ON THE RATE OF CONVERGENCE FOR MODIFIED GAMMA OPERATORS

GRAŻYNA KRECH

Abstract

We give direct approximation theorems for some linear operators in certain weighted spaces. The results are given in terms of some DitzianTotik moduli of smoothness.

1. Introduction

Let $A_{n}, n \in \mathbb{N}:=\{1,2, \ldots\}$, be the gamma type operators given by the formula

$$
\begin{equation*}
A_{n}(f ; x)=\int_{0}^{\infty} \frac{(2 n+3)!x^{n+3} t^{n}}{n!(n+2)!(x+t)^{2 n+4}} f(t) d t, \quad x, t \in \mathbb{R}_{+}:=(0, \infty) \tag{1.1}
\end{equation*}
$$

and defined for any f for which the above integral is convergent.
The operators (1.1) are linear and positive, and preserve the functions $e_{0}(t)=1$, $e_{2}(t)=t^{2}$ (see [5, 9, 11). Basic facts on positive linear operators, their generalizations and applications, can be found in [2, (3).

Approximation properties of A_{n} were examined in [5]-8]. Recently, İzgi (4) obtained the following result.

Lemma 1.1 (4). For any $r \in \mathbb{N}_{0}:=\{0,1,2, \ldots\}$,

$$
A_{n}^{(r)}(f ; x)=\frac{(2 n+3)!}{n!(n+2)!} x^{n+3-r} \int_{0}^{\infty} \frac{t^{n+r}}{(x+t)^{2 n+4}} f^{(r)}(t) d t, \quad x \in \mathbb{R}_{+}
$$

provided that the r-th derivative $f^{(r)}(r=0,1,2, \ldots)$ exists continuously.
The local rate of convergence and the Voronovskaya type theorem for operators $A_{n}^{(r)}$ were given in 4, 10].

In this paper we shall study approximation properties of $A_{n}^{(r)}$ for functions $f \in$ $C_{p}, p \in \mathbb{N}_{0}$, where C_{p} is a polynomial weighted space with the weight function w_{p},

$$
\begin{equation*}
w_{0}(x)=1 \quad \text { and } \quad w_{p}(x)=\frac{1}{1+x^{p}}, \quad p \in \mathbb{N} \tag{1.2}
\end{equation*}
$$

[^0]and C_{p} is the set of all real-valued functions f for which $f w_{p}$ is uniformly continuous and bounded on $\mathbb{R}_{0}=[0, \infty)$. The norm on C_{p} is defined by
$$
\|f\|_{p}=\sup _{x \in \mathbb{R}_{0}} w_{p}(x)|f(x)| .
$$

We shall prove approximation theorems which are similar to some results given in [8] for the operators (1.1).

We consider the modulus of continuity of $f \in C_{p}$,

$$
\omega_{p}(f, \delta)=\sup _{h \in[0, \delta]}\left\|\Delta_{h} f\right\|_{p}
$$

and the modulus of smoothness of $f \in C_{p}$,

$$
\omega_{p}^{2}(f, \delta)=\sup _{h \in[0, \delta]}\left\|\Delta_{h}^{2} f\right\|_{p}
$$

where

$$
\Delta_{h} f(x)=f(x+h)-f(x), \quad \Delta_{h}^{2} f(x)=f(x+2 h)-2 f(x+h)+f(x)
$$

for $x, h \in \mathbb{R}_{0}$.
Throughout this paper we shall denote by $M_{\alpha, \beta}$ positive constants depending only on indicated parameters α, β, and point out that they are not the same at each occurrence.

2. Auxiliary results

In this section we give some preliminary results which will be used in the sequel. Let

$$
a(n, r)=\frac{(2 n+3)!}{n!(n+2)!} x^{n+3-r} \int_{0}^{\infty} \frac{t^{n+r}}{(x+t)^{2 n+4}} d t=\frac{(n+r)!(n+2-r)!}{n!(n+2)!} .
$$

We consider the sequence of positive operators $\left\{A_{n, r}^{*}\right\}, n \in \mathbb{N}$, given by the formula

$$
\begin{equation*}
A_{n, r}^{*}(g ; x)=\frac{(2 n+3)!x^{n+3-r}}{(n+r)!(n+2-r)!} \int_{0}^{\infty} \frac{t^{n+r}}{(x+t)^{2 n+4}} g(t) d t \tag{2.1}
\end{equation*}
$$

$x, t \in \mathbb{R}_{+}, r \in \mathbb{N}_{0}($ see [4]).
If f is right side continuous at $x=0$, we define

$$
A_{n}(f, 0)=f(0), \quad A_{n, r}^{*}(f, 0)=f(0), \quad n \in \mathbb{N}
$$

In the sequel the following functions will be meaningful:

$$
e_{s}(t)=t^{s}, \quad \phi_{x, s}(t)=(t-x)^{s}, \quad s \in \mathbb{N}_{0}, x \in \mathbb{R}_{0}
$$

The s-th moments $A_{n, r}^{*}\left(e_{s} ; x\right)$ were characterized in [4].

Lemma 2.1. (4) For any $s \in \mathbb{N}, s \leq n+2-r$, and $r \leq n+2$ we have

$$
\begin{align*}
A_{n, r}^{*}\left(e_{s} ; x\right) & =\frac{(n+r+s)!(n+2-r-s)!}{(n+r)!(n+2-r)!} x^{s}, \\
A_{n, r}^{*}\left(\phi_{x, 1} ; x\right) & =\frac{2 r-1}{n+2-r} x \tag{2.2}\\
A_{n, r}^{*}\left(\phi_{x, 2} ; x\right) & =\frac{2\left(n+2 r^{2}+1\right)}{(n+2-r)(n+1-r)} x^{2} \tag{2.3}\\
A_{n, r}^{*}\left(\phi_{x, 4} ; x\right) & =\frac{c_{n, r}}{(n+2-r)(n+1-r)(n-r)(n-1-r)} x^{4} \tag{2.4}
\end{align*}
$$

where $c_{n, r}=12\left(n^{2}+6 n+5\right)+4\left(n^{2}+23 n+32\right) r+4(11 n+32) r^{2}+64 r^{3}+16 r^{4}$ for each $x \in \mathbb{R}_{0}$.

Let $p, r \in \mathbb{N}_{0}$. By C_{p}^{r} we denote the space of all functions $f \in C_{p}$ on \mathbb{R}_{0} such that $f^{\prime}, \ldots, f^{(r)} \in C_{p}$ on \mathbb{R}_{+}.

With the representations of Lemma 2.1 we may now determine the fundamental properties of the operators $A_{n, r}^{*}$ and $A_{n}^{(r)}$ necessary for characterizing their approximation properties in the next section.
Theorem 2.1. Let $p \in \mathbb{N}_{0}$. The operator $A_{n}^{(r)}$ maps C_{p}^{r} into C_{p}^{r} and

$$
\begin{equation*}
\left\|\frac{1}{a(n, r)} A_{n}^{(r)}(f ; \cdot)\right\|_{p} \leq M_{p, r}\left\|f^{(r)}\right\|_{p} \tag{2.5}
\end{equation*}
$$

for $f \in C_{p}^{r}$ and $n>p+r-2$, where $M_{p, r}$ is some positive constant.
Proof. Let $p \in \mathbb{N}$. First, we remark that

$$
\begin{align*}
w_{p}(x) A_{n, r}^{*}\left(\frac{1}{w_{p}} ; x\right) & =w_{p}(x)\left\{A_{n, r}^{*}\left(e_{0} ; x\right)+A_{n, r}^{*}\left(e_{p} ; x\right)\right\} \\
& =w_{p}(x)\left\{1+\frac{(n+r+p)!(n+2-r-p)!}{(n+r)!(n+2-r)!} x^{p}\right\} \tag{2.6}\\
& \leq M_{p, r} w_{p}(x)\left\{1+x^{p}\right\}=M_{p, r},
\end{align*}
$$

where

$$
M_{p, r}=\max \left\{\sup _{n} \frac{(n+r+p)!(n+2-r-p)!}{(n+r)!(n+2-r)!}, 1\right\} .
$$

Observe that for all $f \in C_{p}^{r}$ and every $x \in \mathbb{R}_{+}$we get

$$
\begin{aligned}
& w_{p}(x)\left|\frac{1}{a(n, r)} A_{n}^{(r)}(f ; x)\right| \\
& \quad \leq w_{p}(x) \frac{\alpha_{n} x^{n+3-r}}{a(n, r)} \int_{0}^{\infty} \frac{t^{n+r}}{(x+t)^{2 n+4}}\left|f^{(r)}(t)\right| w_{p}(t) \frac{1}{w_{p}(t)} d t \\
& \quad \leq\left\|f^{(r)}\right\|_{p} w_{p}(x) A_{n, r}^{*}\left(\frac{1}{w_{p}} ; x\right) .
\end{aligned}
$$

From (2.6 we obtain

$$
w_{p}(x)\left|\frac{1}{a(n, r)} A_{n}^{(r)}(f ; x)\right| \leq M_{p, r}\left\|f^{(r)}\right\|_{p}
$$

and we have the assertion for $p \in \mathbb{N}$.
In the case $p=0$ the proof follows immediately.
Lemma 2.2. Let $p, r \in \mathbb{N}_{0}$. For the operators $A_{n, r}^{*}$, there exists a constant $M_{p, r}>$ 0 such that

$$
w_{p}(x) A_{n, r}^{*}\left(\frac{\phi_{x, 2}}{w_{p}} ; x\right) \leq M_{p, r} \frac{x^{2}}{n}
$$

for all $x \in \mathbb{R}_{0}$ and $n>p+r-2$.
Proof. Using Lemma 2.1 we can write

$$
\begin{align*}
w_{0}(x) A_{n, r}^{*}\left(\frac{\phi_{x, 2}}{w_{0}} ; x\right) & =\frac{2\left(n+2 r^{2}+1\right)}{(n+2-r)(n+1-r)} x^{2} \\
& =\frac{2 n\left(n+2 r^{2}+1\right)}{(n+2-r)(n+1-r)} \cdot \frac{x^{2}}{n} \leq M_{r} \frac{x^{2}}{n} \tag{2.7}
\end{align*}
$$

which gives the result for $p=0$.
Let $p \geq 1$. Then, we get from Lemma 2.1

$$
\begin{aligned}
A_{n, r}^{*} & \left(\frac{\phi_{x, 2}}{w_{p}} ; x\right) \\
= & A_{n, r}^{*}\left(e_{p+2} ; x\right)-2 x A_{n, r}^{*}\left(e_{p+1} ; x\right)+x^{2} A_{n, r}^{*}\left(e_{p} ; x\right)+A_{n, r}^{*}\left(\phi_{x, 2} ; x\right) \\
= & \frac{(n+r+p)!(n-r-p)!}{(n+r)!(n+2-r)!} x^{p+2}[(n+r+p+1)(n+r+p+2) \\
& -2(n+r+p+1)(n+1-r-p)+(n+1-r-p)(n+2-r-p)] \\
& +\frac{2\left(n+2 r^{2}+1\right)}{(n+2-r)(n+1-r)} x^{2} \\
= & \left\{1+\left[1+\frac{4 r p+2 p^{2}}{n+2 r^{2}+1}\right] \frac{(n+r+p)!(n-r-p)!}{(n+r)!(n-r)!} x^{p}\right\} \\
& \times \frac{2 x^{2}\left(n+2 r^{2}+1\right)}{(n+2-r)(n+1-r)} \leq M_{p, r} \frac{x^{2}}{n}\left(1+x^{p}\right),
\end{aligned}
$$

where $M_{p, r}$ is some positive constant. This completes the proof.

3. Rate of convergence

The proof of the direct theorems will follow along standard lines using a Jackson type inequality, the Steklov means, and appropriate estimates of the moments of the operators.

Theorem 3.1. Let $r, p \in \mathbb{N}_{0}$. If $g \in C_{p}^{1}$, then there exists a positive constant $M_{p, r}$ such that

$$
w_{p}(x)\left|A_{n, r}^{*}(g ; x)-g(x)\right| \leq M_{p, r}\left\|g^{\prime}\right\|_{p} \frac{x}{\sqrt{n}}
$$

for all $x \in \mathbb{R}_{+}$and $n>p+r-2$.
Proof. Let $x \in \mathbb{R}_{+}$. We have

$$
g(t)-g(x)=\int_{x}^{t} g^{\prime}(u) d u, \quad t \geq 0
$$

Taking into account the fact that $A_{n, r}^{*}(1 ; x)=1$ and using the linearity of $A_{n, r}^{*}$ we get

$$
\begin{equation*}
A_{n, r}^{*}(g ; x)-g(x)=A_{n, r}^{*}\left(\int_{x}^{t} g^{\prime}(u) d u ; x\right), \quad n \in \mathbb{N} . \tag{3.1}
\end{equation*}
$$

Remark that

$$
\left|\int_{x}^{t} g^{\prime}(u) d u\right| \leq\left\|g^{\prime}\right\|_{p}\left|\int_{x}^{t} \frac{d u}{w_{p}(u)}\right| \leq\left\|g^{\prime}\right\|_{p}\left(\frac{1}{w_{p}(t)}+\frac{1}{w_{p}(x)}\right)|t-x| .
$$

Hence and from (3.1) we obtain

$$
w_{p}(x)\left|A_{n, r}^{*}(g ; x)-g(x)\right| \leq\left\|g^{\prime}\right\|_{p}\left\{A_{n, r}^{*}\left(\left|\phi_{x, 1}\right| ; x\right)+w_{p}(x) A_{n, r}^{*}\left(\frac{\left|\phi_{x, 1}\right|}{w_{p}} ; x\right)\right\} .
$$

Applying the Cauchy-Schwarz inequality we can write

$$
\begin{gathered}
A_{n, r}^{*}\left(\left|\phi_{x, 1}\right| ; x\right) \leq\left\{A_{n, r}^{*}\left(\phi_{x, 2} ; x\right)\right\}^{1 / 2} \\
A_{n, r}^{*}\left(\frac{\left|\phi_{x, 1}\right|}{w_{p}} ; x\right) \leq\left\{A_{n, r}^{*}\left(\frac{1}{w_{p}} ; x\right)\right\}^{1 / 2}\left\{A_{n, r}^{*}\left(\frac{\phi_{x, 2}}{w_{p}} ; x\right)\right\}^{1 / 2}
\end{gathered}
$$

Finally, using 2.3, 2.7, 2.6 and Lemma 2.2 we obtain

$$
w_{p}(x)\left|A_{n, r}^{*}(g ; x)-g(x)\right| \leq M_{p, r}\left\|g^{\prime}\right\|_{p} \frac{x}{\sqrt{n}}
$$

for $n>p+r-2$.
Theorem 3.2. Let $p, r \in \mathbb{N}_{0}$. If $f \in C_{p}^{r}$, then there exists a positive constant $M_{p, r}$ such that

$$
w_{p}(x)\left|\frac{1}{a(n, r)} A_{n}^{(r)}(f ; x)-f^{(r)}(x)\right| \leq M_{p, r} \omega_{p}\left(f^{(r)}, \frac{x}{\sqrt{n}}\right)
$$

for all $x \in \mathbb{R}_{+}$and $n>p+r-2$.
Proof. Let $x \in \mathbb{R}_{+}$. We denote the Steklov means of $f^{(r)}$ by $f_{h}^{(r)}, h>0$. Here we recall that

$$
f_{h}^{(r)}(x)=\frac{1}{h} \int_{0}^{h} f^{(r)}(x+t) d t, \quad h, x \in \mathbb{R}_{+} .
$$

It is obvious that

$$
f_{h}^{(r)}(x)-f^{(r)}(x)=\frac{1}{h} \int_{0}^{h}\left[f^{(r)}(x+t)-f^{(r)}(x)\right] d t
$$

$$
f_{h}^{(r+1)}(x)=\frac{1}{h}\left[f^{(r)}(x+h)-f^{(r)}(x)\right]
$$

for $h, x \in \mathbb{R}_{+}$. Hence, if $f^{(r)} \in C_{p}$, then $f_{h}^{(r)} \in C_{p}^{1}$ for every fixed $h>0$. Moreover we have

$$
\begin{equation*}
\left\|f_{h}^{(r)}-f^{(r)}\right\|_{p} \leq \omega_{p}\left(f^{(r)}, h\right), \quad\left\|f_{h}^{(r+1)}\right\|_{p} \leq \frac{1}{h} \omega_{p}\left(f^{(r)}, h\right) \tag{3.2}
\end{equation*}
$$

Observe that

$$
\begin{aligned}
w_{p}(x) & \left|A_{n, r}^{*}\left(f^{(r)} ; x\right)-f^{(r)}(x)\right| \\
\leq & w_{p}(x)\left|A_{n, r}^{*}\left(f^{(r)}-f_{h}^{(r)} ; x\right)\right|+w_{p}(x)\left|A_{n, r}^{*}\left(f_{h}^{(r)} ; x\right)-f_{h}^{(r)}(x)\right| \\
& \quad+w_{p}(x)\left|f_{h}^{(r)}(x)-f^{(r)}(x)\right| .
\end{aligned}
$$

Using Theorem 2.1 and (3.2) we obtain

$$
\begin{aligned}
& w_{p}(x)\left|A_{n, r}^{*}\left(f^{(r)}-f_{h}^{(r)} ; x\right)\right| \\
& \quad=w_{p}(x)\left|A_{n, r}^{*}\left(\left(f-f_{h}\right)^{(r)} ; x\right)\right|=w_{p}(x)\left|\frac{1}{a(n, r)} A_{n}^{(r)}\left(f-f_{h} ; x\right)\right| \\
& \quad \leq M_{p, r}\left\|\left(f-f_{h}\right)^{(r)}\right\|_{p}=M_{p, r}\left\|f^{(r)}-f_{h}^{(r)}\right\|_{p} \leq M_{p, r} \omega_{p}\left(f^{(r)}, h\right)
\end{aligned}
$$

for $h, x \in \mathbb{R}_{+}$and $n>p+r-2$. From Theorem 3.1 and (3.2) we get

$$
\begin{aligned}
w_{p}(x)\left|A_{n, r}^{*}\left(f_{h}^{(r)} ; x\right)-f_{h}^{(r)}(x)\right| & \leq M_{p, r}\left\|f_{h}^{(r+1)}\right\|_{p} \frac{x}{\sqrt{n}} \\
& \leq M_{p, r} \frac{1}{h} \omega_{p}\left(f^{(r)}, h\right) \frac{x}{\sqrt{n}} .
\end{aligned}
$$

By (3.2) we can write

$$
w_{p}(x)\left|f_{h}^{(r)}(x)-f^{(r)}(x)\right| \leq\left\|f_{h}^{(r)}-f^{(r)}\right\|_{p} \leq \omega_{p}\left(f^{(r)}, h\right)
$$

for $h, x \in \mathbb{R}_{+}$and $n>p+r-2$. Finally we obtain

$$
\begin{aligned}
w_{p}(x)\left|\frac{1}{a(n, r)} A_{n}^{(r)}(f ; x)-f^{(r)}(x)\right| & =w_{p}(x)\left|A_{n, r}^{*}\left(f^{(r)}-f_{h}^{(r)} ; x\right)\right| \\
& \leq \omega_{p}\left(f^{(r)}, h\right)\left[M_{p, r}+\frac{1}{h} M_{p, r} \frac{x}{\sqrt{n}}+1\right]
\end{aligned}
$$

for $h, x \in \mathbb{R}_{+}, n>p+r-2$. Thus, choosing $h=\frac{x}{\sqrt{n}}$, the proof is completed.
Now, we establish the next auxiliary result.
Lemma 3.1. Let $p, r \in \mathbb{N}_{0}$ and $n_{0}=\max \{4-2 r, p+r-2\}$. If

$$
\begin{equation*}
H_{n, r}(f ; x)=A_{n, r}^{*}(f ; x)-f\left(x+\frac{2 r-1}{n+2-r} x\right)+f(x), \tag{3.3}
\end{equation*}
$$

then there exists a positive constant $M_{p, r}$ such that, for all $x \in \mathbb{R}_{+}$and $n>n_{0}$, we have

$$
w_{p}(x)\left|H_{n, r}(g ; x)-g(x)\right| \leq M_{p, r}\left\|g^{\prime \prime}\right\|_{p} \frac{x^{2}}{n}
$$

for any function $g \in C_{p}^{2}$.
Proof. By the Taylor formula one can write

$$
g(t)-g(x)=(t-x) g^{\prime}(x)+\int_{x}^{t}(t-u) g^{\prime \prime}(u) d u, \quad t \in \mathbb{R}_{+} .
$$

Observe that

$$
H_{n, r}\left(e_{0} ; x\right)=H_{n, r}(1 ; x)=1, \quad H_{n, r}\left(\phi_{x, 1} ; x\right)=0
$$

Then,

$$
\begin{aligned}
\left|H_{n, r}(g ; x)-g(x)\right|= & \left|H_{n, r}(g-g(x) ; x)\right|=\left|H_{n, r}\left(\int_{x}^{t}(t-u) g^{\prime \prime}(u) d u ; x\right)\right| \\
= & \mid A_{n, r}^{*}\left(\int_{x}^{t}(t-u) g^{\prime \prime}(u) d u ; x\right) \\
& \left.\quad-\int_{x}^{x+\frac{2 r-1}{n+2-r} x}\left(x+\frac{2 r-1}{n+2-r} x-u\right) g^{\prime \prime}(u) d u \right\rvert\,
\end{aligned}
$$

Since

$$
\left|\int_{x}^{t}(t-u) g^{\prime \prime}(u) d u\right| \leq \frac{\left\|g^{\prime \prime}\right\|_{p}(t-x)^{2}}{2}\left(\frac{1}{w_{p}(x)}+\frac{1}{w_{p}(t)}\right)
$$

and

$$
\left|\int_{x}^{x+\frac{2 r-1}{n+2-r} x}\left(x+\frac{2 r-1}{n+2-r} x-u\right) g^{\prime \prime}(u) d u\right| \leq \frac{\left\|g^{\prime \prime}\right\|_{p}}{2 w_{p}(x)}\left(\frac{2 r-1}{n+2-r} x\right)^{2}
$$

we get

$$
\begin{aligned}
w_{p}(x)\left|H_{n, r}(g ; x)-g(x)\right| \leq & \frac{\left\|g^{\prime \prime}\right\|_{p}}{2}\left[A_{n, r}^{*}\left(\phi_{x, 2} ; x\right)+w_{p}(x) A_{n, r}^{*}\left(\frac{\phi_{x, 2}}{w_{p}} ; x\right)\right] \\
& +\frac{\left\|g^{\prime \prime}\right\|_{p}}{2}\left(\frac{2 r-1}{n+2-r} x\right)^{2} .
\end{aligned}
$$

Hence, by 2.7 and Lemma 2.2 we obtain

$$
w_{p}(x)\left|H_{n, r}(g ; x)-g(x)\right| \leq M_{p, r}\left\|g^{\prime \prime}\right\|_{p} \frac{x^{2}}{n}
$$

for any function $g \in C_{p}^{2}$ and $n>n_{0}$, where $n_{0}=\max \{4-2 r, p+r-2\}$. The lemma is proved.

A further uniform estimate is indicated in the next theorem.

Theorem 3.3. Let $p, r \in \mathbb{N}_{0}$ and $n_{0}=\max \{4-2 r, p+r-2\}$. If $f \in C_{p}^{r}$, then there exists a positive constant $M_{p, r}$ such that
$w_{p}(x)\left|\frac{1}{a(n, r)} A_{n}^{(r)}(f ; x)-f^{(r)}(x)\right| \leq M_{p, r} \omega_{p}^{2}\left(f^{(r)}, \frac{x}{\sqrt{n}}\right)+\omega_{p}\left(f^{(r)}, \frac{2 r-1}{n+2-r} x\right)$
for all $x \in \mathbb{R}_{+}$and $n>n_{0}$.
Proof. Let $f \in C_{p}^{r}$. We consider the Steklov means $\tilde{f}_{h}^{(r)}$ of second order of $f^{(r)}$ given by the formula (see [1] p. 317)

$$
\tilde{f}_{h}^{(r)}(x)=\frac{4}{h^{2}} \int_{0}^{h / 2} \int_{0}^{h / 2}\left\{2 f^{(r)}(x+s+t)-f^{(r)}(x+2(s+t))\right\} d s d t
$$

for $h, x \in \mathbb{R}_{+}$. We have

$$
f^{(r)}(x)-\tilde{f}_{h}^{(r)}(x)=\frac{4}{h^{2}} \int_{0}^{h / 2} \int_{0}^{h / 2} \Delta_{s+t}^{2} f^{(r)}(x) d s d t
$$

which gives

$$
\begin{equation*}
\left\|f^{(r)}-\tilde{f}_{h}^{(r)}\right\|_{p} \leq \omega_{p}^{2}\left(f^{(r)}, h\right) \tag{3.4}
\end{equation*}
$$

Remark that

$$
\tilde{f}_{h}^{(r+2)}(x)=\frac{1}{h^{2}}\left(8 \Delta_{h / 2}^{2} f^{(r)}(x)-\Delta_{h}^{2} f^{(r)}(x)\right)
$$

and

$$
\begin{equation*}
\left\|\tilde{f}_{h}^{(r+2)}\right\|_{p} \leq \frac{9}{h^{2}} \omega_{p}^{2}\left(f^{(r)}, h\right) \tag{3.5}
\end{equation*}
$$

From (3.4 and 3.5 we conclude that $\tilde{f}_{h}^{(r)} \in C_{p}^{2}$ if $f^{(r)} \in C_{p}$.
Observe that

$$
\begin{aligned}
& \left|A_{n, r}^{*}\left(f^{(r)} ; x\right)-f^{(r)}(x)\right| \\
& \quad \leq H_{n, r}\left(\left|f^{(r)}-\tilde{f}_{h}^{(r)}\right| ; x\right)+\left|f^{(r)}(x)-\tilde{f}_{h}^{(r)}(x)\right| \\
& \quad+\left|H_{n, r}\left(\tilde{f}_{h}^{(r)} ; x\right)-\tilde{f}_{h}^{(r)}(x)\right|+\left|f^{(r)}\left(x+\frac{2 r-1}{n+2-r} x\right)-f^{(r)}(x)\right|
\end{aligned}
$$

where $H_{n, r}$ is defined in 3.3 . Since $\tilde{f}_{h}^{(r)} \in C_{p}^{2}$ by the above, it follows from Theorem 2.1 and Lemma 3.1 that

$$
\begin{aligned}
w_{p}(x) \left\lvert\, \frac{1}{a(n, r)}\right. & A_{n}^{(r)}(f ; x)-f^{(r)}(x)\left|=w_{p}(x)\right| A_{n, r}^{*}\left(f^{(r)} ; x\right)-f^{(r)}(x) \mid \\
\leq & (M+3)\left\|f^{(r)}-\tilde{f}_{h}^{(r)}\right\|_{p}+M_{p, r}\left\|\tilde{f}_{h}^{(r+2)}\right\|_{p} \frac{x^{2}}{n} \\
& +w_{p}(x)\left|f^{(r)}\left(x+\frac{2 r-1}{n+2-r} x\right)-f^{(r)}(x)\right|
\end{aligned}
$$

for $n>n_{0}, n_{0}=\max \{4-2 r, p+r-2\}$. By (3.4) and (3.5), the last inequality yields that

$$
\begin{aligned}
w_{p}(x) \left\lvert\, \frac{1}{a(n, r)} A_{n}^{(r)}(f ; x)\right. & -f^{(r)}(x) \mid \\
\leq & M_{p, r} \omega_{p}^{2}(f, h)\left\{1+\frac{1}{h^{2}} \frac{x^{2}}{n}\right\}+\omega_{p}\left(f^{(r)}, \frac{2 r-1}{n+2-r} x\right)
\end{aligned}
$$

Thus, choosing $h=\frac{x}{\sqrt{n}}$ we get the result.

Acknowledgment

The author is grateful to the referee for making valuable comments leading to the overall improvement of the paper.

References

[1] P. L. Butzer and K. Scherer. Jackson and Bernstein-type inequalities for families of commutative operators in Banach spaces, J. Approx. Theory 5 (1972), 308-342. MR 0346396
[2] R. A. DeVore and G. G. Lorentz. Constructive Approximation, Springer-Verlag, Berlin, 1993. MR 1261635
[3] Z. Ditzian and V. Totik. Moduli of Smoothness, Springer-Verlag, New York, 1987. MR 0914149
[4] A. İzgi. Voronovskaya type asymptotic approximation by modified gamma operators, Appl. Math. Comput. 217 (2011), 8061-8067. MR 2802217
[5] A. İzgi and I. Büyükyazici. Approximation and rate of approximation on unbounded intervals, Kastamonu Edu. J. Okt. 11 (2003), 451-460 (in Turkish).
[6] H. Karsli. Rate of convergence of new gamma type operators for functions with derivatives of bounded variation, Math. Comput. Modelling 45 (2007), 617-624. MR 2287309
[7] H Karsli, V. Gupta and A. İzgi. Rate of pointwise convergence of a new kind of gamma operators for functions of bounded variation, Appl. Math. Letters 22 (2009), 505-510. MR 2502246
[8] H. Karsli and M. A. Özarslan. Direct local and global approximation results for operators of gamma type, Hacet. J. Math. Stat. 39 (2010), 241-253. MR 2681250
[9] J. P. King. Positive linear operators which preserve x^{2}, Acta Math. Hungar. 99 (2003), 203-208. MR 1973095
[10] G. Krech. A note on the paper "Voronovskaya type asymptotic approximation by modified gamma operators", Appl. Math. Comput. 219 (2013), 5787-5791. MR 3018421
[11] L. Rempulska and K. Tomczak. Approximation by certain linear operators preserving x^{2}, Turkish J. Math. 33 (2009), 273-281. MR 2553302

Grażyna Krech

Institute of Mathematics, Pedagogical University of Cracow
ul. Podchorążych 2, PL-30-084 Kraków, Poland
gkrech@up.krakow.pl

Received: July 8, 2013
Accepted: July 1, 2014

[^0]: 2010 Mathematics Subject Classification. Primary 41A25; Secondary 41A36.
 Key words and phrases. Gamma type operator, positive linear operators, approximation order.

