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Abstract. The problem of Lie algebras’ classification, in their different vari-

eties, has been dealt with by theory researchers since the early 20th century.
This problem has an intrinsically infinite nature since it can be inferred from

the results obtained that there are features specific to each field and dimen-
sion. Despite the hundreds of attempts published, there are currently fields

and dimensions in which only partial classifications of some families of alge-

bras of low dimensions have been obtained. This article intends to bring some
order to the achievements of this prolific line of research so far, in order to

facilitate future research.

1. Introduction

About 1870, the Norwegian mathematician Sophus Marius Lie (1842–1899) be-
gan to study some types of geometric transformations that promised to have con-
siderable relevance in the subsequent study of symmetries. No one could have
imagined at that moment the impact of his discoveries: the gestation of key tools
for the development of Modern Physics and, in particular, the Theory of Relativity.
We can currently state that Lie Theory, regarding Lie groups as well as Lie alge-
bras, has proved to be the key to solving many problems related to Geometry and
to Differential Equations, which links theoretical Mathematics to the real world.

Owing precisely to their tangible applications, scientists of different disciplines
have used specific examples of Lie algebras over different fields and in different
dimensions, everyone according to their needs. However, mathematicians are usu-
ally more interested in generality than in obtaining a few examples. That is why
it was reasonable to expect the immediate interest aroused in the mathematical
community by the apparent complexity and the amazing elegance of the new al-
gebraic structures. As shown throughout this document, hundreds of publications
attest the attempts made so far to categorize these objects. However, not only
has a general classification of Lie algebras not been reached, but the objective has
been achieved in very few families of algebras for any dimension and field. The
different strategies followed by each author have fallen by the wayside, as well as
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partial classifications given by each research group, some of them wrong and cor-
rected in subsequent articles, or discoveries used to make classification easier. We
especially point out here the search for invariants, in most cases designed to enable
a specific classification but proved useful later for other reasons, which provided
a real advance of scientific knowledge. Many studies have been written, in the
field of Lie algebras, on analysis or representation of properties. However, specific
attention will be given in this article to the issue of classifications because it would
be impossible to collect in a reasonable space all the publications related to Lie
Theory.

Even if we limit ourselves to classifications, in order to enable the subsequent
presentation of the different research lines and the achievements so far, we must
first clarify some key concepts. The first one is actually that of classification. In
Mathematics, to classify is to find a certain property allowing the definition of an
equivalence relation among the elements of a set so that this set will be divided into
disjoint classes. However, it is interesting that on finishing a classification we are
able to choose an element as representative of each equivalence class. Furthermore,
in the ideal situation it would also be useful to be able to assign in a simple way
each element to its corresponding class.

Regarding the elements we want to classify, we must not forget that every Lie
algebra is a vector space upon which a new binary operator is defined. This means
that in each case a field must be set over which a vector space is defined and, also,
that a particular dimension can be chosen for the vector space. In the case of Lie
algebras, for the reasons already suggested, additional properties distinguishing be-
tween those algebras that verify them and those which do not are often considered.
Every time such a property is described there is a chance to classify the Lie algebras
that verify it, also in every field and dimension, as happened in the general case.
Sometimes, these properties are also useful to classify wide families of algebras;
this fact supports their importance. However, the classifications generated from
the consideration of different properties are not compatible in general. This fact
makes the following description difficult and intricate sometimes.

Finally, we must make another short comment about the techniques used to
classify. Although it is not the purpose of this work to describe all the possi-
ble strategies for classifying Lie algebras, we consider it essential to recognize the
role played by computing in this field. Of course, the first classifications were not
made with the help of computers, what considerably reduced the mathematicians’
chances and significantly increased the likelihood of making mistakes. Taking into
account that the increase in dimension involves a considerably larger increment
in the complexity of the operations performed, it is logical to admit that com-
puting power, as well as the development of increasingly versatile and effective
symbolic computation packages, make possible studies that were unfeasible years
ago. Therefore, on these and other grounds, progress in the classifications of Lie
algebras is not only determined by the consideration of new families of algebras
but also because over the course of time the same problems can be tackled but in
upper dimensions.
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This article consists of four parts, apart from this introduction. The primary
classification development is described in the next section. Afterwards, we describe
the partial classifications comprising subsets of the whole collection of algebras to
be studied. Such works are completed with other classifications partially related
to the traditional Lie algebras. Finally, we present some brief concluding remarks.

2. Heart of the classifications

Classifying all Lie algebras of dimension less than 4 is an elementary exercise.
However, when considering dimension 4, complete classifications are much harder,
and subsequent classifications usually refer to subclasses. As it is already well
known, there exist three different types of Lie algebras: the semi-simple, the solv-
able, and those which are neither semi-simple nor solvable. So, determining the
classification of Lie algebras, in general, is equivalent to revealing the classification
of each of these three types. However, by the Levi–Maltsev Theorem, which is the
combination of the results formulated firstly by Levi [98] in 1905, and later by Malt-
sev [107] (note that it can also be written Malcev) in 1945: any finite-dimensional
Lie algebra over a field of characteristic zero can be expressed as a semidirect sum
(the Levi-Maltsev decomposition) of a semi-simple subalgebra (called the Levi fac-
tor) and its radical (its maximal solvable ideal). It reduces the task of classifying
all Lie algebras to obtaining the classification of semi-simple and of solvable Lie
algebras. Nevertheless, as we will see later, this procedure is not entirely valid
when dealing with fields of a given positive characteristic.

Let us consider first the standard case, over the complex and the real fields.
With respect to the first problem, the classification of semi-simple Lie algebras was
completely solved by the well-known Cartan Theorem: any semi-simple complex
or real Lie algebra can be decomposed into a direct sum of ideals which are simple
subalgebras being mutually orthogonal with respect to the Cartan-Killing form.
So, the problem of classifying semi-simple Lie algebras is then equivalent to that
of classifying all non-isomorphic simple Lie algebras; and the classification of sim-
ple Lie algebras was already obtained by Killing, Cartan, and others in the last
decade of the 19th century [44]. Hence, it can be admitted that the problem of
the classification of semi-simple Lie algebras is at present totally solved. Indeed,
mainly Killing and Cartan, although other authors also worked in this subject,
classified simple Lie algebras in five different classes (the so-called simple classical
Lie algebras): the algebras belonging to the linear special group, those odd orthog-
onal algebras, the even orthogonal algebras, the symplectic algebras, plus five Lie
algebras having no relation among them and not belonging to any of the previous
classes, which were called by the authors exceptional or exotic Lie algebras.

With respect to the classification of solvable Lie algebras, in spite of the first
attempts by Lie [99, 100] and Bianchi [27], it can be said that Dozias was one of
the first authors who faced that problem seriously, in 1963: he classified in his
Ph.D. thesis the solvable Lie algebras of dimensions less than 6 over the field of the
real numbers [57]. In this same year Mubarakzjanov (see [111, 112, 113] and [119],
too) also classified these algebras up to dimension 6 over the field of real numbers.
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Some decades later, in 1990, Patera and Zassenhaus obtained the classification of
solvable Lie algebras up to dimension 4 over any perfect field [120], and in that
same year Turkowski [161] dealt with solvable Lie algebras of dimension 6, includ-
ing the classification of the Levi decomposable algebras, which are semidirect sum
of semisimple and solvable Lie algebras (see [160, 162]). De Graaf [52], for his part,
illustrated in 2005 some ideas which can be used for obtaining a classification of
small-dimensional solvable Lie algebras and got the classification of such algebras
of 3 and 4 dimensions over fields of any characteristic, by using the computer alge-
bra system Magma and the Gröbner bases as a tool. This author showed that in
dimension 4 his classification differs slightly from the one found in [120], since he
found a few more Lie algebras. However, de Graaf’s techniques are not applicable
for a complete classification for dimension 5, and the problem of classifying all solv-
able Lie algebras is at present unsolved, and many authors think that completely
new ideas are necessary to move forward, since the number of infinite parametrized
families of non-isomorphic algebras increases drastically with the dimension (see
[145]).

Of course, there are other ways to face the problem. For instance, even in the
general case of all Lie algebras, for small dimensions, it is possible to consider
specific kinds of isomorphisms to classify. So, Morozov [110] and Vranceneau [167]
classified Lie algebras over C and of dimension less than or equal to 6 and Dixmier
[56] gave the classification over R for such dimensions. Nevertheless, it is usually
more effective any attempt through the consideration of the subsets described in the
following section. Anyway, before that, it is worthwhile emphasizing that different
approaches can be used to reach the same goal or even to present the results; this
makes the comparison of classifications a hard task.

As a way of example, let us mention that higher order generalizations of Lie
algebras have been conceived as Lie n-algebras, as L∞-algebras, or as quasi-free
differential graded commutative algebras. In this sense, the same well-known clas-
sification of complex 3-dimensional Lie algebras was given in [117], but the iso-
morphism classes were this time combined into families (strata) and ordinary Lie
algebras were interpreted as L∞-algebras; since then, a stratification of the moduli
space of 3-dimensional Lie algebras is connected with families of Lie algebras split
in two classes: jump deformations and smooth deformations. This property may
be used to ease the classifications in future, but its first effect is the introduction of
a non-comparable terminology and the generation of new challenge. We are about
to see that this situation is common to many other properties and concepts which
will be discussed from now on.

3. Classic subtypes

In the following subsections, we present an overview on some relevant subclasses
of the total set of Lie algebras. Due to their historical importance, the nilpotent Lie
algebras (and some subtypes) deserve special attention, but there are some other
classes which should be named within this section. Here we only skretch out some
concepts and the actual status of their classifications. Later we will be more explicit
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regarding historical matters and methods. Note that it is not always possible the
description of a clear timeline, above all, because the number of Lie theorists has
increased exponentially and, nowadays, their research take place simultaneously all
around the globe.

3.1. Classical and non-solvable Lie algebras. The first step in the classifi-
cation of Lie algebras was the consideration of classical Lie algebras. They were
totally outlined over C and R, but the problem is not so easy over an algebraically
closed field of characteristic different from zero. This “new” Lie theory emerged
around 1935 from the studies by Witt, who defined a simple Lie algebra (now
called the Witt algebra W1) whose behavior was totally different from the Lie al-
gebras studied till then, over C or R. Less than ten years later, Jacobson [87] and
Zassenhaus [171] put some order in these new algebras, but it was not until the
21st century when a clear classification came. In fact, [123] is a survey on these
specific classifications of simple finite-dimensional Lie algebras over algebraically
closed fields of characteristic p > 0. Roughly speaking, and being p a prime greater
than 3, the simple Lie algebras are either classical or finite dimensional Cartan
Lie type (and their deformations) or Melikyian algebras. If the characteristic is big
enough, some other interesting properties hold; for instance, for finite-dimensional
Lie algebras over an algebraically closed field of characteristic p > 7, the existence
of non-singular Casimir operators (i.e., dealing with a restricted Lie algebra) is
equivalent to the decomposition of the algebra as a direct sum of classical sim-
ple Lie algebras (see [60]). Some other interesting papers describe the Kostrikin-
Shafarevich conjecture and simple Lie algebras over an algebraically closed field,
also those of type Al, Bl, Cl, and Dl ([28, 88, 97, 108, 154]); we will see later the
generalization of these algebras to the Kac-Moody type.

Regarding these Lie algebras over finite fields, the state of the art was updated by
Premet and Strade [124] in 2007, establishing the complete classification when the
characteristic is (a prime number) greater than 3: for p ≥ 5, any finite-dimensional
simple Lie algebra is of classical, Cartan, or Melikyan type (see [151, 153]). How-
ever, the classifications in characteristics 2 and 3 are still incomplete and with re-
markable computational problems to test isomorphisms (see [53]). In some sense,
they encourage the mathematicians’ efforts. Recently, Vaughan-Lee [164] and Eick
[59] have classified all simple Lie algebras up to dimension 9 over the field with two
elements (Z/2Z).

In the knowledge edge, lots of attempts are directed to get original ideas to
understand the old structures whereas others are looking for new formal entities
to which one can reproduce the known properties. So, some authors have tried the
inclusion of a new operation in the Lie algebra, sometimes expecting more chances
to obtain a proper classification. Although we will deal with this topic later, a
specific example is constituted by the restricted Lie algebras. The classification
of simple restricted Lie algebras was obtained in [28] and the one of simple (not
necessarily restricted) Lie algebras of characteristic p > 7 in [150].

Another strategy could be to take into account different divisions in the total
set of Lie algebras, and to classify one of these subsets. This is the case of the
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irreducible quasi-simple Lie algebras (or extended affine Lie algebras). Basically,
the extended affine Lie algebras are simple Lie algebras or affine Lie algebras or
toroidal Lie algebras. The classification of these algebras was given in Allison et
al. [3] in 1997.

The researchers can also consider known types of algebras and analyzing them
in depth or combining them with other types to classify the elements belonging to
all of them simultaneously. In the case of symplectic Lie algebras (one of the five
simple types), which admit affine structures, Ovando [118] gave the classification
of real 4-dimensional symplectic Lie algebras, completing the result from [109].
On the other hand, when considering this type together with others, some more
recent classifications emerged. The classification of (complex) symplectic charac-
teristically nilpotent Lie algebras was given by Burde in [36] up to dimension 10.
And Campoamor determined in [40] all the six-dimensional real solvable and non-
nilpotent Lie algebras endowed with a symplectic form that decompose as the direct
sum of two ideals or are indecomposable solvable algebras with a four-dimensional
nilradical (i.e., its maximal nilpotent ideal). And as a new result, the set of all
semisimple involutory Lie algebras was classified in [82].

Given a Lie algebra, the centralizer of a subalgebra is constituted by the elements
in the algebra which commute with all the elements in the subalgebra. [94] classified
all finite dimensional Lie algebras over an algebraically closed field of characteristic
0, whose nonzero elements have Abelian centralizers. This type of algebras is called
commutative transitive, and they are neither simple nor solvable.

Despite their theoretical (and sometimes practical, too) interest, these above
classifications did not produce significant progress in the traditional ones. More-
over, the appearance of these non-classical types of algebras generates new chal-
lenges when studying algebras closely related to them. For instance, quasiclassical
Lie algebras are finite-dimensional non-semisimple Lie algebras which can be ob-
tained as Lie algebras of skew-symmetric elements of associative algebras with
involution. Indecomposable quasi-classical Lie algebras of dimension n ≤ 9 which
have a non-trivial Levi subalgebra were obtained in [39]. Additionally, solvable
indecomposable quasi-classical Lie algebras of dimension n ≤ 6 were also classified
in [39]. Obviously, this point is not a finishing line, but a crossroad where new
possibilities emerge.

Partially due to the difficulties of obtaining a complete classification of solvable
Lie algebras, some authors considered the idea of a classification of solvable exten-
sions of certain classes of Lie algebras (we will come back to the extensions later).
In particular, the most relevant were the analysis of all solvable, non-nilpotent alge-
bras with a given nilradical. So, Rubin and Winternitz started a research line (see
[130, 114, 157, 147, 148, 146]) which has been dealing with the classification of solv-
able Lie algebras with a given nilradical, such as the Abelian algebras (also called
1-step as we will deduce later), the Heisenberg algebras, the algebras of strictly
upper triangular matrices, and so on (for arbitrary finite dimensions).

The traditional way of facing the problem is not finished, either. In these last
years, many specialists have been working on the classifications and the ideas of
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those classical types. So, Turkowski [162] gave in 1992 the classification of 9-
dimensional real Lie algebras neither being semi-simple nor solvable and not de-
composable as a direct sum of algebras of lower dimension (this classification was
completed by Campoamor in [38]). Nowadays, there exists the opportunity of en-
riching the traditional ideas with the newest. So, in 2007, Strade classified [152] all
non-solvable Lie algebras up to dimension 6 over any finite field by using methods
from the classification of finite-dimensional simple Lie algebras over algebraically
closed fields of prime characteristic.

Finally, there is still the main open problem: the classification of the most
significant part of the whole set of Lie algebras. The following statement, quite
recent, may provide us with a clue: The classification of non-degenerate solvable
Lie algebras of maximal rank (over a field of characteristic zero) can be reduced
to classifying a nilpotent Lie algebra of maximal rank (see [172]), and this latter
classification was given by Santharoubane [133]. Next we face the core of this issue.

3.2. General nilpotent Lie algebras. The previously cited Malcev [107] had
already reduced in 1945 the classification of complex solvable Lie algebras to the
classification of one subset, the nilpotent Lie algebras. To do it, Malcev defined
a particular type of algebra, that he called splittable algebra, whose structure is
completely determined from its maximal nilpotent ideal and proved that an arbi-
trary solvable Lie algebra is contained in a unique minimal splittable algebra. The
relation between an algebra and its splittings led him to the construction of all
solvable Lie algebras with a given splitting. So, in this way, the classification of
all solvable Lie algebras had been reduced to the classification of the nilpotent Lie
algebras.

With respect to the classification of nilpotent Lie algebras, many attempts have
been made on this topic, and lots of lists of algebras have been published with
bigger or less fortune. The earliest one was given by an Engel’s pupil, Umlauf, who
classified in 1891 all the nilpotent Lie algebras up to dimension 6 over the field
of complex numbers [163]. He observed that there only exists a finite number of
them, although when studying dimensions 7, 8, and 9 he found that they appeared
some infinite families of such algebras. Long after Umlauf, several authors dealt
with this type of algebras, trying to get its classification. So, in the decade of the
fifties in the 20th century, Vranceanu [167], in 1950, and Chevalley, Morosov, and
Dixmier, in 1957, can be cited. In particular, Dixmier [56] classified in 1957 the
nilpotent Lie algebras over a commutative field up to dimension 5, and in this same
year Morosov [110], by using the method of nilpotent elements of semi-simple Lie
algebras, previously introduced by himself around 1940, classified the nilpotent Lie
algebras over the field of complex numbers up to dimension 6, and made a first
attempt to classify, also, the nilpotent Lie algebras of such a dimension over the field
of real numbers (and any other field of characteristic zero). Their classifications
depend heavily on the property that a nilpotent Lie algebra of dimension n contains
a maximal Abelian ideal of dimension greater than 1

2 ((8n + 1)
1
2 − 1).

Vergne and Safiullina are mainly who made in the decade of the sixties of the
20th century the biggest efforts in the search of the classification of these nilpotent
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algebras, getting notable results in many cases. So, Safiullina, in 1964, used the
previously cited Morozov’s approach to supply new results related to the classifica-
tion of complex nilpotent Lie algebras of dimension 7 (see [131]), although it was
really Vergne, in 1966, who gave a great impulse to the study of these algebras
in her Ph.D. thesis [165], later published in [166] (we will come back to this work
later). Indeed, Vergne not only obtained the complete classifications of nilpotent
Lie algebras of dimension less than 7 over the real and complex fields, but intro-
duced the filiform Lie algebras, which constitute the most structured subclass into
the nilpotent Lie algebras. In fact, Vergne showed that the variety of nilpotent Lie
algebras of a given dimension n has an irreducible component of dimension exceed-
ing n2 consisting entirely of Lie algebras of maximal class. Thus Lie algebras of
maximal class are rather abundant and may not be easily classified. Apart from
the group Bourbaki [30], other authors who also dealt in this decade with nilpo-
tent Lie algebras were Chong Yun Chao and Shedler. The first one proved that
there exist uncountably many non-isomorphic nilpotent real Lie algebras for any
given dimension n ≥ 10 and that there exist uncountably many non-isomorphic
solvable and non-nilpotent real Lie algebras for any given dimension n ≥ 11 (see
[47]). On the other hand, Shedler, in his Ph.D. thesis [140], reached a classification
of nilpotent Lie algebras of dimension 6 over any field.

Continuing with the 20th century, there are also several authors in the decade
of seventies that dealt with the classification of the nilpotent Lie algebras. Among
them, we highlight Favre [61] and Gauger [72] in 1973, de la Harpe [55] in 1974, and
Skjelbred and Sund in 1977. Specifically, Favre introduced the concept of system
of weights of a Lie algebra and used it to study the class of nilpotent Lie algebras
for which such a concept is particularly well adapted. For his part, Gauger gave a
method to study nilpotent Lie algebras as quotiens of free nilpotent Lie algebras.
Skjelbred and Sund, by their own, classified real nilpotent six-dimensional Lie
algebras in [144], and later, in [143], improved their results by constructing all
nilpotent Lie algebras of dimension n given those algebras of dimension n − 1
and their automorphism groups. However, it is not until the next decade when it
occurred another great advance in the study of the classification of nilpotent Lie
algebras. So, in 1981, Beck and Kolman [22] gave the classification of nilpotent Lie
algebras of dimension 6 over the field of the real numbers; later, in 1983, Cerezo [45]
classified both real and complex nilpotent Lie algebras of dimension 6, and in this
same year Nielsen [115] compared the classifications of Morozov, Vergne, Skjelbred
and Sund, and Umlauf, and gave for the first time a complete and non-redundant
list for nilpotent Lie algebras of dimension 6 over the field of the real numbers.

In 1986, Magnin [105] studied the classification of real nilpotent Lie algebras
of dimension 7 and two years after Romdhani [129] also got the classification of
complex and real nilpotent Lie algebras of the same dimension. To do it, he only
used the elementary techniques of Linear Algebra, and excluded all algebras which
decompose into a direct sum of lesser-dimensional factors.

In 1989 Ancochea and Goze [10], by using a new invariant of filiform Lie algebras
introduced by themselves, namely the characteristic sequence, got an incomplete
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classification of the nilpotent Lie algebras of dimension 7. It is convenient to note
that Seeley [137] also classified the complex nilpotent Lie algebras of dimension
6 and 7, following a previous similar project in dimension 5 by Grunewald and
O’Halloran [81], and by using the Iwasawa decomposition for GL6(C). Some years
later, Goze and Remm [80] would rectify the classification given in [10] (another
verification of these lists has been published in [106]).

In 2007, de Graaf [53] retook the comparison of all the classifications of the nilpo-
tent 6-dimensional Lie algebras. Note that Morozov [110] and other authors gave
their classifications over a field of characteristic zero, whilst de Graaf analyzed
them over any field of characteristic different from 2. In fact, when considering
finite fields, the evolution of these classifications appreciably differs from the de-
scribed above. They are universally accepted up to dimension 5, and Schneider
[136] classified all nilpotent Lie algebras of dimension 6 and 7 over the finite fields
with characteristic 2, 3, and 5, by using the software GAP. Additionally, he gave
all nilpotent Lie algebras of dimension 8 and 9 over the field with two elements
(Z/2Z). Finally, as we commented before, and by using Gröbner bases, de Graaf
[53] obtained his constructive classification for dimension 6.

It can be of interest noting that all the previous lists of nilpotent Lie algebras
were obtained by using different invariants. By introducing a new invariant, Carles
[43] compared in 1989 the list of Safiullina, Romdhani, and Seely, and observed
some mistakes in all of them. Later on, in 1993, based on his own Ph.D. thesis and
on these results by Carles, Seeley [138] published his list over complex field. Other
contributions to this subject were made by Tsagas [158], who classified in 1999 the
real nilpotent Lie algebras of dimension 8, and this same author, together with
Kobotis and Koukouvinos [159], who dealt with those real nilpotent Lie algebras
of dimension 9 having a maximum Abelian ideal of dimension 7. Since then, the
classifications of both real or complex nilpotent Lie algebras of dimension greater
and equal to 8 have not been obtained, in spite of the frequent attempts made
by several authors to get them. So the problem is unsolved at present and it has
made that other subjects related with these algebras are being now considered. To
that respect, it is quite significative the opinion of some experts, like Shalev and
Zelmanov [139], who think that it is already not possible to obtain in an explicit
way the classification of nilpotent Lie algebras of bigger dimensions. Anyway, it
is really true that in order to continue studying the problem of classifying Lie
algebras, in general, it is totally necessary to use the computer and a systematic
approach; logically, the more the computer is involved, the more systematic the
methods have to be.

3.3. Some specific nilpotent Lie algebras. A lot of progress has been made in
the study of other classifications concerning some particular properties of nilpotent
Lie algebras. For instance, if we refer to filiform Lie algebras over a field of complex
numbers, we have to cite several works following the seminal paper by Vergne [165].
Firstly, Ancochea and Goze [9] already reached in 1988 the classification of complex
filiform Lie algebras of dimension 8. However, this list of algebras was incomplete
and the authors rectified it themselves in 1992 [11], almost at the same time as
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Seeley [137], although in an independent way. In 1991, Gómez classified those
of dimension 9 in his Ph.D. thesis, later published by Echarte (his adviser) and
himself in [58], and Boza, Echarte, and Núñez [31] those of dimension 10 in 1994.
Later, Gómez, Jiménez, and Khakimdjanov [75], in 1996, gave the classification
of these algebras on dimension 11 as well as some corrections of previous classifi-
cations. Benjumea et al. [25] also tried to tackle bigger dimensions by obtaining
in 1996 the laws of the filiform Lie algebras of dimension 13 and 14. Regarding
the explicit lists, Boza, Fedriani, and Núñez [32] got in 1998 the classification of
complex filiform Lie algebras of dimension 12, and also showed in 2003 ([34]) an
explicit classification of such algebras of dimension 11, in a different way as the one
used in [75]. Although [33] supplied a method valid for every dimension over the
complex field, the computations that involves are too hard to be nowadays tacked
successfully.

As it was explained before for other classes, some subsets of the filiform Lie
algebras have also been studied. In this sense, as a recent illustration, Bosko
computed in [29] all the filiform Lie algebras (called in the paper as of maximal
class) for the Schur multiplier t(g) ≤ 16, in both the complex and real fields.
This type of algebras does not exist for dimension 14, 15, and 16. Remember
that in mathematical group theory, the Schur multiplier (or Schur multiplicator)
is the second homology group H2(G,Z) of a group G. And notice that the Schur
multiplier of the Lie algebra has also been used in [116] to classify nilpotent Lie
algebras in general.

We would like to cite here some authors who have got partial classifications
concerning other particular properties of nilpotent Lie algebras. Let us start with
a special subset within the nilpotent class, the constituted by the metabelians, Lie
algebras whose nilpotency index is p = 2. These algebras are also called 2-step,
because its nilpotency sequence is zero for g2 (as g1 = g, the proper algebra, this
means that its derived algebra is null). According to this agreement, the filiform
Lie algebras of dimension 2 are also 2-step algebras (and on dimension n, the fili-
form Lie algebras are n-step). Summarizing, Scheuneman [135], Gauger [72], Revoy
[127], and the previously cited Fernández and Núñez classified the 2-step nilpotent
Lie algebras in 1967, 1973, 1980, and 2001, respectively. The more recent classi-
fication of 2-step nilpotent Lie algebras (over C) is obtained in [126]: there, the
five non-isomorphic algebras are indecomposable. Moreover, the classification of
low-dimensional (metabelian) nilpotent Lie algebras, over arbitrary fields (includ-
ing the characteristic 2 case) can be found in [155]. Finally, the classification of
metabelian Lie algebras g of type FPm, under the additional assumption that g is
a split extension of Abelian Lie algebras, was completed in [95]. With respect to
the complex (n− 3)-filiform Lie algebras, they were classified in [37].

Secondly, let us pay attention to those researches dealing with characteristically
nilpotent Lie algebras, which were introduced by Dixmier and Lister in 1957 [56],
as the nilpotent Lie algebras whose derivations are all nilpotent. Some character-
istically nilpotent algebras are also metabelian. Besides, all the filiform algebras
non-derived from a solvable are also characteristically nilpotent. But there are
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characteristically nilpotent algebras which are neither metabelian nor filiform. A
very interesting monograph on these algebras, where its historical evolution was
commented, can be consulted in [4]. A particularly relevant algebra within this
case is the so-called algebra of Bratzlavsky, which appeared in dimension 6.

Let us consider now the central commutator ideal as a way to classify nilpotent
algebras. Gauger [72] classified nilpotent Lie algebras of 2-dimensional central com-
mutator ideals over an algebraically closed field of characteristic different from 2.
In [21], this classification was extended to the case of any arbitrary field K. Fur-
thermore, when K was real closed, a list with all these algebras up to dimension
11 was given. On the other hand, the classification of nilpotent Lie algebras with
2-dimensional non-central commutator ideals over any field has been published in
[21]. However, the problem of classifying Lie algebras over a field of characteristic
different from 2 with central commutator subalgebra of dimension 3 is “hopeless”,
also called “wild” (see [23]).

Delimited by the multipliers, all nilpotent Lie algebras g such that t(g) ≤ 6 was
classified in [84]. Then, a classification for t(g) = 7, 8 was given in [83].

Kath determined in [92] the admissible nilpotent Lie algebras, i.e., all the nilpo-
tent Lie algebras g with dim[g, g] = 2. In [170], the studied algebras were those g
nilpotent such that dim(g′/g′′) = 3 and g′′ 6= 0 (where g′ = [g, g] and g′′ = [g′, g′]).
There, g was decomposed as the central direct sum of ideals H and U . The classifi-
cation of U is easily seen to be given by the direct sum of a generalized Heisenberg
Lie algebra and an Abelian Lie algebra, and the classification of H over the complex
field was given in the paper.

Other research groups have studied similar topics, but considering solvable ex-
tensions of nilpotent Lie algebras. They are solvable Lie algebras with a specific
n-dimensional nilradical Nn−2 (of degree of nilpotency n− 1 and with an (n− 2)-
dimensional maximal Abelian ideal). Given n, such a solvable algebra is unique
up to isomorphisms. Another way of facing these extensions is provided by the
graded Lie algebras. There are other possibilities of incorporating a new operation
to the algebra, but this issue is pertinent here because it can be used to classify
the algebras through their nilradicals, as we are about to see.

A graded Lie algebra (or color Lie algebra) is a Lie algebra endowed with a
gradation which is compatible with the Lie bracket, this is, a Lie algebra which is
also a non-associative graded algebra under the bracket operation. For example,
a choice of Cartan decomposition endows any semisimple Lie algebra with the
structure of a graded Lie algebra, and any parabolic Lie algebra is also a graded
Lie algebra. Graded Lie algebras became a topic of interest in Physics in the
context of “supersymmetries”, while in Mathematics they have their main place in
the context of deformation theory. In the field of Lie Theory, graded algebras came
hand in hand with the analysis of irreducible component (a very interesting issue,
but out of the scope of this paper).

The first systematic results on naturally graded nilpotent Lie algebras were
indeed obtained when studying the variety of nilpotent Lie algebra laws. Then
they eased the first estimation on the number of irreducible components of the
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variety with the introduction of filiform Lie algebras in [166]. There exist only two
naturally graded models with the maximal nilpotence index, namely Ln and Qn

(and the latter only in even dimensions). This is, every n-dimensional naturally
graded filiform Lie algebra is isomorphic to Ln or Qn (see [166]). By the way, the
non-existence of Qn in odd dimensions gave even more theoretical attractiveness
(see [5]) to the topic, although the publications here have only developed already
in the 21st century. The only selected attempt on this issue during the last century
was due to Goze and Khakimdjanov, who gave in [79] the complete classification of
graded (not necessarily naturally graded) filiform Lie algebras. On the other hand,
the naturally graded complex nilpotent Lie algebras of characteristic sequence (n−
2, 1, 1) (also called naturally graded quasi-filiform, where n is the dimension of the
algebra) were classified in [70] (correcting the classification previously published in
[74]). A complete classification of the quasifiliform Lie algebras admitting a nonzero
diagonalizable derivation was presented; however, some pathological algebras were
missing in those classifications and being found in [7].

The whole class of complex Lie algebras having a naturally graded nilradical
with characteristic sequence (n − 2, 1, 1) has been recently classified in [7]. Note
that not all these algebras are solvable. The solvable Lie algebras having either Ln

or Qn as nilradical were classified in [147, 5]. And the solvable Lie algebras having
a nilradical of the type Ln⊕C (which corresponds to one of the two possible decom-
posable quasi-filiform naturally graded algebras) were classified in [169], following a
similar procedure to that of [147]. Wang et al. [169] compute all finite-dimensional
indecomposable complex solvable Lie algebras having Nn,1 ⊕C as nilradical. Note
that this nilpotent Lie algebra is naturally graded and also quasifiliform. For his
part, Campoamor, a very active author in this field during these last years, clas-
sified in [41] the solvable Lie algebras (both in the complex and real fields) with
an N-graded nilradical of maximal nilpotency index. And in [7], the authors have
classified the solvable Lie algebras with an indecomposable radical of arbitrary di-
mension, starting from their derivation algebra. Then, they classify the solvable
Lie algebras having a decomposable quasi-filiform naturally graded nilradical using
the classification of indecomposable nilradical.

According to the accepted notation, a quasi-filiform Lie algebra is a Lie algebra
of dimension n and of nilpotency class n − 2. Completing previous results, [71]
classified all naturally graded and even-dimensional quasi-filiform Lie algebras. On
the other hand, the classification of solvable Lie algebras having filiform (i.e., of
maximal nilindex) naturally graded Lie algebras was started in [147] and completed
in [5]. A complete classification of all solvable Lie algebras with n-dimensional
nilradical which is nilpotent of nilindex n− 3 was given in [146]. For real solvable
Lie algebras with nilradical Q2k, a complete classification was reached in [5]. Other
authors dealt with classes like naturally graded nilradicals with maximal nilindex
and a Heisenberg subalgebra of codimension 1 [5], a specific sequence of quasi-
filiform nilradicals [169], or all solvable extensions of N-graded filiform nilradicals
[41].
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In [86], one can find a classification of seven-dimensional solvable Lie algebras
with nilradical of minimal dimension four. Note that the nilradical of a solvable
Lie algebra of dimension n has dimension at least n

2 (see [86]).
More or less at the same time, the explicit classification of complex graded

quasi-filiform Lie algebras of length n− 1 was given in [76] (for dimension n ≤ 15)
and [78] (for n > 15). These papers went beyond the classification of complex
graded quasi-filiform Lie algebras when the length is maximal (i.e., the length is
dim(g) = n), which was obtained in 2001 by Gómez, Jiménez, and Reyes [77].

Three-dimensional color Lie algebras are essentially graded as Lie color algebras
by groups larger than Z2. Their classification was given in [141, 142] and presented
in terms of commutation relations between generators.

A particular class of five-dimensional real solvable Lie algebras is introduced and
classified in [168]: those whose coadjoint orbits are only orbits of zero and maximal
dimension, and whose derived ideal is three-dimensional and commutative.

Lu classified in [104] the finite-dimensional complex solvable Lie algebras with
non-degenerate symmetric invariant bilinear form.

4. Generalizations

As we have commented before, the historical development of classifications of
Lie algebras has led to multiple changes of direction. The structures analyzed may
be similar to the original, but sometimes the differences focus on the additional
structures imposed, or on the generalization (mainly towards the infinite case), or
on other concepts related to the main topic. Each of the following subsections is
devoted to one of these three aspects.

4.1. Additional structures over Lie algebras. We are now considering opera-
tions which are “compatible” with the bracket product. The works developed till
now seem to be quite indicative of the kind of research that classifications involve.
We are trying to take a picture of the current state of the art.

Metric Lie algebras are those having non-degenerate invariant inner product
(invariant symmetric bilinear form). In 2006, Kath and Olbrich [93] gave a complete
classification of metric (real) Lie algebras of index 3, whereas the classification of
all nilpotent indecomposable metric Lie algebras up to dimension 10 was given in
[92].

A Frobenius Lie algebra is a Lie algebra equipped with a non-degenerate skew-
symmetric bilinear form that is a coboundary. Csikós and Verhóczki [50] gave in
2007 a classification of Frobenius algebras of dimension 4 over a field of charac-
teristic different from 2 and of dimension 6 over an algebraically closed field of
characteristic zero.

In 2008, Diatta [51] gave a list of 24 families of indecomposable 5-dimensional
solvable Lie algebras that admit a left-invariant contact 1-form. After determining
the indecomposable solvable Lie algebras that have both a contact structure and a
hypo structure, the complete classification of solvable Lie algebras of dimension 5
having a hypo structure was given. In fact, the solvable Lie algebras that admit a
hypo structure were classified in [48]. The hypo structures are the SU(2)-structures
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induced naturally on orientable hypersurfaces of Calabi-Yau manifolds of (real)
dimension 6.

Regarding the Lie algebras admitting a complex product structure, we would
like to recall that product structures on manifolds have been considered by many
authors from different points of view. In 2008, [12] gave a complete classification
of 6-dimensional nilpotent Lie algebras admitting a complex product structure.

In 2010, a classification of all pseudo-Riemannian Lie algebras of dimension 4
(for any field of characteristic different from 2) was given in [46].

In 2011, the authors of [96] have given a classification of non-Abelian Lie algebras
satisfying that PM is a singleton. Note that PM is the quotient of the set of all
inner products on the Lie algebra up to isometry and scaling.

The following type has some more history. According to [122], the Lie algebras
with Abelian complex structures correspond to 2-step solvable Lie algebras (i.e., the
metabelian ones). This fact already justifies the interest of their classification, also
in the real field, since a classification for the algebras with Abelian structures imply
a partial classification of the metabelian class. In fact, real nilpotent Lie algebras
admitting complex structures and Abelian complex structures were studied in [49]
and [132], respectively, giving the corresponding classification for dimension 6. The
4-dimensional solvable real Lie algebras admitting an Abelian complex structure
were already listed in [149], and later 6-dimensional real Lie algebras (in general)
admitting an Abelian structure have been classified in [13].

In 1985, Filippov [69] introduced the theory of n-Lie algebras; it was based
on the (2n − 1)-fold Jacobi type identity. He also gave a classification for n-Lie
algebras of lower dimensions (i.e., the dimension is here at most n + 1) over a
field of characteristic zero. Some years later, Ling [101] proved that there is a
unique (n + 1)-dimensional simple n-Lie algebra, for any n greater than 2, over
any algebraically closed field of characteristic zero. Already in the 21st century,
the papers dealing with this topic have increased several times over. Rui-Pu Bai is
one of the most active researchers in this research line. His more recent papers are
the following: In [16], it was given the classification of all solvable 3-Lie algebras
with the m-dimensional filiform 3-Lie algebra N (m ≥ 5) as a maximal hypo-
nilpotent ideal. By using the “realization” theory, all the complex 3-Lie algebras
in dimension less than or equal to 5 are obtained in [15]. The corresponding one
for the field of characteristic 2 was given in [19]. A complete classification of six
dimensional 4-Lie algebras over a complete field of characteristic zero was given in
[17]. After some attempts by several authors, the complete classification of (n+1)-
dimensional n-Lie algebras over an algebraically closed field of characteristic 2 was
given in [20]; they also described the solvability and nilpotency of these algebras.
Other authors have also contributed to the recent development of the topic. So,
the classification of (n + 3)-dimensional metric n-Lie algebras was given in [73],
while the one of the (n + 2)-dimensional metric n-Lie algebras in [125]. Finally, a
complete classification of (n + 2)-dimensional n-Lie algebras over an algebraically
closed field of characteristic zero has been given in [18].
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4.2. Infinite Lie algebras. A Lie algebra is said to be infinite whenever its un-
derlying vector space is infinite-dimensional. This concept has helped the scientific
community broaden both the viewpoint and the target. For example, [102] studied
the structure of infinite dimensional solvable filiform Lie algebras over C. Accord-
ing to this paper, all the solvable infinite-dimensional filiform Lie algebras belong
to a generalization of the Bratlazki’s algebras.

Before facing a well-structured kind of infinite algebra, let us choose another
example. A non-associative algebra is called automorphic if it admits a group of
automorphisms which transitively permutes its one-dimensional subspaces. Ac-
cording to Kac’s handbook [90], automorphic Lie algebras are infinite dimensional
Lie algebras generalising graded Lie algebras. The study of automorphic algebras
(associated to the dihedral group Dn) started from the finite dimensional algebra
sl2(C), whose classification was completed in [103].

4.2.1. Cartan type and Kac-Moody algebras. The introduction of the Kac-Moody
algebras by Kac and Moody, in 1968, undoubtedly produced a different (but com-
plementary) research line in the study of the classifications of nilpotent Lie algebras.
Note that these Kac-Moody algebras are of infinite dimension, in general, and con-
stitute a generalization of the semi-simple Lie algebras. By using the system of
weights previously introduced by Bratzlavski [35] in 1972 and Favre [61] in 1973,
Santharoubane canonically associated in 1982 a Kac-Moody algebra g(A) with each
finite nilpotent Lie algebra g. Then it is said that g is of the type A, and this fact
was used to reduce the problem of classifying all nilpotent Lie algebras to obtain
the classification of the Kac-Moody algebras of each type (see [134]).

The first family of Kac-Moody algebras are the simple Lie algebras of types Al,
Bl, Cl, and Dl, with l ≥ 1, l ≥ 2, l ≥ 3, and l ≥ 4, respectively. These algebras
were first dealt with by Favre and Santharoubane [62]. Later, other authors made
their research on other types of these algebras. So, the types E6, E7, and E8 were
studied by Agrafiotou and Tsagas in [2], and the type F4 by Favre and Tsagas
[63]). The second family of Kac-Moody algebras is formed by affine Lie algebras.

Santharoubane studied in 1982 [133] those of rank 2 and of the types A
(1)
1 and A

(2)
2 ,

and Kanagavel dealt in [91] with the non-twisted affine algebras of rank 3 and of

the types A
(1)
2 , B

(1)
2 , and G

(1)
2 . Later, Agrafiotou [1] studied the nilpotent Lie alge-

bras of maximal rank and the Kac-Moody algebras of the type D
(1)
5 . Afterwards,

Fernández and Núñez, between the years 2000 and 2002, got the classification of
the metabelian nilpotent Lie algebras of maximal rank [65] and of the Kac-Moody

algebras of types F
(1)
4 [66] and E

(1)
6 [67]. Finally, Fernández [64] got the classifica-

tion of the nilpotent Lie algebras of maximal rank and the Kac-Moody algebras of

the type D
(3)
4 .

Among the implications of the Kac-Moody theory, let us highlight just one. Real
forms of complex affine Lie algebras can be almost split or almost compact. The
“split” were classified in 1995 for affine Kac-Moody Lie algebras by Back et al. [14],
whereas the classification of the second set was obtained in 2003 by Ben Messaoud
and Rousseau [24].
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4.3. Other related concepts. At this point, it would not be needed to remember
that a Lie algebra g is a vector space V endowed with an alternating bilinear
product which satisfies the Jacobi identity. Sometimes, the algebras come from
the study of Lie groups, such as the ones of operators (see, for example, [54]).
Anyway, as we have seen, g can be studied from many different points of view, and
making use of a number of properties, invariants, superstructures, etc. In order
to understand the classifications in the Lie Theory, one has to be aware of the
multiple approaches than can be assumed. We have only mentioned some concepts
that have shown to be useful with the purpose of classifying Lie algebras, but there
are many others, like the representations of Lie algebras (which admit their own
classifications). Next we are revising the last concepts that we consider convenient
to get an idea of the real situation.

Let us start with the rigid Lie algebras. To define them, it is convenient the
consideration of the linear group GL(V ), the space of all alternating bilinear forms
over V , and their orbits; but roughly speaking one can say that a Lie algebra g
is rigid if any Lie algebra g′ “close” to g is isomorphic to g. A classification of
real rigid solvable algebras of dimension 8 was published in [6]. The same authors,
jointly with Goze, gave in [8] the real solvable Lie algebras of dimension less than or
equal to 8 that are algebraically rigid. Additionally, [121] included the classification
of (complex) strongly rigid solvable Lie algebras up to dimension 6.

Let us continue with the Lie superalgebras. They are (non-associative) Z2-graded
algebras, defined over a commutative ring (typically R or C) and whose product
(called the Lie superbracket or supercommutator, satisfies two conditions analogous
to the usual for Lie algebras with grading. Just as for Lie algebras, the universal
enveloping algebra of the Lie superalgebra can be given by a Hopf algebra structure.
Note that the even subalgebra of a Lie superalgebra forms a (normal) Lie algebra
as all the signs disappear, and the superbracket becomes a normal Lie bracket. Kac
was the person who gave relevance to Lie superalgebras for the first time [89]. He
wrote the complete classification of simple (finite-dimensional) Lie superalgebras
that are not Lie algebras over an algebraically closed field of characteristic 0. Then,
a number of mathematical physicists became interested in these objects because of
their many possible physical interpretations. In [85], a complete classification of
real and complex Lie superalgebras g0 ⊕ g1 is given when g0 is a 3-dimensional Lie
algebra and g1 is itself g0 under the adjoint representation.

Let us consider a graded Lie algebra (graded by Z or N, say) which is anticom-
mutative and Jacobi in the graded sense. Then this algebra has also a Z2 grading.
This grading is usually said to “roll up” the algebra into odd and even parts, but is
not referred to as “super”. With respect to the more relevant classifications, there
are only three N-graded Lie algebras of maximal class (infinite-dimensional filiform
Lie algebras), up to isomorphism [139]. And the infinite-dimensional N-graded Lie
algebras with 1-dimensional homogeneous spaces and two generators over a field
of characteristic zero were classified by Fialowski [68] in 1983. Up to isomorphism,
there also exist three such algebras.
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A K-algebra is called kinematic (or kinematical or quadratic) if the following
condition holds for every element X in the algebra: X2 ∈ K + KX. Kinematic
algebras which appear in the framework of Lie superalgebras or Lie algebras of
order 3 were classified in [42]. In this same paper, the supersymmetric and Lie
algebras of order 3 extensions of the De Sitter algebra, of the Poincaré algebra, and
of the Galilei, the Carroll, and the Newton algebras were derived and classified.

To put an end to this list of related concepts, let us enumerate three more papers
that we estimate may be completed soon. In 2007, [156] provided a complete
classification of elementary Lie algebras over a field which is algebraically closed
and of characteristic different from 2 or 3. In 2009, [26] gave a complete list of
all simple Lie algebras of absolute toral rank two (over an algebraically closed field
of prime characteristic p > 3); a later application yields a crucial characterization
of the Melikyan algebras, completing the classification. In 2010, by using adjoint
representation, all complex and bi-Hermitian structures were classified on four-
dimensional real Lie algebras in [128].

5. Conclusion

After a long journey throughout the history of the classification of Lie algebras it
is possible to adopt different attitudes. On the one hand, some will particularly look
at the weaknesses: the inherent challenges of the problem, the frequent mistakes
made or the impossibility of reaching a complete solution in a reasonable time.
However, it is also possible to look at the positive aspects: the wealth of examples
provided, the utility of their applications and partial successes due to the efforts of
many mathematicians, some of them world-leading scholars.

In this historic moment in which scientific progress is simultaneously achieved
in the most distant parts of the world, we think it is convenient to perform an
analysis of achievements so far, what is still to be accomplished and even to be
raised. In the area under our consideration, Lie algebras’ classifications remain
a challenge for human intelligence, as no strategy seems to have proved sufficient
to solve the problem as a whole. The topicality of their applications and the
mathematician’s own pride are good reasons to trust that in the coming years
discoveries will continue to take place to complete those already published, but
they will have to be collected in another survey.

References

[1] X. Agrafiotou, “Nilpotent Lie algebras of maximal rank and of Kac-Moody type D
(1)
5 ”, to

appear.

[2] X. Agrafiotou, G. Tsagas, “Nilpotent Lie algebras of maximal rank and of type E6, E7,

E8”, to appear.

[3] B.N. Allison, S. Azam, S. Berman, Y. Gao, A. Pianzola, “Extended affine Lie algebras and
their root systems”, Mem. Amer. Math. Soc. 126:603 (1997).

[4] J.M. Ancochea, R. Campoamor, “Characteristically nilpotent Lie algebras: A survey”,
Extracta Mathematicae 16:2 (2001), 154–210.

Rev. Un. Mat. Argentina, Vol. 54, No. 2 (2013)



92 L. BOZA, E. M. FEDRIANI, J. NÚÑEZ, AND Á. F. TENORIO
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Thèse de 3e Cycle, Falculté des Sciences de Paris, 1963.
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(2006), 419–434.

Rev. Un. Mat. Argentina, Vol. 54, No. 2 (2013)



A HISTORICAL REVIEW OF THE CLASSIFICATIONS OF LIE ALGEBRAS 97

[119] J. Patera, R.T. Sharp, P. Winternitz, H. Zassenhaus,“Invariants of real low dimensional Lie

algebras”, J. Mathematical Phys. 17 (1976), 986–994.

[120] J. Patera, H. Zassenhaus, “Solvable Lie algebras of dimension ≤ 4 over perfect fields”,

Linear Algebra Appl. 142:1 (1990), 1–17.

[121] T. Petit, “On the strong rigidity of solvable Lie algebras”, in: Noncommutative Algebra
and Geometry, 162–174, Lect. Notes Pure Appl. Math. 243, Chapman & Hall/CRC, Boca

Raton, 2006.

[122] A.P. Petravchuk, “Lie algebras decomposable into a sum of an Abelian and a nilpotent
subalgebra”, Ukrainian Math. J. 40 (1988), 331–334.

[123] A. Premet, H. Strade, “Classification of finite dimensional simple Lie algebras in prime

characteristics”, in: Representations of algebraic groups, quantum groups, and Lie algebras,

185–214, Contemp. Math., 413, Amer. Math. Soc., Providence, RI, 2006.

[124] A. Premet, H. Strade, “Simple Lie algebras of small characteristic. V. The non-Melikian

case”, J. Algebra 314:2 (2007), 664–692.

[125] M. Ren, Z. Chen, K. Liang, “Classification of (n + 2)-dimensional metric n-Lie algebras”,

J. Nonlinear Math. Phys. 17:2 (2010), 243–249.

[126] B. Ren, L. Zhu, “Sheng Classification of 2-step nilpotent Lie algebras of dimension 8 with

2-dimensional center”, Comm. Algebra 39:6 (2011), 2068–2081.
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Universidad Pablo de Olavide

Ctra. de Utrera, km 1. 41013 - Sevilla (Spain)
efedmar@upo.es

Juan Núñez
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