,G1

]
= Span (X1, X2, . . . , Xk) , k 6 n− 2.

Let clij (1 6 i < j 6 n, 1 6 l 6 n) be the structure constants of G. Then the Lie
brackets of G are given by

[Xi, Xj ] =

n−1∑
l=1

clijXl, 1 6 i < j 6 n.
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In view of Proposition 2.8, if G is an MD-algebra then G2 is commutative and we
get

[Xi, Xj ] =

n−1∑
l=1

clijXl = 0⇔ clij = 0, 1 ≤ i < j 6 k, 1 6 l 6 n− 1.

In order to prove Theorem 4.3, we need some lemmas.

Lemma 4.13. If G is an MDn-algebra (n > 3) whose first derived ideal G1 is
commutative and 1-codimensional then dim ΩF ∈ {0, 2}, for every F ∈ G∗.

Proof. Because G1 = Span (X1, X2, . . . , Xn−1) is (n− 1)-dimensional commutative
and G is non-commutative, so clij = 0, 1 6 i < j 6 n−1, 1 6 l 6 n−1, and the ad-

joint adXn is an isomorphism on G1. Therefore the matrix
(
−cijn

)
i,j=1,2,...,n−1

of adXn
in the basis (X1, X2, . . . , Xn−1) of G1 is invertible. In particular, the

structure constants cn−1
jn (1 6 j 6 n− 1) do not concomitantly vanish. Choose

F = X∗n−1 ∈ G∗. It is easily seen that the matrix of the Kirillov form BF in the
basis (X1, X2, . . . , Xn) is as follows:

BF =


0 0 · · · 0 cn−1

1n

0 0 · · · 0 cn−1
2n

...
...

. . .
...

...
0 0 · · · 0 cn−1

n−1,n

−cn−1
1n −cn−1

2n · · · −cn−1
n−1,n 0

 .

It is obvious that rankBF = 2 because cn−1
1n , . . . , cn−1

n−1,n do not concomitantly

vanish. Since G is an MD-algebra, we get dim ΩF = rankBF ∈ {0, 2} for any
F ∈ G∗. �

Lemma 4.14. The following (n− k − 1)-square matrix A is invertible:

A =

c
k+1
k+1,n . . . ck+1

n−1,n

...
. . .

...
cn−1
k+1,n · · · cn−1

n−1,n

 .
Proof. Since G1 = [G,G], there exist real numbers αij (1 6 i < j 6 n) such that

Xk+1 =
∑

16i<j6n

αij [Xi, Xj ]

=

n−1∑
j=k+1

αjn [Xj , Xn] +

k∑
j=1

αjn [Xj , Xn] +
∑

16i<j6n−1

αij [Xi, Xj ]

=

n−1∑
j=k+1

αjn [Xj , Xn] + LC1

(
G2
)

=

n−1∑
j=k+1

αjn

(
k∑
l=1

cljnXl +

n−1∑
l=k+1

cljnXl

)
+ LC1

(
G2
)
.
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Hence, we get

Xk+1 =

n−1∑
l=k+1

 n−1∑
j=k+1

cljnαjn

Xl + LC2

(
G2
)
,

where LC1

(
G2
)

and LC2

(
G2
)

are a linear combination of the vectors in the basis

(X1, . . . , Xk) of G2. Because of the independence of chosen basis (X1, . . . , Xn),
these assertions imply that there exists one row-vector Yk+1 ∈ Rn−k−1 such that
Yk+1A = (1, 0, . . . , 0). Similarly, there exist Yk+2, . . . , Yn−1 ∈ Rn−k−1 such that

Yk+2A = (0, 1, . . . , 0), . . . , Yn−1A = (0, . . . , 0, 1).

So there exists a real matrix P such that PA = I, where I is the unit matrix of
Matn−k−1 (R). Therefore A is an invertible matrix. �

The following lemma is the well-known result of linear algebra for any skew-
symmetric real 4-square matrix and it can be easily verified by simple computation.

Lemma 4.15. For any skew-symmetric real 4-square matrix (aij)16i,j64, its de-

terminant is zero if and only if a12.a34 − a13.a24 + a14.a23 = 0. �

Proof of Theorem 4.3. We now prove Theorem 4.3.

Proof of part (i). Let G be a real solvable Lie algebra of dimension n whose first
derived ideal G1 ∼= Rn−1 is 1-codimensional and commutative. Recall that, with
the above notations, G1 ≡ R.X1 ⊕ R.X2 ⊕ · · · ⊕ R.Xn−1.

Let F be an arbitrary element in G∗ ≡ Rn. Put

〈F, [Xi, Xn]〉 = ai, 1 6 i 6 n− 1.

Then, by simple computation, we can see that the matrix BF of the Kirillov
form BF is given as follows:

BF =


0 0 · · · 0 a1

0 0 · · · 0 a2

...
...

. . .
...

...
0 0 · · · 0 an−1

−a1 −a2 · · · −an−1 0

 .
It is clear that rankBF ∈ {0, 2} and, for every F ∈ G∗, rankBF does not concomi-
tantly vanish. Hence, by virtue of Proposition 2.4, G is an MD(n, n− 1)-algebra.

Proof of part (ii). We will show that if G is a real solvable Lie algebra of dimension
n > 4 whose first derived ideal G1 is 1-codimensional and non-commutative then
G cannot be an MD-algebra.

Recall that we always choose one basis (X1, . . . , Xn) of G such that G1 =
Span (X1, . . . , Xn−1) and G2 = Span (X1, . . . , Xk), k 6 n − 2. There are some
cases which contradict each other for the values of k as follows.

First case: k = n−2. Then, dimG2 = dimG1−1. According to Proposition 2.10,
G is not an MD-algebra.
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Second case: k 6 n − 3. It is sufficient to prove for just k = n − 3 because the
proof for each k in this case is similar. That means G2 = Span (X1, . . . , Xn−3).
The Lie structure of G is given by

[Xn−1, Xn] =

n−1∑
l=1

cln−1,nXl, [Xn−2, Xn] =

n−1∑
l=1

cln−2,nXl,

[Xn−2, Xn−1] =
n−3∑
l=1

cln−2,n−1Xl,

[Xi, Xn] =

n−3∑
l=1

clinXl, [Xi, Xj ] =

n−3∑
l=1

clijXl; 1 6 i < j 6 n− 3.

According to Lemma 4.14, matrix P =

[
cn−2
n−2,n cn−2

n−1,n

cn−1
n−2,n cn−1

n−1,n

]
is invertible. Let F be

an arbitrary element of G∗. Put

〈F, [Xn−2, Xn−1]〉 = a, 〈F, [Xn−2, Xn]〉 = b, 〈F, [Xn−1, Xn]〉 = c.

Then the matrix of the Kirillov form BF in the basis (X1, X2, . . . , Xn) is given by

BF =



0 0 · · · 0 ∗ ∗ ∗
0 0 · · · 0 ∗ ∗ ∗
...

...
. . .

...
...

...
...

0 0 · · · 0 ∗ ∗ ∗
∗ ∗ · · · ∗ 0 a b
∗ ∗ · · · ∗ −a 0 c
∗ ∗ · · · ∗ −b −c 0


,

in which the asterisks denote the undetermined real numbers.
Let us consider the 4-square submatrices ofBF established by the elements which

are on the rows and the columns of the same ordinal numbers i, n−2, n−1, n (i 6
n − 3). According to Lemma 4.13, rankBF ∈ {0, 2} and this implies that the
determinants of these considered 4-square submatrices are zero for any F ∈ G∗. In
view of Lemma 4.15, the following structure constants vanish:

cli,n−2 = cli,n−1 = 0, 1 6 i, l 6 n− 3.

This implies

[Xi, Xn−2] = [Xi, Xn−1] = 0, 1 6 i 6 n− 3.

Therefore, we get

Span (X1, . . . , Xn−3) = G2 =
[
G1,G1

]
= Span ([Xi, Xj ] | 1 6 i, j 6 n− 1)

= Span ([Xn−2, Xn−1]) .

So n− 3 = dimG2 6 1, i.e. n 6 4, which conflicts with the assumption that n > 4.
The proof is complete. �

Rev. Un. Mat. Argentina, Vol. 57, No. 2 (2016)



CLASSIFICATION OF REAL SOLVABLE LIE ALGEBRAS. . . 139

4.4. Proof of Theorem 4.5. As vector spaces (without the Lie structures), we
have

G = Span (X1, . . . , Xn) ≡ Rn, G1 = Span (X1, . . . , Xn−1) ≡ Rn−1.

Let A = (aij)i,j=1,2,...,n−1 be an invertible real (n− 1)-square matrix.

Proof of part (i). We define a Lie structure on G such that G1 is commuta-
tive and A is exactly the matrix of adjoint map adXn

on G1 in the chosen basis
(X1, X2, . . . , Xn). Namely, the Lie brackets [·, ·]A on G are given as follows:

[Xn, Xj ]A :=
∑
i<n

aijXi, j = 1, 2, . . . , n− 1; the others are trivial. (4.1)

With such Lie structure, the derived ideal of G is commutative and exactly equal
to G1. Hence, G is an MD(n, n− 1)-algebra.

Conversely, suppose there is a Lie structure on G whose Lie brackets [·, ·] satisfy
the above property (4.1). Because the first derived ideal of G is commutative and
equal to G1, one has [Xi, Xj ] = 0 for all i, j = 1, 2, . . . , n−1. On the other hand, A
is the matrix of adjoint map adXn

on G1. Therefore, we get [Xn, Xj ] =
∑
i<n

aijXi

for all j = 1, 2, . . . , n− 1. That means [·, ·] ≡ [·, ·]A and part (i) is proved.

Proof of part (ii). Let B = (bij)i,j=1,2,...,n−1 be another invertible real (n− 1)-
square matrix and [·, ·]B be the Lie brackets on G which is defined by B. Then, we
have [Xn, Xj ]B =

∑
i<n

bijXi, j = 1, 2, . . . , n− 1 (the other Lie brackets are trivial).

(=⇒) Suppose that A and B define two Lie structures on G which are isomorphic.
We will show that there exist a real number c 6= 0 and an invertible real (n − 1)-
square matrix C such that cA = CBC−1. Denote by f : (G, [·, ·]B) → (G, [·, ·]A)
the isomorphism between two Lie structures on G defined by B and A, respec-
tively. This means that f is a linear isomorphism and f preserves the Lie brack-
ets. Let M = (cij)i,j=1,2,...,n be the invertible n-square matrix of f in the basis

(X1, X2, . . . , Xn), i.e. f(Xj) =
n∑
i=1

cijXi for all j = 1, 2, . . . , n. Since f is an iso-

morphism, f
(
G1, [·, ·]B

)
=
(
G1, [·, ·]A

)
, i.e. cnj = 0 for all j = 1, 2, . . . , n− 1. That

means f(Xj) =
∑
i<n

cijXi for all j = 1, 2, . . . , n − 1. Put C = (cij)i,j=1,2,...,n−1

and cnn = c, we get f(Xn) =
∑
i<n

cinXi + cXn. Then the matrix of f in the basis

(X1, X2, . . . , Xn) is given by

M =


c11 · · · c1,n−1 c1n
...

. . .
...

...
cn−1,1 · · · cn−1,n−1 cn−1,n

0 · · · 0 c

 =

[
C ∗
0 c

]
,

where the asterisk denotes the column vector (c1n, c2n, . . . , cn,n−1)T . Since f is an
isomorphism, 0 6= detM = cdetC. Therefore, detC 6= 0 and C is an invertible
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(n− 1)-square matrix. Furthermore, we have

f([Xn, Xj ]B) = [f(Xn), f(Xj)]A, 1 6 j 6 n− 1

⇔ f

(∑
i<n

bijXi

)
=

[∑
k<n

cknXk + cXn,
∑
l<n

cljXl

]
A

, 1 6 j 6 n− 1

⇔
∑
i<n

bijf(Xi) = c
∑
l<n

clj [Xn, Xl]A, 1 6 j 6 n− 1

⇔
∑
i<n

bij

(∑
k<n

ckiXk

)
= c

∑
l<n

clj

(∑
k<n

aklXk

)
, 1 6 j 6 n− 1

⇔
∑
k<n

(∑
i<n

ckibij

)
Xk = c

∑
k<n

(∑
l<n

aklclj

)
Xk, 1 6 j 6 n− 1

⇔
∑
k<n

(∑
i<n

ckibij − c
∑
l<n

aklclj

)
Xk = 0, 1 6 j 6 n− 1

⇔
∑
i<n

ckibij − c
∑
l<n

aklclj = 0, 1 6 k, j 6 n− 1

⇔
∑
i<n

ckibij = c
∑
l<n

aklclj , 1 6 k, j 6 n− 1

⇔ (CB)kj = c(AC)kj , 1 6 k, j 6 n− 1

⇔ CB = cAC

⇔ cA = CBC−1.

(⇐=) Conversely, assume that there exist a non-zero real number c and an invertible
(n − 1)-square matrix C = (cij)i,j=1,2,...,n−1 such that cA = CBC−1. We will
show that A,B define on G two Lie structures which are isomorphic. Indeed, we
denote by f : G → G the linear isomorphism of G which is defined, in the basis
(X1, X2, . . . , Xn), by the invertible n-square matrix

M ′ =


c11 · · · c1,n−1 0
...

. . .
...

...
cn−1,1 · · · cn−1,n−1 0

0 · · · 0 c

 =

[
C 0
0 c

]
.

It can be verified that f preserves the Lie brackets of (G, [·, ·]B) and (G, [·, ·]A), i.e.
f is also a Lie isomorphism. The proof is complete. �

5. Conclusions

We close the paper with some remarkable comments on the problem of the
classification of MD-class.
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5.1. MD2k-class. We emphasize that the problem of classifying all MD-algebras
is still open. There are at least three ways of proceeding in the classification of
MD-class as follows:

• First way: By fixity of the dimension of MD-algebras.
• Second way: By fixity of the maximal dimension of coadjoint orbits.
• Third way: Combining form of the above ways.

For example, the classifications of MD4-class (see [13–15]) and MD5-class (see
[16, 17]), MD(∗, 1)-class and MD(∗, ∗ − 1)-class in this paper are the results of the
first way, while Arnal’s list is the result of the second way. To classify MD-class by
the second or third ways, we give the following definitions.

Definition 5.1. Each n-dimensional real solvable Lie group G whose coadjoint
orbits have dimension zero or 2k (0 < 2k < n) is called an MD2kn-group. The

Lie algebra G = Lie(G) of G is called an MD2kn-algebra. When we do not pay
attention to the dimension of the considered group or algebra, we will call G or G
an MD2k-group or MD2k-algebra, respectively.

Definition 5.2. The set of all MD2kn-algebras or MD2k-algebras will be denoted
by MD2kn-class or MD2k-class, respectively.

5.2. Example of MD4-algebras. It has long been known that the Lie algebra
aff(C) of the group Aff(C) of the affine transformations of the complex straight
line is an MD44-algebra and the 5-dimensional Heisenberg Lie algebra h5 is an
MD45-algebra. Now we introduce one example of indecomposable MD4-algebras.

Let G2m = Span (X1, X2, . . . , X2m) be the 2m-dimensional real Lie algebra (2 6
m ∈ N) with Lie brackets as follows:

[X1, Xk] := Xk, [X2, X2j−1] := X2j , [X2, X2j ] := −X2j−1.

Upon simple computation, taking Proposition 2.4 into account we get the fol-
lowing proposition.

Proposition 5.3. G2m is an indecomposable 2m-dimensional MD4-algebra. �

5.3. Some open problems. We have at least two open problems:

(1) Classify MD(n,m)-class and MD(n, n−m)-class, 2 6 m 6 n−2 and n > 6.

(2) Classify MD2kn-class or MD2k-class, 2k > 4 and n > 6.

In forthcoming papers, we will discuss the classification of MD(n, 2)-class, MD(n,
n− 2)-class and MD4n-class for n > 6.
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