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ON THE RATE OF CONVERGENCE FOR MODIFIED

GAMMA OPERATORS

GRAŻYNA KRECH

Abstract. We give direct approximation theorems for some linear operators

in certain weighted spaces. The results are given in terms of some Ditzian-
Totik moduli of smoothness.

1. Introduction

Let An, n ∈ N := {1, 2, . . .}, be the gamma type operators given by the formula

An(f ;x) =

∫ ∞
0

(2n+ 3)!xn+3tn

n!(n+ 2)!(x+ t)2n+4
f(t) dt, x, t ∈ R+ := (0,∞) (1.1)

and defined for any f for which the above integral is convergent.
The operators (1.1) are linear and positive, and preserve the functions e0(t) = 1,

e2(t) = t2 (see [5, 9, 11]). Basic facts on positive linear operators, their generaliza-
tions and applications, can be found in [2, 3].

Approximation properties of An were examined in [5]–[8]. Recently, İzgi [4]
obtained the following result.

Lemma 1.1 ([4]). For any r ∈ N0 := {0, 1, 2, . . .},

A(r)
n (f ;x) =

(2n+ 3)!

n!(n+ 2)!
xn+3−r

∫ ∞
0

tn+r

(x+ t)2n+4
f (r)(t) dt, x ∈ R+,

provided that the r-th derivative f (r) (r = 0, 1, 2, . . .) exists continuously.

The local rate of convergence and the Voronovskaya type theorem for operators

A
(r)
n were given in [4, 10].

In this paper we shall study approximation properties of A
(r)
n for functions f ∈

Cp, p ∈ N0, where Cp is a polynomial weighted space with the weight function wp,

w0(x) = 1 and wp(x) =
1

1 + xp
, p ∈ N, (1.2)
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and Cp is the set of all real-valued functions f for which fwp is uniformly continuous
and bounded on R0 = [0,∞). The norm on Cp is defined by

‖f‖p = sup
x∈R0

wp(x)|f(x)|.

We shall prove approximation theorems which are similar to some results given
in [8] for the operators (1.1).

We consider the modulus of continuity of f ∈ Cp,

ωp(f, δ) = sup
h∈[0,δ]

‖∆hf‖p ,

and the modulus of smoothness of f ∈ Cp,

ω2
p(f, δ) = sup

h∈[0,δ]

∥∥∆2
hf
∥∥
p
,

where

∆hf(x) = f(x+ h)− f(x), ∆2
hf(x) = f(x+ 2h)− 2f(x+ h) + f(x)

for x, h ∈ R0.
Throughout this paper we shall denote by Mα,β positive constants depending

only on indicated parameters α, β, and point out that they are not the same at
each occurrence.

2. Auxiliary results

In this section we give some preliminary results which will be used in the sequel.
Let

a(n, r) =
(2n+ 3)!

n!(n+ 2)!
xn+3−r

∫ ∞
0

tn+r

(x+ t)2n+4
dt =

(n+ r)!(n+ 2− r)!
n!(n+ 2)!

.

We consider the sequence of positive operators {A∗n,r}, n ∈ N, given by the
formula

A∗n,r(g;x) =
(2n+ 3)!xn+3−r

(n+ r)!(n+ 2− r)!

∫ ∞
0

tn+r

(x+ t)2n+4
g(t) dt, (2.1)

x, t ∈ R+, r ∈ N0 (see [4]).
If f is right side continuous at x = 0, we define

An(f, 0) = f(0), A∗n,r(f, 0) = f(0), n ∈ N.

In the sequel the following functions will be meaningful:

es(t) = ts, φx,s(t) = (t− x)s, s ∈ N0, x ∈ R0.

The s-th moments A∗n,r(es;x) were characterized in [4].
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Lemma 2.1. ([4]) For any s ∈ N, s ≤ n+ 2− r, and r ≤ n+ 2 we have

A∗n,r(es;x) =
(n+ r + s)!(n+ 2− r − s)!

(n+ r)!(n+ 2− r)!
xs,

A∗n,r(φx,1;x) =
2r − 1

n+ 2− r
x, (2.2)

A∗n,r(φx,2;x) =
2(n+ 2r2 + 1)

(n+ 2− r)(n+ 1− r)
x2, (2.3)

A∗n,r(φx,4;x) =
cn,r

(n+ 2− r)(n+ 1− r)(n− r)(n− 1− r)
x4, (2.4)

where cn,r = 12(n2 + 6n+ 5) + 4(n2 + 23n+ 32)r+ 4(11n+ 32)r2 + 64r3 + 16r4 for
each x ∈ R0.

Let p, r ∈ N0. By Crp we denote the space of all functions f ∈ Cp on R0 such

that f ′, . . . , f (r) ∈ Cp on R+.
With the representations of Lemma 2.1 we may now determine the fundamen-

tal properties of the operators A∗n,r and A
(r)
n necessary for characterizing their

approximation properties in the next section.

Theorem 2.1. Let p ∈ N0. The operator A
(r)
n maps Crp into Crp and∥∥∥∥ 1

a(n, r)
A(r)
n (f ; ·)

∥∥∥∥
p

≤Mp,r

∥∥∥f (r)
∥∥∥
p

(2.5)

for f ∈ Crp and n > p+ r − 2, where Mp,r is some positive constant.

Proof. Let p ∈ N. First, we remark that

wp(x)A∗n,r

(
1

wp
;x

)
= wp(x)

{
A∗n,r (e0;x) +A∗n,r (ep;x)

}
= wp(x)

{
1 +

(n+ r + p)!(n+ 2− r − p)!
(n+ r)!(n+ 2− r)!

xp
}

≤Mp,rwp(x) {1 + xp} = Mp,r,

(2.6)

where

Mp,r = max

{
sup
n

(n+ r + p)!(n+ 2− r − p)!
(n+ r)!(n+ 2− r)!

, 1

}
.

Observe that for all f ∈ Crp and every x ∈ R+ we get

wp(x)

∣∣∣∣ 1

a(n, r)
A(r)
n (f ;x)

∣∣∣∣
≤ wp(x)

αnx
n+3−r

a(n, r)

∫ ∞
0

tn+r

(x+ t)2n+4

∣∣∣f (r)(t)
∣∣∣wp(t) 1

wp(t)
dt

≤
∥∥∥f (r)

∥∥∥
p
wp(x)A∗n,r

(
1

wp
;x

)
.
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From (2.6) we obtain

wp(x)

∣∣∣∣ 1

a(n, r)
A(r)
n (f ;x)

∣∣∣∣ ≤Mp,r

∥∥∥f (r)
∥∥∥
p

and we have the assertion for p ∈ N.
In the case p = 0 the proof follows immediately. �

Lemma 2.2. Let p, r ∈ N0. For the operators A∗n,r, there exists a constant Mp,r >
0 such that

wp(x)A∗n,r

(
φx,2
wp

;x

)
≤Mp,r

x2

n

for all x ∈ R0 and n > p+ r − 2.

Proof. Using Lemma 2.1 we can write

w0(x)A∗n,r

(
φx,2
w0

;x

)
=

2(n+ 2r2 + 1)

(n+ 2− r)(n+ 1− r)
x2

=
2n(n+ 2r2 + 1)

(n+ 2− r)(n+ 1− r)
· x

2

n
≤Mr

x2

n
,

(2.7)

which gives the result for p = 0.
Let p ≥ 1. Then, we get from Lemma 2.1

A∗n,r

(
φx,2
wp

;x

)
= A∗n,r (ep+2;x)− 2xA∗n,r (ep+1;x) + x2A∗n,r (ep;x) +A∗n,r (φx,2;x)

=
(n+ r + p)!(n− r − p)!

(n+ r)!(n+ 2− r)!
xp+2 [(n+ r + p+ 1)(n+ r + p+ 2)

− 2(n+ r + p+ 1)(n+ 1− r − p) + (n+ 1− r − p)(n+ 2− r − p)]

+
2(n+ 2r2 + 1)

(n+ 2− r)(n+ 1− r)
x2

=

{
1 +

[
1 +

4rp+ 2p2

n+ 2r2 + 1

]
(n+ r + p)!(n− r − p)!

(n+ r)!(n− r)!
xp
}

× 2x2(n+ 2r2 + 1)

(n+ 2− r)(n+ 1− r)
≤Mp,r

x2

n
(1 + xp) ,

where Mp,r is some positive constant. This completes the proof. �

3. Rate of convergence

The proof of the direct theorems will follow along standard lines using a Jackson
type inequality, the Steklov means, and appropriate estimates of the moments of
the operators.

Rev. Un. Mat. Argentina, Vol. 55, No. 2 (2014)



MODIFIED GAMMA OPERATORS 127

Theorem 3.1. Let r, p ∈ N0. If g ∈ C1
p , then there exists a positive constant Mp,r

such that

wp(x)
∣∣A∗n,r(g;x)− g(x)

∣∣ ≤Mp,r ‖g′‖p
x√
n

for all x ∈ R+ and n > p+ r − 2.

Proof. Let x ∈ R+. We have

g(t)− g(x) =

∫ t

x

g′(u) du, t ≥ 0.

Taking into account the fact that A∗n,r(1;x) = 1 and using the linearity of A∗n,r we
get

A∗n,r(g;x)− g(x) = A∗n,r

(∫ t

x

g′(u) du;x

)
, n ∈ N. (3.1)

Remark that∣∣∣∣∫ t

x

g′(u) du

∣∣∣∣ ≤ ‖g′‖p ∣∣∣∣∫ t

x

du

wp(u)

∣∣∣∣ ≤ ‖g′‖p( 1

wp(t)
+

1

wp(x)

)
|t− x|.

Hence and from (3.1) we obtain

wp(x)
∣∣A∗n,r(g;x)− g(x)

∣∣ ≤ ‖g′‖p{A∗n,r (|φx,1|;x) + wp(x)A∗n,r

(
|φx,1|
wp

;x

)}
.

Applying the Cauchy–Schwarz inequality we can write

A∗n,r (|φx,1|;x) ≤
{
A∗n,r(φx,2;x)

}1/2
,

A∗n,r

(
|φx,1|
wp

;x

)
≤
{
A∗n,r

(
1

wp
;x

)}1/2{
A∗n,r

(
φx,2
wp

;x

)}1/2

.

Finally, using (2.3), (2.7), (2.6) and Lemma 2.2 we obtain

wp(x)
∣∣A∗n,r(g;x)− g(x)

∣∣ ≤Mp,r ‖g′‖p
x√
n

for n > p+ r − 2. �

Theorem 3.2. Let p, r ∈ N0. If f ∈ Crp , then there exists a positive constant Mp,r

such that

wp(x)

∣∣∣∣ 1

a(n, r)
A(r)
n (f ;x)− f (r)(x)

∣∣∣∣ ≤Mp,r ωp

(
f (r),

x√
n

)
for all x ∈ R+ and n > p+ r − 2.

Proof. Let x ∈ R+. We denote the Steklov means of f (r) by f
(r)
h , h > 0. Here we

recall that

f
(r)
h (x) =

1

h

∫ h

0

f (r)(x+ t) dt, h, x ∈ R+.

It is obvious that

f
(r)
h (x)− f (r)(x) =

1

h

∫ h

0

[
f (r)(x+ t)− f (r)(x)

]
dt,
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f
(r+1)
h (x) =

1

h

[
f (r)(x+ h)− f (r)(x)

]
for h, x ∈ R+. Hence, if f (r) ∈ Cp, then f

(r)
h ∈ C1

p for every fixed h > 0. Moreover
we have ∥∥∥f (r)

h − f (r)
∥∥∥
p
≤ ωp

(
f (r), h

)
,

∥∥∥f (r+1)
h

∥∥∥
p
≤ 1

h
ωp

(
f (r), h

)
. (3.2)

Observe that

wp(x)
∣∣∣A∗n,r (f (r);x

)
− f (r)(x)

∣∣∣
≤ wp(x)

∣∣∣A∗n,r (f (r) − f (r)
h ;x

)∣∣∣+ wp(x)
∣∣∣A∗n,r (f (r)

h ;x
)
− f (r)

h (x)
∣∣∣

+ wp(x)
∣∣∣f (r)
h (x)− f (r)(x)

∣∣∣ .
Using Theorem 2.1 and (3.2) we obtain

wp(x)
∣∣∣A∗n,r (f (r) − f (r)

h ;x
)∣∣∣

= wp(x)
∣∣∣A∗n,r ((f − fh)(r);x

)∣∣∣ = wp(x)

∣∣∣∣ 1

a(n, r)
A(r)
n (f − fh;x)

∣∣∣∣
≤Mp,r

∥∥∥(f − fh)(r)
∥∥∥
p

= Mp,r

∥∥∥f (r) − f (r)
h

∥∥∥
p
≤Mp,r ωp

(
f (r), h

)
for h, x ∈ R+ and n > p+ r − 2. From Theorem 3.1 and (3.2) we get

wp(x)
∣∣∣A∗n,r (f (r)

h ;x
)
− f (r)

h (x)
∣∣∣ ≤Mp,r

∥∥∥f (r+1)
h

∥∥∥
p

x√
n

≤Mp,r
1

h
ωp

(
f (r), h

) x√
n
.

By (3.2) we can write

wp(x)
∣∣∣f (r)
h (x)− f (r)(x)

∣∣∣ ≤ ∥∥∥f (r)
h − f (r)

∥∥∥
p
≤ ωp

(
f (r), h

)
for h, x ∈ R+ and n > p+ r − 2. Finally we obtain

wp(x)

∣∣∣∣ 1

a(n, r)
A(r)
n (f ;x)− f (r)(x)

∣∣∣∣ = wp(x)
∣∣∣A∗n,r (f (r) − f (r)

h ;x
)∣∣∣

≤ ωp
(
f (r), h

)[
Mp,r +

1

h
Mp,r

x√
n

+ 1

]
for h, x ∈ R+, n > p+ r − 2. Thus, choosing h = x√

n
, the proof is completed. �

Now, we establish the next auxiliary result.

Lemma 3.1. Let p, r ∈ N0 and n0 = max {4− 2r, p+ r − 2}. If

Hn,r(f ;x) = A∗n,r(f ;x)− f
(
x+

2r − 1

n+ 2− r
x

)
+ f(x), (3.3)
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then there exists a positive constant Mp,r such that, for all x ∈ R+ and n > n0, we
have

wp(x)|Hn,r(g;x)− g(x)| ≤Mp,r ‖g′′‖p
x2

n

for any function g ∈ C2
p .

Proof. By the Taylor formula one can write

g(t)− g(x) = (t− x)g′(x) +

∫ t

x

(t− u)g′′(u) du, t ∈ R+.

Observe that

Hn,r(e0;x) = Hn,r(1;x) = 1, Hn,r(φx,1;x) = 0.

Then,

|Hn,r(g;x)− g(x)| = |Hn,r(g − g(x);x)| =
∣∣∣∣Hn,r

(∫ t

x

(t− u)g′′(u) du;x

)∣∣∣∣
=

∣∣∣∣A∗n,r (∫ t

x

(t− u)g′′(u) du;x

)

−
∫ x+ 2r−1

n+2−r x

x

(
x+

2r − 1

n+ 2− r
x− u

)
g′′(u) du

∣∣∣∣∣ .
Since ∣∣∣∣∫ t

x

(t− u)g′′(u) du

∣∣∣∣ ≤ ‖g′′‖p (t− x)2

2

(
1

wp(x)
+

1

wp(t)

)
and ∣∣∣∣∣

∫ x+ 2r−1
n+2−r x

x

(
x+

2r − 1

n+ 2− r
x− u

)
g′′(u) du

∣∣∣∣∣ ≤ ‖g′′‖p2wp(x)

(
2r − 1

n+ 2− r
x

)2

,

we get

wp(x)|Hn,r(g;x)− g(x)| ≤
‖g′′‖p

2

[
A∗n,r (φx,2;x) + wp(x)A∗n,r

(
φx,2
wp

;x

)]

+
‖g′′‖p

2

(
2r − 1

n+ 2− r
x

)2

.

Hence, by (2.7) and Lemma 2.2 we obtain

wp(x)|Hn,r(g;x)− g(x)| ≤Mp,r ‖g′′‖p
x2

n

for any function g ∈ C2
p and n > n0, where n0 = max {4− 2r, p+ r − 2} . The

lemma is proved. �

A further uniform estimate is indicated in the next theorem.
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Theorem 3.3. Let p, r ∈ N0 and n0 = max {4− 2r, p+ r − 2}. If f ∈ Crp , then
there exists a positive constant Mp,r such that

wp(x)

∣∣∣∣ 1

a(n, r)
A(r)
n (f ;x)− f (r)(x)

∣∣∣∣ ≤Mp,r ω
2
p

(
f (r),

x√
n

)
+ ωp

(
f (r),

2r − 1

n+ 2− r
x

)
for all x ∈ R+ and n > n0.

Proof. Let f ∈ Crp . We consider the Steklov means f̃
(r)
h of second order of f (r)

given by the formula (see [1], p. 317)

f̃
(r)
h (x) =

4

h2

∫ h/2

0

∫ h/2

0

{
2f (r)(x+ s+ t)− f (r)(x+ 2(s+ t))

}
ds dt

for h, x ∈ R+. We have

f (r)(x)− f̃ (r)
h (x) =

4

h2

∫ h/2

0

∫ h/2

0

∆2
s+tf

(r)(x) ds dt,

which gives ∥∥∥f (r) − f̃ (r)
h

∥∥∥
p
≤ ω2

p

(
f (r), h

)
. (3.4)

Remark that

f̃
(r+2)
h (x) =

1

h2

(
8∆2

h/2f
(r)(x)−∆2

hf
(r)(x)

)
and ∥∥∥f̃ (r+2)

h

∥∥∥
p
≤ 9

h2
ω2
p(f (r), h). (3.5)

From (3.4) and (3.5) we conclude that f̃
(r)
h ∈ C2

p if f (r) ∈ Cp.
Observe that∣∣∣A∗n,r(f (r);x)− f (r)(x)

∣∣∣
≤ Hn,r

(∣∣∣f (r) − f̃ (r)
h

∣∣∣ ;x)+
∣∣∣f (r)(x)− f̃ (r)

h (x)
∣∣∣

+
∣∣∣Hn,r

(
f̃

(r)
h ;x

)
− f̃ (r)

h (x)
∣∣∣+

∣∣∣∣f (r)

(
x+

2r − 1

n+ 2− r
x

)
− f (r)(x)

∣∣∣∣ ,
where Hn,r is defined in (3.3). Since f̃

(r)
h ∈ C2

p by the above, it follows from
Theorem 2.1 and Lemma 3.1 that

wp(x)

∣∣∣∣ 1

a(n, r)
A(r)
n (f ;x)− f (r)(x)

∣∣∣∣ = wp(x)
∣∣∣A∗n,r (f (r);x

)
− f (r)(x)

∣∣∣
≤ (M + 3)

∥∥∥f (r) − f̃ (r)
h

∥∥∥
p

+Mp,r

∥∥∥f̃ (r+2)
h

∥∥∥
p

x2

n

+ wp(x)

∣∣∣∣f (r)

(
x+

2r − 1

n+ 2− r
x

)
− f (r)(x)

∣∣∣∣
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for n > n0, n0 = max {4− 2r, p+ r − 2}. By (3.4) and (3.5), the last inequality
yields that

wp(x)

∣∣∣∣ 1

a(n, r)
A(r)
n (f ;x)− f (r)(x)

∣∣∣∣
≤Mp,r ω

2
p(f, h)

{
1 +

1

h2

x2

n

}
+ ωp

(
f (r),

2r − 1

n+ 2− r
x

)
.

Thus, choosing h = x√
n

we get the result. �
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[4] A. İzgi. Voronovskaya type asymptotic approximation by modified gamma operators, Appl.

Math. Comput. 217 (2011), 8061–8067. MR 2802217.
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